
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 
Sektion Periglazialforschung 

sowie 
Universität Potsdam, 

Institut für Erd- und Umweltwissenschaften 
 
 
 
 
 
 
 

Mid- to Late Holocene environmental dynamics on 

the Yukon Coastal Plain and Herschel Island 

(Canada) – evidence from polygonal peatlands 

and lake sediment 
 

 
 
 
 
 

Dissertation 
zur Erlangung des akademischen Grades 

"doctor rerum naturalium" 
(Dr. rer. nat.) 

in der Wissenschaftsdisziplin "Paläoökologie" 
 
 
 
 
 
 
 
 

eingereicht in Form einer kumulativen Arbeit an der 
Mathematisch-Naturwissenschaftlichen Fakultät der 

Universität Potsdam 
 

 
 
 
 
 

von 
Juliane Wolter 

 
 
 
 
 
 
 
 

Potsdam, den 21.06.2016 



 



· Contents ·  

 
 
 
 
 

Contents 
 
 
 
CONTENTS                                                                                                                   I 

ABSTRACT                                                                                                                 V 

ZUSAMMENFASSUNG                                                                                             VII 

1 GENERAL INTRODUCTION 1 
 
 

1.1 Scientific background and motivation 1 
 

1.1.1 Ice-wedge polygons 1 
 

1.1.2 Tundra vegetation dynamics 4 
 

1.1.3 Holocene climate and environment 5 
 

1.1.4 Study region: The Yukon Coastal Plain and Herschel Island 7 
 
 

1.2 Objectives and approach 9 
 
 

1.3 Thesis structure and author’s contributions 11 
 
 
2 VEGETATION COMPOSITION AND SHRUB EXTENT ON THE YUKON 
COAST, CANADA, ARE STRONGLY LINKED TO ICE-WEDGE POLYGON 
DEGRADATION 15 

 
2.1 Abstract 16 

 
 

2.2 Introduction 16 
 
 

2.3 Study area 18 
 
 

2.4 Methods 20 
 

2.4.1 Field work 20 
 

2.4.2 Laboratory and statistical analyses 21 
 
 

2.5 Results 22 
 

2.5.1 Polygon morphology and substrate characteristics 22 
 

2.5.2 Relation of vascular plant species with microtopography and substrate 25 
 

2.5.3 Relation of shrub species with microtopography 28 
 
 

i 



· Contents · 

ii 

 

 
 

 
 
 

2.6 Discussion 28 
 

2.6.1 Polygon morphology and substrate characteristics 29 
 

2.6.2 Relation of vascular plant species with microtopography and substrate 30 
 

2.6.3 Regional implications 31 
 
 

2.7 Conclusions 32 
 
 

2.8 Acknowledgements 33 
 
 
3 TUNDRA VEGETATION STABILITY VERSUS LAKE BASIN VARIABILITY ON 
THE YUKON COASTAL PLAIN, NW CANADA, DURING THE PAST THREE 
CENTURIES 35 

 
3.1 Abstract 36 

 
 

3.2 Introduction 36 
 
 

3.3 Study area 38 
 
 

3.4 Lake Setting 40 
 
 

3.5 Material and methods 42 
 
 

3.6 Results 44 
 
 

3.7 Discussion 49 
 
 

3.8 Conclusions 56 
 
 

3.9 Acknowledgements 56 
 
 
4 HOLOCENE ICE-WEDGE POLYGON DEVELOPMENT IN NORTHERN 

 

YUKON PERMAFROST PEATLANDS (CANADA) 57 
 
 

4.1 Abstract 58 
 
 

4.2 Introduction 58 
 
 

4.3 Background 60 
 

4.3.1 Thermokarst and thaw lake dynamics 60 
 

4.3.2 Ice-wedge-polygon (IWP) development 60 
 
 

4.4 Study area 62 



· Contents · 

iii 

 

 

 
 
 

4.5 Material and methods 64 
 

4.5.1 Field work 64 
 

4.5.2 Radiocarbon dating and geochronology 65 
 

4.5.3 Sedimentology 67 
 

4.5.4 Stable water isotopes of pore water and intrasedimental ice 67 
 

4.5.5 Palynology and plant macrofossils 68 
 

4.5.6 Diatom analysis 69 
 
 

4.6 Results 69 
 

4.6.1 Geochronology 69 
 

4.6.1 Sedimentology 70 
 

4.6.2 Stable water isotopes of pore water and intrasedimental ice 73 
 

4.6.3 Pollen and plant macrofossils 74 
 

4.6.4 Diatoms 76 
 
 

4.7 Discussion 79 
 

4.7.1 IWP development over time 79 
 

4.7.2 Regional IWP development in NW Canada: review and data synthesis 87 
 
 

4.8 Conclusions 90 
 
 

4.9 Acknowledgements 91 
 
 
5 MID- TO LATE HOLOCENE DEVELOPMENT OF ICE-WEDGE POLYGON 
PEATLANDS ON THE YUKON COASTAL PLAIN, NW CANADA: SEDIMENTARY 
AND PLANT MACROFOSSIL EVIDENCE FOR MORPHOLOGIC AND 
HYDROLOGIC CHANGE 93 

 
5.1 Abstract 94 

 
 

5.2 Introduction 95 
 
 

5.3 Study area 97 
 
 

5.4 Material and Methods 101 
 

5.4.1 Field work 101 
 

5.4.2 Laboratory analyses 101 
 

5.4.3 Data and statistical and analyses 102 
 
 

5.5 Results 103 
 

5.5.1 Komakuk Polygon 103 

5.5.2 Ptarmigan Polygon 107 



· Contents · 

iv 

 

 
 

 
 
 

5.5.3 Roland Polygon 111 
 
 

5.6 Discussion 115 
 

5.6.1 Landscape and vegetation reconstruction 115 
 

5.6.2 Climate vs. geomorphic disturbances as drivers of change in ice-wedge polygons 120 
 

5.6.3 Factors promoting stability of ice-wedge polygons 122 
 
 

5.7 Conclusions 123 
 
 
6 SYNTHESIS AND DISCUSSION 125 

 
 

6.1 Mid- to Late Holocene landscape and vegetation development of the Yukon Coastal Plain 125 
 

6.1.1 Long-term trends 125 

6.1.2 Short-term trends 127 

 
6.2 Drivers of change 129 

 

6.2.1 Thaw lakes 129 

6.2.2 Ice-wedge polygons 130 

6.2.3 Vegetation 131 

 
6.3 Environmental stability 132 

 

6.3.1 Thaw lakes 132 

6.3.2 Ice-wedge polygons 132 

6.3.3 Vegetation 133 

 
6.4 Challenges and Outlook 133 

 
 
ANNEX – SUPPLEMENTARY MATERIAL 135 

 
 
REFERENCES 153 

 
 
DANKSAGUNG 177 



· Abstract · 

v 

 

  

 
 
 

Abstract 
 
 
 
The North American Arctic witnessed high-amplitude climatic change during the Early 

Holocene that resulted in regional-scale environmental change. These changes are well 

documented in the literature. The environmental impacts of moderate climatic oscillations 

during the Mid- to Late Holocene are less well understood, especially on the Yukon Coastal 

Plain, which is geographically and topographically isolated from the rest of the western 

Canadian Arctic. The region is currently experiencing increased thaw of ice-rich permafrost, 

alterations in landscape water balance, and shrub expansion. These processes are connected to 

severe transformations in a landscape that is overwhelmingly composed of periglacial 

landforms. Especially the widespread thaw lakes and ice-wedge polygons are known to be 

vulnerable to climatic and geomorphic change because of their direct dependence on 

permafrost conditions, and hence on air temperatures. Tundra vegetation dynamics are linked 

to  permafrost   conditions   and   geomorphology,   yet   the   interplay  between   vegetation, 

permafrost, geomorphology and climate is not well articulated in Low Arctic tundra. Finally, 

the temporal and spatial scales at which climatic change and geomorphic processes may affect 

periglacial landforms on the one hand and tundra vegetation on the other hand are not clearly 

constrained. Yet, these scale-dependent relationships are crucial components of the adaptation 

and resilience potential of high-latitude environments. 

This thesis identified long-term as well as short-term trends in the development of thaw lakes, 

ice-wedge polygons and tundra vegetation during the Mid- to Late Holocene. This was done 

by studying modern, sub-decadal, and centennial- to millennial-scale records from ice-wedge 

polygons and lake sediment in different landscape units on the Yukon Coastal Plain. 

Additionally,  drivers  of  change  to  these  systems  and  possible  causes  of  environmental 

stability were assessed. 

To address and constrain the wide range of spatial and temporal dimensions involved in 

landscape development, at first the modern state of ice-wedge polygons and a thaw lake were 

examined. The following analyses characterized organic matter (organic carbon contents, 

nitrogen contents, stable carbon isotopes), biological proxies (pollen, plant macrofossils, 

diatoms),  and  abiotic  sediment  (grain  size  composition,  pore  water  hydrochemistry)  in 

multiple  short  cores.  The  age-depth  relationship  was  determined  by  Accelerator  Mass 

Spectrometry radiocarbon dating in all cores and additional 210Pb/137Cs dating in the younger 
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lake sediment core. These records encompassed the environmental history at four sites 

dispersed along the Yukon Coastal Plain in the Western Canadian Low Artic. 

Long-term thaw lake decline was observed at all sites now occupied by ice-wedge polygons. 

These lakes drained gradually or abruptly, leaving behind wet to shallow submerged areas, 

which prevailed for up to 1000 years and subsequently provided waterlogged terrestrial 

conditions with impeded drainage. The investigations have shown that coastal erosion 

contributed to thaw lake drainage. The newly exposed lake floors were then rapidly invaded 

by pioneer vegetation, and ice-wedge polygon development began immediately after drainage.  

Subsequently, low-centred ice-wedge polygons grew and peat accumulation persisted in a 

relatively stable state for millennia, before ice-wedge degradation and drying of the ground 

surfaces set in, likely during the twentieth century. At two sites, the emergence of 

intermediate- and high-centred polygons ensued. This rapid change was reflected by the 

vascular plant taxa composition at the studied sites, which shifted from a graminoid- 

dominated to a shrub-dominated pattern. At the same time, however, the overall regional 

vegetation, which was reconstructed from pollen in lake sediment, remained largely stable 

even across the transition from cooler conditions of the Little Ice Age to twentieth century 

warming. 

Degradation of ice-rich permafrost is increasingly causing geomorphic disturbances on the 

Yukon Coastal Plain and on Herschel Island. The widespread polygon degradation might lead 

to changes in microtopography and landscape hydrology that are irreversible on decadal to 

centennial time-scales and decoupled from climate-driven vegetation change alone. 

The sensitivity of permafrost and vegetation to climatic change depends on amplitude and 

duration of change. While permafrost responds rapidly to climatic change, the response of 

tundra vegetation may lag behind climate forcing. Tundra vegetation resilience and small- 

scale landscape heterogeneity may also buffer a certain amount of stress. Warming-induced 

change to permafrost may, however, trigger geomorphic change, which would affect tundra 

vegetation at much shorter time-scales. 

During the Early Holocene, high-amplitude climatic forcing was the dominant driver of 

environmental change. The Late Holocene experienced moderate climatic oscillations, and 

geomorphic and biological processes complicated the response of vegetation and permafrost 

to climatic forcing. This facilitated localized environmental variability. The modern warming 

trend is, however, currently causing extensive permafrost degradation and shrub expansion 

that could trigger a strong and irreversible environmental response. 
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Zusammenfassung 
 
 
 
Die Nordamerikanische Arktis erlebte im frühen Holozän starke klimatische Schwankungen, 

die  großskalige  Umweltveränderungen  auslösten.  Diese  Veränderungen  sind  gut 

dokumentiert, aber die moderateren Klimaschwankungen des mittleren und späten Holozäns 

sind weniger bekannt, besonders für die abgelegenen Gebiete der kanadischen Arktis. Dort 

werden derzeit ein zunehmendes Tauen des Permafrostbodens und andere 

Landschaftsveränderungen beobachtet. Besonders permafrostspezifische Landformen wie 

Tauseen und Eiskeilpolygone sind durch die höheren Temperaturen gefährdet. Auch die 

Tundravegetation wird stark vom Zustand des gefrorenen Untergrunds beeinflusst, jedoch 

sind  weder  die  Zusammenhänge  zwischen  Vegetation,  Permafrost,  Klima  und 

Geomorphologie bislang gut bekannt, noch die räumlichen und zeitlichen Skalen, auf denen 

sie  agieren.  Genau  diese  Zusammenhänge  sind  es  jedoch,  die  das  Adaptionspotential 

arktischer Landschaften an den Klimawandel bestimmen. 

In  der  vorliegenden  Arbeit  wird  die  Entwicklung  von  Tauseen,  Eiskeilpolygonen  und 

Vegetation  über verschiedene Zeiträume untersucht. Dazu wurde  zuerst  eine 

Bestandsaufnahme dieser Elemente unternommen.   Im Folgenden wurde eine Vielzahl von 

Parametern in Sediment-Kurzkernen untersucht. Diese enthielten die mittel- bis spätholozäne 

Umweltgeschichte der Küstenebene des Yukon Territoriums in der westkanadischen Arktis. 

Dort,  wo  sich  heute  Eiskeilpolygone  befinden,  waren  im  mittleren  bis  späten  Holozän 

Tauseen, die langsam an Größe und Tiefe abnahmen. Auf den immer noch nassen ehemaligen 

Seeböden siedelte sich rasch neue Vegetation an, und Netze von Eiskeilen bildeten sich im 

nun wieder dauergefrorenen Boden. Nach und nach wuchs in ihnen Torf und sie bildeten 

tiefer liegende Zentren aus, die von einige Zentimeter bis Dezimeter höher liegenden Wällen 

umgeben   waren   und teilweise   über   Jahrtausende   stabil   blieben. In   jüngerer Zeit, 

wahrscheinlich während des Zwanzigsten Jahrhunderts, degradierten diese Moore und wurden 

trockener. Dieser recht schnelle Wandel änderte auch die Artenzusammensetzung der lokalen 

Vegetation,  die  sich  von  einem  von  Gräsern  dominierten  in  einen  von  Zwergsträuchern 

dominierten Typ entwickelte. Eine weitere Ausbreitung der Degradierung von Eiskeilpolygon 

könnte vor allem den Landschaftswasserhaushalt stark verändern. Gleichzeitig änderte sich 

allerdings die regionale Vegetationszusammensetzung kaum, obwohl eine deutliche 

klimatische Erwärmung vor sich ging. 
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Dabei reagiert der Permafrost schneller auf klimatische Veränderungen, während die 

Vegetationsantwort verlangsamt sein kann, da sie Schwankungen bis zu einem gewissen Grad 

abpuffern  kann.  Der  regionale  sehr  eisreiche  Permafrost  löst  bei  verstärkter  Tauaktivität 

immer häufigere und stärkere geomorphologische Störungen aus, die die Tundravegetation 

viel schneller beeinträchtigen können. Die Klimasensitivität von Permafrost und 

Tundravegetation  hängt  auch  von  Umfang  und  Dauer  der  klimatischen  Änderung  ab. 

Während des frühen Holozäns dominierten starken Klimaschwankungen die 

Umweltentwicklung. Im späten Holozän hingegen waren die Klimaschwankungen geringer, 

so dass geomorphologische und biologische Prozesse sich ähnlich stark auf die Umwelt 

auswirkten  wie  das  Klima,  wodurch  die  Auswirkungen  räumlich  stark  variierten.  Die 

moderne Klimaerwärmung bewirkt jedoch großräumige Permafrostdegradierung und 

Verbuschung der Landschaft, was starke irreversible  Umweltänderungen auslösen könnte. 
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1 General Introduction 
 
 
 

1.1 Scientific background and motivation 
 
 

1.1.1 Ice-wedge polygons 
 
Ice-wedge polygons develop under permafrost conditions and are most widespread in the vast 

lowlands of northern Siberia, Alaska and Canada in areas of continuous permafrost in the 

High Arctic and Low Arctic (Figure 1.1) (Brown et al. 1997). In these high-latitude extreme 

climates, warming is strongly amplified (polar amplification, (Barros et al. 2014)), and both 

physical and biological environment are particularly climate-sensitive (e.g. Grosse et al. 2011, 

Myers-Smith et al. 2015). 

 
 

Figure 1.1.          (a) Circumarctic distribution of permafrost. (b )  Circumarctic map indicating High 

Arctic, Low Arctic and Sub-Arctic. The study region is situated in the region of continuous permafrost in 

the Low Arctic (red rectangle). 
 

Ice-wedge polygons are the micro-topographic surface expression of networks of polygonally 

adjoining wedge-shaped ice in the ground (i.e. ice wedges). The ground on top of active ice 

wedges is typically raised, forming elevated rims around a central depression. This relief 

pattern may be altered or even inversed, yet the polygonal structure remains visible at the 

ground level. Elevation differences are typically in the order of decimeters, from 0.1m to 
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0.6m (French 2007, Boike et al. 2008, Minke et al. 2009), and in excess of 1m in extreme 

cases (Zibulski et al. 2016). The process of ice-wedge cracking has been studied intensively 

by Lachenbruch (1962) in the northern Alaskan Low Arctic, and by Mackay (1992, 2000) and 

more recently by (Kokelj et al. 2014) at field sites in the Low Arctic of northwest Canada. 

Ice-wedge growth depends on extreme cold in winter and on sufficient ground moisture 

(Kokelj et al. 2014). They are most common in fine-grained and particularly in organic 

material, as these substrates have a high water retention potential (e.g. Kokelj et al. 2014). 

During winter, severe frost causes thermal contraction of the ground, which cracks to release 

thermal contraction stress, preferentially where cohesion is lowest or where the ground has 

cracked before (Lachenbruch 1962, Mackay 1992). These cracks then expand and coalesce to 

form polygonal networks (Lachenbruch 1962). In summer, the top layer of the ground thaws. 

This seasonally thawed layer on top of the permafrost is termed “active layer” (Van 

Everdingen 2005). The cracks subsequently fill with the water available in their immediate 

vicinity, which is generally from snowmelt and excess water from the active layer, but also 

from hoar ice that formed in the cracks in winter (Lachenbruch 1962). This water freezes 

again  in  the  next  cold  season,  while  the  surrounding  ground  contracts  again  and  the 

structurally weak old crack re-opens, often near the middle of the initial ice vein (Mackay 

1974a). Ice wedges widen progressively through this process and may reach large dimensions 

in the course of millennia (e.g. Vasil'chuk & Vasil'chuk 1997). Ice wedges may develop 

syngenetically, i.e. growing successively deeper and wider as sediment accumulates. They 

may also develop epigenetically in previously existing sediments, becoming wider rather than 

deeper (Mackay 1990). Syngenetic ice-wedge growth may produce ice wedges many metres 

deep and is common in Siberian and Beringian lowlands (e.g. Sher et al. 2005, Kanevskiy et 

al. 2011), while in the Western Canadian Arctic epigenetic ice wedges are typical (Rampton 

1982, Mackay 2000). 
 

The polygon morphotypes developing in syngenetic ice-wedge terrain differ slightly from 

those  observed  in  epigenetic  ice-wedge  fields.    Epigenetic  ice-wedge  polygons  have  a 

“double-ridge” with a conspicuous dip in the middle (French 2007) caused by lateral 

movement of material as the ice wedges grow sideways (Mackay 2000). Syngenetic ice- 

wedge growth has been reported to also produce single-ridge polygons (Romanovskii 1977, 

Minke et al. 2009). This thesis deals with ice-wedge polygons which developed through 

epigenetic ice-wedge growth. The polygonal relief patterns formed around ice wedges may be 

either elevated rims around a central depression (low-centred polygons) or elevated centres 

surrounded by troughs (high-centred polygons). Low-centred polygons are thought to develop 
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into intermediate-centred and then high-centred polygons when drainage is improved through 

i) ice-wedge melt (Mackay 1974b, Fortier & Allard 2004, Jorgenson et al. 2006), through ii) 

peat growth exceeding ice-wedge growth (Mackay 1990, 2000), or through iii) active ice- 

wedge growth pushing adjacent material to either side into the polygon centres (Mackay 

2000). The concept of polygon development stages and the drivers behind conversions are, 

however, not well defined yet. 

Drained thaw lake basins are the most common ice-wedge polygon sites on the coastal plains 

of the Beaufort Sea in Alaska and the Yukon Territory (Hussey & Michelson 1966, Rampton 

1982, Lara et al. 2015). The development of ice-wedge polygons in drained thaw lake basins 

has been proposed to be polycyclic. The so-called thaw lake hypothesis introduced 

successional stages of ice-wedge polygons with initiation after lake drainage followed by 

maturity and degradation, until ponds resulting from ice-wedge thaw and ground subsidence 

coalesce and form new thaw lakes (Billings & Peterson 1980). The cycle may be interrupted 

at any stage and take a different route if environmental conditions change (Jorgenson & Shur 

2007). This hypothesis is still being discussed, as its applicability to observed ice-wedge 

polygon dynamics is limited.  Large ice wedges several metres wide and many metres deep in 

Siberian ice complex deposits required millennia of suitable conditions for their growth, 

suggesting that they can be stable over extensive periods (French 2007, Schirrmeister et al. 

2011b). Several metres of peat have also formed in ice-wedge polygons on the Yukon coast 

(Rampton 1982, Fritz et al. 2012b). Ice-wedge re-juvenation (Lewkowicz 1994) indicated that 

even after ice-wedge degradation or cessation of ice-wedge growth during unsuitable 

conditions, ice-wedge development may be reinitiated in the same place. The climatic and 

geomorphological conditions promoting long-term ice-wedge growth are not well understood. 

Especially the frequency and amplitude of disturbance and environmental change that may be 

buffered within ice-wedge polygon environments is largely unknown. 

Climatic as well as geomorphic drivers of ice-wedge polygon development are being 

discussed. Active ice-wedge cracking may stop if winter temperatures rise or if the ground is 

better insulated against severe cold, for example when vegetation or plant debris accumulate 

above the ice wedge (Jorgenson & Shur 2007, Kokelj et al. 2014), or when the snow cover 

becomes thicker (Kokelj et al. 2014). Improved drainage resulting in the conversion of low- 

centred polygons into high-centred polygons may be climate-induced through increased 

summer ice-wedge melt (Jorgenson et al. 2006) or driven by geomorphic disturbance through 

coastal erosion, thermal erosion or increased retrogressive thaw slump activity altering 

landscape hydrology (e.g. Rampton 1982, Godin et al. 2016). While regional climate as a 
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driver would result in synchronous behaviour of ice-wedge polygons across a landscape, 

geomorphic disturbances provoke local responses. In unconsolidated ice-rich sediments in 

permafrost regions geomorphology is strongly linked to climate (Jorgenson & Osterkamp 

2005, Kokelj & Jorgenson 2013), so that climatic change is thought to provoke a regional 

increase in localized geomorphic change. 

Finally, ice-wedge polygons are valuable palaeoarchives, preserving both summer signal 

(biological proxies in peat) (De Klerk et al. 2011, Zibulski et al. 2013, Teltewskoi et al. 2016) 

and winter signal (isotopic composition in ice wedges) (Meyer et al. 2015). In peat from arctic 

wetlands, anoxic conditions and permafrost contribute to preserving organic matter 

exceptionally well, providing a robust basis for reconstructions of Quaternary environments. 
 

1.1.2 Tundra vegetation dynamics 
 
Tundra vegetation establishes where short growing seasons, cold temperatures and shallow 

active layers prevent the growth of trees. It is composed of lichens, mosses, grasses, sedges, 

forbs and shrubs, with varying amounts of bare ground (e.g. Walker et al. 2005). In the Arctic, 

vegetation cover and growth height increase from north to south along mean summer 

temperature gradients (Walker et al. 2005, French 2007). In high-arctic tundra on Arctic 

Islands and on Greenland, the vegetation cover is discontinuous and woody vegetation is 

missing from the coldest parts, while prostrate dwarf shrubs (<0.1 m growth height) are 

present in the warmer parts (Walker et al. 2005). Low-arctic tundra, however, has a nearly 

continuous vegetation cover and abundant shrubs from prostrate dwarf shrubs to erect dwarf 

shrubs (<0.4m), low shrubs (<2m) and even tall shrubs (>2m) (Walker et al. 2005). The 

wetland vegetation characteristic of ice-wedge polygon environments is found on flat to 

slightly sloping ground, where drainage is impeded. Lichens, mosses, sedges, grasses, forbs, 

and dwarf shrub grow in the diverse microrelief of ice-wedge polygons (e.g. Bliss 1956). 

These landforms thus provide habitats for high- and low-arctic taxa in close proximity to each 

other. 

Vegetation  cover  and  taxa  composition  as  well  as  growth  form  and  growth  height  of 

individual taxa considerably affect land surface properties such as snow retention patterns 

(Sturm et al. 2001), ground insulation (Walker et al. 2003) and ground moisture (Longton 

1997). Effects of vegetation on permafrost are mostly related to insulation against severe cold 

in winter and to shading against insolation and warming in summer (Myers-Smith et al. 

2011b). On shallow active layers, mosses, lichens, graminoids, and prostrate and erect dwarf 

shrubs dominate. These provide less effective shading in summer, but also less insulation 
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against cold in winter than low or tall dwarf shrubs that grow on thicker active layers (Bliss 

 

1956), which protect the ground from both warming and cooling. Thus, the direction of 

change  depends  on  the  relative  balance  between  summer  warmth  and  winter  cold. 

Geomorphic  disturbances   (e.g.   river   bank   erosion,   coastal   erosion,   thermal   erosion, 

permafrost-specific   mass   wasting   phenomena   such   as   active   layer   detachments   or 

retrogressive thaw slumps) (e.g. Lamoureux & Lafrenière 2014, Obu et al. 2015) as well as 

biological disturbances (e.g. stress through herbivory, competition) (e.g. Hobbie 1996) 

influence the amount and condition of organic material in the ground. This includes effects on 

the amount and availability of nutrients in the ground (Buckeridge et al. 2010, Zamin & 

Grogan 2012). 

Modern tundra landscapes have experienced extensive reorganization in the past as a response 

to climatic change (e.g. Andreev et al. 2002, Payette et al. 2002) or geomorphic (e.g. Burn 

1997) and biological disturbances (e.g. Zimov et al. 1995). However, vegetation stability for 

millennia has been reported as well (e.g. Alsos et al. 2015). The buffering capacity and 

resilience of tundra vegetation towards increased stress is not well constrained, and neither is 

the impact of geomorphic disturbance on vegetation. 
 

1.1.3 Holocene climate and environment 
 
After deglaciation during the Pleistocene-Holocene transition, the landscape on the Yukon 

Coastal Plain became affected by permafrost and by periglacial conditions (Rampton 1982). 

During the Holocene Thermal Maximum, about 11500-9000 cal yrs BP, temperatures were 

warmer than today, causing widespread thermokarst in the region, as apparent from a 

conspicuous thaw unconformity in the permafrost that is traceable throughout the Western 

Canadian Arctic from the Tuktoyaktuk Peninsula westwards  (Rampton 1988, Murton & 

French 1994, Burn 1997). This was accompanied by widespread thermokarst lake initiation 

(Murton 1996, Burn 1997), and provided the basis for Mid- to Late Holocene landscape 

development on the Yukon Coastal Plain. After about 7000-6000 cal yrs BP the reconstructed 

mean temperature in Eastern Beringia fluctuated within less than 1 °C of modern values 

without a long-term trend, yet with low-amplitude decadal and millenial oscillations (Viau et 

al. 2008). On the Yukon Coastal Plain, the most prominent long-term climatic changes that 

have been found after about 6000 cal yrs BP were decreasing summer temperatures and 

increasing summer precipitation (Kurek et al. 2009, Fritz et al. 2012a, Irvine et al. 2012). This 

increasingly maritime summer climate has been attributed to sea level rise accompanied by 

shoreline regression (Burn 1997). Winter climate was less affected because in winter the 
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frozen sea acts as a snow-covered land surface. Topography indicates that lakes used to be 

much larger on the Yukon Coastal Plain and ice-wedge polygons developed in drained lake 

basins, yet the timing of lake decline and initiation patterns of ice-wedge polygons are not 

well documented. 

Climate oscillations during the last 2000 years are documented in the Arctic (McKay & 

Kaufman 2014), and have also been studied in the Western Canadian Arctic (D'Arrigo et al. 

2006). While the Medieval Warm Period is not conclusively proven for the region, cooler 

conditions prevailed in the Yukon during the Little Ice Age (AD 1600-1850) (D'Arrigo et al. 

2006).  Beginning  in  the  20th  century  and  accelerating  during  recent  decades,  climatic 

warming and increased permafrost thaw have affected geomorphology and vegetation on the 

Yukon Coastal Plain and Herschel Island (Wolfe et al. 2001, Myers-Smith et al. 2011a, 

Lantuit et al. 2012, Radosavljevic et al. 2015). High-latitude climatic warming is projected to 

unfold at high rates, with sea ice declining further in both extent and duration (AMAP 2011, 

Barros et al. 2014). As a result, widespread ice-wedge degradation (Jorgenson et al. 2006, 

Liljedahl et al. 2016), thermokarst (reviewed by Kokelj & Jorgenson 2013), retrogressive 

thaw slumping (Kokelj et al. 2009, Lantuit et al. 2012), accelerating coastal erosion and other 

geomorphic changes that have been recorded along the entire Beaufort Sea coast are expected 

to continue and intensify (Lantuit & Pollard 2008, Radosavljevic et al. 2015, Obu et al. 2016). 

Projected pathways for ice-wedge polygon development in the Low Arctic include the 

cessation  of  ice-wedge  cracking  due  to  rising  winter  temperatures  and  altered  snow 

distribution patterns (Kokelj et al. 2014) or ice-wedge degradation leading to increased 

ponding  and  to  the  conversion  of  low-centred  polygons  into  high-centred  polygons 

(Jorgenson et al. 2006). Locally, however, lake drainage may cause initiation of new ice- 

wedge polygons (Mackay 1999, Jorgenson & Shur 2007). High-centred polygons are 

susceptible to erosion (Zoltai & Pollett 1983, Fortier et al. 2007), and may disappear within 

decades,   introducing   massive   disturbance   to   affected   landscapes.   Permafrost   thaw, 

thermokarst and increased ponding is thought to be reversed in the long run when increased 

evapotranspiration may lead to a negative landscape water balance (Smol & Douglas 2007, 

Avis et al. 2011, Liljedahl et al. 2016). 

Vegetation response to recent climatic change that has been observed and projected in low- 

arctic tundra includes lichen decline (Cornelissen et al. 2001, Fraser et al. 2014), decreasing 

forb biodiversity (Chapin et al. 1995), and especially shrub expansion (Chapin et al. 1995, 

Tape et al. 2006, Myers-Smith et al. 2011b, Myers-Smith et al. 2015). These changes will 

have a profound impact on land surface properties, and ultimately on the global climate 
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system  (Chapin  et  al.  2005).  Studies  examining  the  impact  of  geomorphic  change  on 

landscape development, including landscape water balance and flow paths, and on vegetation 

cover  and  composition,  are,  however,  still  scarce  in  the  coastal  lowlands  of  the  North 

American Arctic (Myers-Smith et al. 2011b, Naito & Cairns 2011, Kokelj & Jorgenson 2013, 

Myers-Smith et al. 2015, Liljedahl et al. 2016). 
 

1.1.4 Study region: The Yukon Coastal Plain and Herschel Island 
 
The Yukon Coastal Plain in the Western Canadian Arctic is characterized by a complex 

landscape  mosaic including  Beringian,  glacigenic or Holocene landforms  and  sediments, 

which results from partial glaciation during the Quaternary (Rampton 1982). This diversity in 

landforms and quaternary history and the region’s proximity to the Beaufort Sea, the presence 

of continuous permafrost (Brown et al. 1997) in unconsolidated sediments, abundant wetlands 

and lakes (Hagenstein et al. 1999), and subarctic shrubby tundra (Walker et al. 2005) make 

this region ideal for studying the effects of climatic change and associated processes such as 

sea level rise, permafrost thaw, landscape hydrological change and shrub expansion. 

 

 
 

Figure 1.2.         Overview map indicating study sites (stars) within and beyond the former maximum 

extent of glaciation (hatched line) and topographic features mentioned in the text. 
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The coastal plain is the landward extension of the Beaufort Sea shelf and the eastward 

continuation of the Arctic Coastal Plain of Alaska. It extends from the Yukon –Alaskan 

border to the Mackenzie Delta between the Beaufort Sea and the British Mountains in the 

south (Figure 1.2). 

During the Quaternary, the former Laurentide Ice Sheet repeatedly advanced into the study 

region (summarized by Rampton 1982), retreating from its furthest advance just beyond the 

position of the modern Firth River at about 16.2 ka yrs BP (Dyke & Prest 1987, Fritz et al. 

2012b) (Figure 1.2) and left the western parts of the plain unglaciated. The Quaternary 

geology  of  the  region  reflects  this  extensive  disturbance.  Unconsolidated  sediments  of 

preglacial, fluvial, morainic, lacustrine, colluvial, glaciofluvial, aeolian, estuarine, marine and 

glaciomarine origin are distributed along the coast, often covered by peaty organic deposits 

(Rampton  1982).  Holocene  geomorphology and  vegetation  further  structured  and  altered 

landscapes. Rivers dissect the coastal plain from south to north. On the flat expanses of land 

along the Beaufort Sea coast glacigenic landforms are interspersed with lacustrine plains 

(Rampton 1982). These consist of lakes, some of them partly or entirely drained, and provide 

the basis for ice-wedge polygon development. The ice-wedge polygons studied in this thesis 

were situated on a Beringian lacustrine plain near Komakuk Beach (Komakuk Polygon), on 

the glacial outwash plain near Ptarmigan Bay (Ptarmigan Polygon), on the push-moraine 

Herschel Island (Herschel Polygon), and on a rolling moraine near Roland Bay (Roland 

Polygon). A lake close to Roland Polygon (Roland Lake, informal name given by the authors) 

provided material for the reconstruction of regional vegetation patterns from pollen analysis. 

As glaciers retreated, epigenetic permafrost developed and ice-wedge growth commenced in 

the  formerly  glaciated  region  (Rampton  1982).  A  permafrost  depth  of  142  m  has  been 

recorded near Roland Bay ((Norquay 1983), data compiled by Smith & Burgess (2002)). 

Active layer depths average 50 cm across the region, except in highly disturbed ground such 

as bare gravel (Rampton 1982) and in recently detached and redeposited material such as in 

retrogressive thaw slumps or other landforms associated with mass wasting processes (Obu et 

al. 2015). Very high ground ice volumes (up to 54 % in lacustrine deposits, Couture (2010)) 

make the landscape highly susceptible to  thaw subsidence,  causing thermokarst,  thermal 

erosion,  retrogressive  thaw  slumping  and  high  rates  of  coastal  erosion.  In  the  western, 

unglaciated part, ground ice contents as well as relief and elevation of the coast are smaller, 

making this part of the plain more stable (Rampton 1982). 

The  Yukon  Coastal  Plain  has  a  subarctic  climate  with  a  distinct  maritime  influence  on 

summer temperatures and precipitation. The mean annual temperature is -11.0°C at Komakuk 
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Beach and -9.9°C at Shingle Point, with mean July temperatures between 7.8°C at Komakuk 

Beach and 11.2°C at Shingle Point (1971-2000 means, http://climate.weather.gc.ca). Mean 

annual precipitation is between  161.3 and 253.9 mm, about half of which falls a snow and 

forms a thin (mean 25 cm) and variable snow cover that persists for a mean of 250 days per 

year (1971-2000 means, http://climate.weather.gc.ca). Snow is blown from exposed sites and 

accumulates in river valleys and gullies, but is also trapped in ice-wedge polygon fields, in 

which snow distribution patterns are determined by polygon morphotype (Liljedahl et al. 

2016). 
 

The tundra on the Yukon Coastal Plain and Herschel Island is transitional between low shrub 

tundra in the south and erect dwarf shrub tundra in the north. The transition zone is expected 

to respond especially rapidly to climatic warming (Lantz et al. 2010, Myers-Smith et al. 

2015). Wetland vegetation is dominated by mosses and sedges (Carex sp., Eriophorum 

angustifolium) in wet to submerged sites, while slightly better drained sites support lichens, 

mosses, tussock cottongrass (Eriophorum vaginatum) and dwarf shrubs (Betula glandulosa, 

Salix spp., Ericales, Rubus chamaemorus) are especially abundant (Bliss 1956). The modern 

treeline runs south and east of the study region. Beyond the mountain range and north in the 

Mackenzie Delta black spruce (Picea mariana), white spruce (Picea glauca), balsam poplar 

(Populus balsamifera), and paper birch (Betula papyrifera) (MacDonald & Gajewski 1992) 

are found, while cool summers and a shortened growing season caused by the influence of the 

cold sea currently prevent tree growth on the coastal plain (Burn 1997). The growing season 

lasts approximately from snow melt in mid-June to the end of August (Hagenstein et al. 

1999). 
 
 

1.2 Objectives and approach 
 
The main aim of this work is to identify drivers of ice-wedge polygon development 

(permafrost-specific features of the physical environment) and vegetation development 

(permafrost-affected biotic environment) in periglacial tundra landscapes. To address this 

general aim, the following specific objectives provide the basis for this thesis: 

• identify  long-term  as  well  as  short-term  trends  in  landscape  and  vegetation 

development on the Yukon Coastal Plain during the Mid- and Late Holocene, 

• investigate   drivers   of   change   in   Low-Arctic   permafrost-affected   lowlands, 

exemplified by changes to thaw lakes, ice-wedge polygons and vegetation, 

• explore factors promoting physical and ecological stability in these systems. 
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I addressed these research questions on different temporal and spatial scales, to assess the 

sensitivity of permafrost and vegetation dynamics to climatic and geomorphological change. I 

first  explored  the  modern  state  of  ice-wedge  polygons  and  vegetation  in  the  region  by 

studying microtopography, substrate and vascular plant cover and taxa composition in four 

ice-wedge polygons along the coast and on Herschel Island (Figure 1.2, Chapter 2). I studied 

the  response  of  physical  environment  and  vegetation  to  low-amplitude  high-frequency 

climatic change by analyzing sediment parameters and pollen in a short lake sediment core 

(Chapter 3). The Holocene perspective on permafrost and landscape development, with a 

focus on ice-wedge polygon development, is addressed in Chapter 4. The reconstruction of 

the Mid- to Late Holocene development of an model ice-wedge polygon on Herschel Island 

was performed on a core reaching 2.3 m into the active layer and the underlying permafrost 

and analyzing multiple abiotic and biotic parameters. I then conducted a landscape-scale Mid- 

to Late Holocene reconstruction of landscape, permafrost and vegetation development in ice- 

wedge polygons using six peat cores (Chapter 5), in which I analyzed sediment parameters 

and vascular plant macrofossils. The parameters analyzed for each part of the study are 

summarized in Table 1.1. 
 

Table 1.1.           Summary highlighting the multi-proxy approach. Analyses on sediment samples used in 

each chapter of this thesis are marked. 
 

Geochronology   Physico-chemistry Biology 
 

Particulate portion Interstitial water 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2    x x x   x x x   
Chapter 3 x x x x x x x     x 
Chapter 4 x  x x x x x x x x  x x x 
Chapter 5 x  x x x x x       x 
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1.3 Thesis structure and author’s contributions 
 
The current work consists of a general introduction, four main chapters, and a synthesis and 

outlook section. The four main chapters are original publications that have been published, 

are in review in or in preparation for international peer-reviewed and ISI-listed scientific 

journals. These publications are independent stand-alone contributions to the scientific 

literature. Some overlapping general information may be present between chapters, especially 

in introductory, study area and methods parts. These could not be avoided, as all manuscripts 

contribute to the same scientific field in the same study region. 
 
 
Chapter 2: Vegetation composition and shrub extent on the Yukon coast, Canada, are 

strongly linked to ice-wedge polygon degradation 

Authors: J. Wolter, H. Lantuit, M. Fritz, M. Macias-Fauria, I. Myers-Smith and U. Herzschuh 

Chapter 2 presents modern vegetation composition, substrate and microtopography in four 

ice-wedge polygons in the Western Canadian Arctic, and discusses the role of 

microtopographic heterogeneity in vegetation dynamics, focusing on shrub expansion. This 

manuscript provides the basis for understanding ice-wedge polygons on the Yukon coast by 

assessing the relationship between physical parameters and vegetation. J. Wolter designed the 

study, coordinated and contributed to field work, executed plant identifications, sample 

processing, laboratory analyses, and statistical analyses, created all figures and tables and 

wrote the manuscript. H. Lantuit and M. Fritz and I. Myers-Smith helped with field work and 

planning,  and  provided  guidance  and  manuscript  reviews.  M.  Macias-Fauria  provided 

scientific guidance and discussions and reviewed the manuscript at various stages. U. 

Herzschuh provided scientific and statistical analysis guidance. 

Chapter  3:  Tundra  vegetation  stability  versus  lake  basin  variability  on  the  Yukon 
 

Coastal Plain, NW Canada, during the past three centuries 
 

Authors: J. Wolter, H. Lantuit, U. Herzschuh, S. Stettner, M. Fritz 
 

This manuscript takes the spatial and temporal scale of investigations further by providing 

evidence for 300 years of stable tundra vegetation in the region despite evidence for regional 

climatic change from tree-ring data (published by D'Arrigo et al. 2006). The manuscript 

provides additional evidence for lake-level changes during this time, which were linked with 

changes in reconstructed regional temperature. It stresses that the same amplitude of climatic 

change  can  affect  the  physical  environment  while  the  vegetation  may  prove  resilient. 

J. Wolter, H. Lantuit and M. Fritz designed the study.   J. Wolter wrote and coordinated the 
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manuscript and created Figures 3.3-3.8 and all tables. M. Fritz and J. Wolter did the field 

work. J. Wolter did the sample preparation and most of the laboratory analyses. Pollen sample 

preparation, pollen identification and counting, and statistical analyses were carried out by 

J. Wolter. AMS radiocarbon dating and 210Pb/137Cs dating were carried out as a paid service 

by the Radiocarbon Laboratory Poznan and the Environmental Radioactivity Research Centre 

(University of Liverpool), respectively. S. Stettner created Figures 3.1 and 3.2 and carried out 

the lake catchment analysis. U. Herzschuh advised on statistical analyses and interpretation. 

H. Lantuit, M. Fritz, U. Herzschuh, S. Stettner provided guidance and feedback and reviewing 

of the manuscript. 
 

Chapter 4: Holocene ice-wedge development in northern Yukon permafrost peatlands 
 

(Canada) 
 

Authors:  M.  Fritz,  J.   Wolter,  N.  Rudaya,   O.  Palagushkina,  L.  Nazarova,  J.  Obu, 

J. Rethemeyer, H. Lantuit, S. Wetterich 

This manuscript tracks the development of an ice-wedge polygon mire from before its 

initiation to its current state through the last 5000 years, providing a Holocene perspective on 

ice-wedge polygon development and its prerequisites. It documents permafrost processes 

involved with lake drainage and ice-wedge polygon development as well as vegetation 

dynamics along a hydrological gradient from shallow lake to partly submerged to terrestrial 

wetland. The manuscript presents results from a multi-disciplinary study and as such contains 

contributions from multiple authors. M. Fritz and J. Wolter designed the study and performed 

the fieldwork. M. Fritz coordinated work on the manuscript, wrote most of the text, and made 

Figures 4.10, 4.11, and 4.12. M. Fritz, J. Wolter and S. Wetterich interpreted the entire record, 

integrating results from all studied proxies, and provided the framework and general 

argumentation of the manuscript. J. Wolter carried out plant macrofossil analyses and age 

depth modelling and created Figures 4.3c and 4.4, and Tables 4.1 and 4.2. J. Wolter wrote 

parts of the introduction, study area, and discussion sections as well as methods, results and 

discussion parts about the age depth relationship and the vegetation record (plant macrofossils 

and pollen), partly in cooperation with J. Rethemeyer, N. Rudaya, and several other text 

passages. J. Wolter also provided statistical analyses on the sediment record leading to the 

establishment of an overall zonation in the core, and revision of the entire manuscript at all 

stages. J. Obu made Figures 4.2, 4.3a, and 4.3b. J. Rethemeyer performed Accelerator Mass 

Spectrometry (AMS) radiocarbon dating, wrote the methods part for radiocarbon dating, and 

provided ideas for the interpretation of radiocarbon dates in the record. O. Palagushkina 

performed diatom analyses, created Figures 4.8 and 4.9, and wrote methods, results and 
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discussion text passages on diatom analyses. N. Rudaya and L. Nazarova performed pollen 

analyses, created Figure 4.7, and wrote methods, results and discussion text passages on 

pollen analyses. S. Wetterich wrote parts of introduction and discussion, and contributed to 

manuscript revisions. 
 
 
Chapter 5: Development of ice-wedge polygon peatlands on the Yukon Coastal Plain, 

Western Canadian Arctic, during the Mid- to Late Holocene – sedimentary and plant 

macrofossil evidence 

Authors:  J.  Wolter,  H.  Lantuit,  U.  Herzschuh,  S.  Wetterich,  J.  Rethemeyer,  B.  Plessen, 

M. Fritz 

Chapter 5 deals with the Mid- to Late Holocene environmental history of ice-wedge polygons 

and preceding thaw lakes on the Yukon Coastal Plain. It assesses the relative influence of 

climate and geomorphology on landscape and vegetation development, focusing on ice-wedge 

polygons, and providing a regional-scale landscape reconstruction. J. Wolter designed the 

study, wrote and coordinated the manuscript, and created all figures and tables. J. Wolter and 

M. Fritz subsampled and described the peat cores in the laboratory. J. Wolter retrieved the 

peat cores in the field, performed sample preparation for all analyses and analysed about two 

third of the samples. AMS radiocarbon dating was carried out as a paid service by the 

Radiocarbon Laboratory Poznan and in cooperation with CologneAMS at the University of 

Cologne, where J. Rethemeyer performed AMS radiocarbon dating. H. Lantuit, U. Herzschuh, 

S. Wetterich and M. Fritz provided scientific guidance and feedback and reviewed the 

manuscript at several stages. 
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2  Vegetation composition and shrub extent 

on the Yukon coast, Canada, are strongly 

linked to ice-wedge polygon degradation 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 A publication with equivalent content is available as: 
 

Wolter J, Lantuit H, Fritz M, Macias-Fauria M, Myers-Smith I and Herzschuh U, 2016: Vegetation  composition 

and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation. Polar 

Research 35, 27489, doi: 10.3402/polar.v35.27489. 
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Abbreviations in this article 

 

PCA: principal component analysis 
 

TC: total carbon 
 

TN: total nitrogen content 
 

TOC: total organic carbon content 
 
 

2.1 Abstract 
 
Changing environmental and geomorphological conditions are resulting in vegetation change 

in ice-wedge polygons in Arctic tundra. However, we do not yet know how microscale 

vegetation patterns relate to individual environmental and geomorphological parameters. This 

work aims at examining these relations in polygonal terrain. 

We analysed composition and cover of vascular plant taxa and surface height, active layer 

depth, soil temperature, carbon and nitrogen content, pH and electrical conductivity in four 

polygon mires located on the Yukon coast. We found that vascular plant species composition 

and cover correlates best with relative surface height. Ridges of low-centred polygons and 

raised centres of high-centred polygons support the growth of mesic and wetland species (e.g. 

Betula  glandulosa,  Salix  pulchra,  S.  reticulata,  Rubus  chamaemorus,  various  ericaceous 

dwarf shrubs, Eriophorum vaginatum, Poa arctica). Wetland and aquatic plant species (e.g. 

E. angustifolium, Carex aquatilis, C. chordorrhiza, Pedicularis sudetica) grow in low-lying 

centres of polygons and in troughs between polygons. We also found a relationship between 

vascular plant species composition and substrate characteristics such as pH, electrical 

conductivity and total organic carbon, although the individual influence of these parameters 

could not be determined because of their correlation with relative surface height. 

Our findings stress the regulatory role of microtopography and substrate in vegetation 

dynamics of polygonal terrain. Ongoing warming in this region will lead to changes to 

polygonal terrain through permafrost degradation and subsequent conversion of low-centred 

into high-centred polygons. Our results indicate that shrubs, particularly Betula glandulosa 

and heath species, have the potential to expand most. 
 

2.2 Introduction 
 
The recent warming trend at high latitudes is leading to ecological, hydrological, and 

permafrost changes in Arctic tundra ecosystems (Barros et al. 2014). Thawing permafrost and 

extended growing seasons will potentially affect vast expanses of arctic wetlands and wetland 

vegetation, but the mechanisms involved and the direction of change are still unclear. 
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Ice-wedge polygon mires are a common wetland type of Arctic lowlands (French 2007). A 

low-centred polygon type develops in polygonal nets of ice wedges, where flat to slightly 

sloping permafrost ground provides a water-saturated and poorly drained surface (Washburn 

1979). High-centred polygons are thought to develop from degrading low-centred polygons 

affected by melting ice wedges (Mackay 2000) and improved drainage conditions (French 

2007). There are intermediate forms between these two general types. 
 

Ice  wedge  degradation  leading  to  a  relief  inversion  in  low-centred  polygons  has  been 

observed over the past decades, and has in part been attributed to increasing mean ground 

temperatures (Jorgenson et al. 2006, Necsoiu et al. 2013). The reorganization of low-centred 

polygons into high-centred polygons is irreversible on decadal to centennial timescales: either 

a new stable state is reached (Jorgenson et al. 2006, Ellis et al. 2008) or the polygons are 

further degraded and eroded (Fortier et al. 2007). Such changes to surface topography may 

induce significant modifications to landscape hydrology and the depth of the active layer (the 

seasonally thawed top layer of the ground), and change growing conditions for plants (Ellis et 

al. 2008). 

Changes in the vegetation cover can in turn alter the permafrost ground thermal regime 

substantially by modifying insulation, albedo and heat conduction (Walker et al. 2003). 

Mosses, graminoids and shrubs are the most dominant plant groups in polygon mires (Bliss 

1956). In this study we focus on vascular plants and their relation with environmental 

parameters. Shrub taxa are especially important in the context of recent change and insulation 

of permafrost. Shrubs insulate the ground against extreme cold by trapping snow in winter, 

but they also provide shade in summer, reducing the amount of solar radiation reaching the 

ground (Myers-Smith et al. 2011b). Depending on growth form and canopy height, either of 

these effects may dominate, reducing or increasing active layer depths. 

Recent studies show an overall increase in shrub abundance and biomass in the circumarctic 

tundra (Tape et al. 2006, Frost & Epstein 2014). On the regional to global level, shrub growth 

is limited by summer air temperatures and the length of the growing season (Myers-Smith et 

al. 2011b, Myers-Smith et al. 2015), while locally other factors such as topography, hydrology 

and nutrient availability can become limiting (Shaver & Chapin 1980, Walker 2000, 

Naito & Cairns 2011, Ropars & Boudreau 2012), making the response of vegetation to 

climatic change more heterogeneous (Lantz et al. 2010, Frost et al. 2014). 

The complex relationships between vegetation and polygon mire development have been 

studied locally in very few places in the circumpolar Arctic (Ellis et al. 2008, De Klerk et al. 

2011, Zibulski et al. 2013, De Klerk et al. 2014, Fritz et al. 2016) and are still poorly 



· Chapter 2 · 

18 

 

 

 
 
 
understood. There is little information available on environmental constraints to shrub 

composition in polygon mires. This impedes our capacity to determine which species are 

likely to gain from changing environmental conditions in the vast polygonal lowlands of the 

Arctic. 

In  this  study  we  investigate  vascular  plant  species  composition  and  abundance  in  four 

polygon mires on the Yukon Coastal Plain and Herschel Island along with physical 

environmental parameters to provide a baseline against which to assess past, present and 

future change in vegetation composition in polygon mires. 

The objectives of this paper are: 
 

• To identify patterns in vascular plant species composition and cover and relate them 

to microtopography and substrate in ice-wedge polygon mires. 

• To discuss the potential of ice-wedge polygon mires as sites of shrub expansion 

and the susceptibility of different ice-wedge polygon types to shrub expansion. 

 
2.3 Study area 

 
The Yukon Coastal Plain is part of a Low Arctic transition zone between low-shrub tundra 

and dwarf-shrub tundra, where the response of vegetation to warming is predicted to be 

fastest (Lantz et al. 2010, Myers-Smith et al. 2015). 
 
 

 
 

Figure 2.1. Location of study area. (a) The studied ice-wedge polygon mires are situated on the 
 

Yukon Coastal Plain and Herschel Island within and beyond the reconstructed limit of Quaternary 
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glaciation (white line). Map based on Landsat imagery. (b) Location of study area in North America. (c) 

Vegetation zones of the wider study region (modified after Circumpolar Arctic Vegetation Map (CAVM 

Team 2003)). (d) Schematic drawing of ice-wedge polygon and measured polygon dimensions. 

 
The study area lies within the region of continuous permafrost (Brown et al. 1997). Wetlands 

cover about 25-50 % of its surface (Hagenstein et al. 1999). The coastal plain is a 10-40 km 

wide strip of flat to gently sloping terrain stretching over 200 km from the Yukon-Alaskan 

border to the Mackenzie Delta (Figure 2.1). 

It is confined between the British Mountains to the South and the Beaufort Sea to the North. 

The Yukon Coastal Plain was partially glaciated during the Late Wisconsin (23-16 thousand 

years ago), when the Laurentide Ice Sheet extended into the study area west of Herschel 

Island (a push moraine) beyond the modern Firth River approximately to 139.6° W (Mackay 

1959, Dyke & Prest 1987, Fritz et al. 2012b). The accumulated sediments are of Holocene 

and Pleistocene origin topped by a thin layer of peaty organic soil, which is thicker in the 

western, unglaciated part of the Yukon Coastal Plain (Rampton 1982). Ice-wedge growth and 

degradation, thermokarst and thermal erosion are the main geomorphic processes shaping the 

landscape. 

Mean annual air temperatures on the Yukon Coast range between -11.0°C (Komakuk Beach) 

and  -9.9°C  (Shingle  Point),  whereas  mean  July  air  temperatures  range  from  7.8°C  at 

Komakuk Beach to 11.2°C at Shingle Point (30-year means for 1971-2000 obtained from 

Environment Canada; http://climate.weather.gc.ca). Both climate stations are situated on the 

coast, and summer temperatures are likely to be slightly higher a few kilometres inland. The 

influence of the cold sea on regional climate during summer shortens the growing season 

compared with locations further inland (Haugen & Brown 1980, Burn 1997). Mean annual 

precipitation ranges from 161.3 mm (Komakuk Beach) to 253.9 mm (Shingle Point). The 

snow cover prevails for about 250 days per year and average snow depths are between 20 and 

35 cm. There is strong variation in snow depths, as snow is redistributed by wind on the 

treeless landscape (Burn & Zhang 2009). Snow will generally accumulate in depressions and 

concave slopes, while exposed or elevated areas are virtually blown clear of snow. 

The typical vegetation consists of sedges, mosses and erect dwarf shrubs (< 40 cm tall) or low 

shrubs (> 40 cm) (Walker et al. 2005). The Circumpolar Arctic Vegetation Map (CAVM 

Team 2003) classified the mainland part of our study area as sedge, moss, low-shrub tundra 

(Figure 2.1c). Herschel Island is classified as erect dwarf shrub tundra (Figure 2.1c). In 

protected  locations,  especially in  river  valleys  in  the  foothills  of  the British  Mountains, 
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conditions support the growth of shrubs taller than 40 cm and even trees (Picea mariana, 
 

Populus balsamifera). 
 
 

2.4 Methods 
 
 

2.4.1 Field work 
 

During July and August 2012 and July 2013, four polygon mires were investigated on the 

Yukon Coast (Supplementary Figure S2.1). The four polygon mires are located in four 

different landscape units on the Yukon Coastal Plain (Table 2.1). Each study site has its own 

substrate characteristics and hydrological conditions, while sharing regional climate and 

biome. 
 

Table 2.1.           Site  characteristics.  Medians  (bold)  and  ranges  of  the  measured  sedimentological, 

hydrochemical, and microtopographic parameters are shown for the four investigated polygons. 

Geographic coordinates are given in decimal degrees in the WGS84 reference coordinate system. 
 

Substrate Microtopography 
 

Particulate portion Pore water 
 

Geographic 
coordinates 
Latitude 
Longitude 

 
Quaternary 
geology 
 
(Rampton, 1982) 

 
Texture TN 

(%) 

 
TOC 
(%) 

 
TOC/TN    pH Electrical 

conductivity 
(µS/cm) 

 
surface 
height 
difference 
within 
transect 
(cm) 

 
Active 
layer 
depth 
(cm) 

 
Soil 
temp. 
(°C) 

Komakuk Polygon 
intermediate-centred 
(high-centred) 

69.57959 
-140.19853 

Lacustrine plain, 
beyond former 
glaciation 

Peat over sandy 
clayey silt, coarse 
sand interspersed 

1.8 
1.3-2.2 

41.3 
38.3-44 

22.6 
18.4-34.6 

4.3 
3.9-5.7 

168 
75.1-212.7 

29 30.5 
26-35 

5.1 
4-6.7 

Roland Polygon 
high-centred 

Herschel Polygon 

69.32471 
-139.02092 

69.5793 

Rolling moraine Peat over silty peat 1.1 
0.7-1.6 

Push-moraine, sea- Sandy silty peat 1.7 

42.6 
35.9-44.6 

38.0 

38.7 
22.6-62.9 

21.4 

4.0 
3.6-4.6 

5.2 

240 
90.3-464 

299 

20 30.5 
22-33 

25 32.5 

4.2 
3.3-6.2 

6.5 
low-centred 

Ptarmigan Polygon 
low-centred 

-138.95740 

69.49979 
-139.1815 

floor sediment 

Glacial outwash 
plain 

0.5-2.1 

Sandy silty peat 2.1 
0.9-2.4 

26.9-43.6 

36.1 
30.2-43.3 

14.8-78.7 

16.6 
14.3-44.7 

4.1-6.2 

6.5 
4.1-7.3 

168.6-623 

423 
191.1-681 

21.5-36 

33 25.5 
19-31 

3-9 

4.4 
1.4-9.8 

 
 

For all polygons, dimensions (i.e. diameter, length and width of the polygon ridges and 

troughs) were measured and their physical morphology was described (Figure 2.1d). The 

method of surveying ice-wedge polygons in high spatial resolution was adapted from (De 

Klerk et al. 2009, Minke et al. 2009). Transects of 1x1 m plots were laid through Herschel, 

Komakuk and Roland polygons (Figure 2.2). Transects had a length of 16, 10 and 8 m, 

respectively, and reached across each polygon from rim to rim. The high-centred polygon 

(Roland Polygon) was measured from trough to trough. In each plot, relative surface height, 

active layer depth and soil temperature were measured, a sediment surface sample was taken 

and the vegetation was recorded. Vegetation surveys of vascular plants followed a modified 

Braun-Blanquet approach (Braun-Blanquet 1964, Westhoff & Van Der Maarel 1978) using 

exact cover percentages. Relative surface height and relative height of the permafrost table 
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were  measured  relative  to  a  reference  surface  provided  by  cords  stretched  across  each 

polygon. The reference height for these two parameters was defined as the highest point in 

each transect. The water table was not visible within all polygons and could not be used as 

reference height. We gave the highest point the value zero, all other surface heights and 

permafrost table heights were therefore negative. Active layer depth was measured using a 

metal rod. Soil temperatures were measured at 10 cm depth below the surface using a soil 

thermometer. 

In 2013, the low-centred Ptarmigan Polygon was surveyed in 1x1 m grid cells across the 

polygon and beyond it into the adjoining troughs and neighbouring polygons, resulting in a 

grid of 25x18m. Surveying followed the methods used in the previous year. Relative surface 

height, active layer depth and soil temperatures were measured in all grid cells. Surface 

samples were taken in each grid cell along one transect through the polygon. The vegetation 

was surveyed in two perpendicular transects using the same approach as in 2012. 
 

2.4.2 Laboratory and statistical analyses 
 
Laboratory analyses were performed at the Alfred Wegener Institute Helmholtz Centre for 

Polar and Marine Research in Potsdam, Germany. In order to describe the substrate, surface 

sediment samples were analysed for TC, TOC and TN. TOC, TC and TN contents are given 

in weight percent (wt %). Pore water from all surface samples was analysed for electrical 

conductivity and pH. Texture descriptions were made using peat monoliths from the active 

layer. TC, TN and TOC were measured using elemental analyzers (Elementar Vario EL III for 

TC and TN and Elementar Vario MAX C for TOC), with detection limits of 0.1 % for both 

carbon and nitrogen. For calibration and quality control, two measurements were done on each 

sample, and calibration standards were measured at the beginning of each measurement cycle 

and after every twentieth sample thereafter.  

We used the statistics software R, version 3.0.2 (R Core Team 2013). PCA and environmental 

fitting were used to address our first goal of examining patterns in vascular plant species 

composition and cover and of finding links between environmental parameters and vegetation 

parameters. We used Hellinger-transformed percent cover data of 19 vascular plant taxa 

which occurred in at least five plots and in at least two of the polygons to minimise 

overrepresentation of rare taxa with low cover (Ter Braak 1983, Rao 1995). PCA was 

performed using the function “rda” in vegan package in R (Oksanen et al. 2013). Percent 

cover of taxa that occurred in at least two plots in each individual polygon was used for PCA 

of individual polygons using the same transformation and settings. The original data are 
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available in the supplementary material. Fitting of the environmental parameters relative 

surface height, active layer thickness, pH, and TOC on the results of the PCA was conducted 

using default settings of the function “envfit” in vegan package. Environmental parameters 

that yielded a P value <0.05 in the analysis were accepted as significant in the explanation of 

ordination patterns in the PCA. 

We addressed our second goal of examining shrub expansion potential in polygon mires in the 

course of climatic warming in two ways: we first analysed the relation between climatically 

sensitive environmental parameters and shrub species cover in our data. We then discussed 

polygon mire development and degradation trends using the relevant literature. 

We examined the relationship between i) relative surface height and individual shrub taxa and 

ii) active layer depth and shrub taxa in univariate regression trees. We chose those two 

parameters as they are directly affected by permafrost thaw. We used default settings of 

function “rpart” in mvpart package in R (mvpart 2013), analyzing percent cover of each shrub 

species against the above-mentioned environmental parameters for each polygon. 

 
2.5 Results 

 
 

2.5.1 Polygon morphology and substrate characteristics 
 
We  studied  two  low-centred  polygons,  one  intermediate-centred  polygon  and  one  high- 

centred polygon. The polygon settings and morphology are illustrated in Figure 2.2 and 

Supplementary Figure S2.1. Herschel Polygon was a low-centred polygon surrounded by 

water-filled trenches. It measured 16 m from rim to rim and the maximum height difference 

between rim and low-lying centre was 25 cm. Ptarmigan Polygon was a low-centred polygon 

surrounded by water-filled trenches withsome standing water in the low-lying centre. It 

measured 12x18 m. The maximum height difference between rim and centre was 38 cm. On 

one edge shared with an adjacent polygon of the same size and shape, the two polygon rims 

could not be distinguished and appeared as one. All other parts of the polygon rim were 

higher and bordered by water-filled and well-defined troughs. Komakuk Polygon was an 

intermediate-centred polygon. It was surrounded by narrow wet trenches, with ponds at the 

intersections of ice wedges. It measured 10 m from rim to rim. About half of the centre was 

low-lying, while the other half was not much below the rims. The maximum height difference 

was 29 cm. Roland Polygon was a high-centred polygon measuring 10x8 m, which was 

surrounded by water-filled trenches. The maximum height difference within the elevated parts 

of the polygon was 47 cm. Another 28 cm height difference existed between the elevated 

polygon  and  the  water  table  of  the  surrounding  trenches.  The  surrounding  water-filled 

trenches were up to 7 m wide. In these three polygons frost cracks were visible which were 
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not bordered by ridges (Figure 2.2). 

 
 

Figure 2.2.         The four studied ice-wedge polygons in their settings. Polygon field close-ups on the left 

are digitized from Geoeye imagery. Ground surface height and permafrost table are shown along transects 

through each polygon. 

 
A strong correlation between surface height and height of the underlying permafrost table was 

found for all four investigated ice-wedge polygons (ρ=0.91, P<0.001, Supplementary Table 

S2.2, Figure 2.2). A lowered ground surface height was generally accompanied by a lowered 

permafrost table height (i.e. the relative height of the upper boundary surface of the 

permafrost); however, the decrease was not always of the same magnitude. Figure 2.3 

illustrates   relative   surface   height,   permafrost   table,   active   layer   thickness   and   soil 

temperatures in Ptarmigan Polygon. The active layer was slightly shallower on ridges and 
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thicker under standing water and in the central depression, but the relation was not strong 

(Figure 2.3c). Ptarmigan Polygon had a deeper thawed spot in one of its ridges (Figure 2.3c). 

Soil temperatures showed a similar pattern (Figure 2.3d): they were lower on ridges and 

highest under standing water.  The measured substrate parameters pH, electrical conductivity, 

TN, and TOC were correlated with relative surface height (Supplementary Table S2.2). We 

attribute this relationship to the fact that the vegetation itself, especially litter of deciduous 

plants, influenced substrate build-up. 
 
 
 

 
 

Figure 2.3.         Surface models of relative height of (a) ground surface, (b) permafrost table, (c) active 

layer depths and (d) soil temperatures in Ptarmigan Polygon. The blue colour in (b) illustrates an 

approximation of the position of the water table, which is seasonally and spatially variable because of the 

underlying permafrost. Plots of 1x1 m named A1 through Q25 are labelled every 2 m. 
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The four polygons all had silty peat in the active layer. There was a general trend towards 

more fine-grained material with increasing depth. The distribution of pH values was bimodal, 

with a peak around 4 for high- and intermediate-centred polygons and another around 6 for 

low-centred polygons. Electrical conductivity in pore water ranged from 75.1 µS/cm in 

Komakuk Polygon to 681 µS/cm in Ptarmigan Polygon. Within polygons, electrical 

conductivity was higher in depressed situations and lower on elevated parts. TN contents 

ranged from 0.5 to 2.4 % in surface samples. The lowest nitrogen contents were found in 

high-centred Roland Polygon. Medians and ranges of the measured environmental parameters 

in the investigated polygons are shown in Table 2.1. 
 

2.5.2 Relation of vascular plant species with microtopography and 
substrate 

Visual inspection in the field showed that vegetation distribution in the investigated polygon 

mires was linked to microrelief. Figure 2.4a illustrates the distribution of main plant functional 

types over surface profiles of the low-centred Ptarmigan Polygon and the high- centred Roland 

Polygon. Shrubs and graminoids were the most dominant groups. Shrubs were generally more 

abundant in the high- and intermediate-centred polygons, and graminoids were more 

abundant in the low-centred polygons. 
 
 
 

 
 
 

Figure 2.4.         Vegetation cover and distribution in the studied ice-wedge polygons. (a) The distribution 

of main plant functional types is linked to relative surface height. Shrub cover is increased on elevated 

surfaces. Graminoid cover is increased on low-lying surfaces in local depressions. The vegetation cover 

data are corrected to sum up to 100 percent. Line graphs below stacked column graphs show the surface 

height relative to the highest point in each transect. (b) Schematic surface height ranges of shrub species 

in investigated ice-wedge polygon mires. Ranges are derived from univariate regression tree analysis. 
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We identified 36 species of vascular plants, of which 12 were shrub species (Betula 

glandulosa, Salix arctica, S. fuscescens, S. pulchra, S. reticulata, Dryas integrifolia, Rubus 

chamaemorus, Cassiope tetragona, Empetrum nigrum, Ledum decumbens, Vaccinium 

uliginosum, and V. vitis-idaea) and 24 were herb species (Supplementary Table S2.3). 

Graminoids were the most dominant herb group, with sedge and cottongrass species having 
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Figure 2.5.         (a) Vascular plant species composition and abundance differ between the investigated 

polygons. (b, c) Within low-centred polygons percent cover data of vascular plant species are clearly 

grouped into taxa related to either low-lying or elevated surfaces. (d) Intermediate-centred and (e) high- 

centred polygons are more similar. PCA plots show samples, species and environmental parameters. 

Species scores are indicated by a cross followed by the species name. The points indicate sample scores 

and the arrows indicate the correlation of environmental parameters with ordination results (only 

parameters with P<0.05 are shown). 

 
the highest cover. We identified four Carex species (C. aquatilis, C. chordorrhiza, C. rariflora 

and C. williamsii) and two Eriophorum species (E. angustifolium and E. vaginatum). Other 

graminoid species (Juncus biglumis, Luzula confusa, L. wahlenbergii, Hierochloë alpina, H. 

pauciflora, cf. Dupontia fisheri, Poa arctica) were found to have lower cover. Eleven of the 

24 herb species were forbs (Pyrola grandiflora, Polygonum bistorta, P. viviparum, Pedicularis 

capitata, P. lanata, P. lapponica, P. oederi, P. sudetica, Saxifraga nelsoniana, Stellaria 

longipes and Tofieldia cf. pusilla). However, the total mean cover of forbs was only 0.8%. We 

found more species of vascular plants in the low-centred Herschel and Ptarmigan polygons 

(22 and 21 species, respectively) than in the high- and intermediate- centred Roland and 

Komakuk polygons (16 and nine species). 

PCA of vascular plant species cover demonstrated that vegetation composition and cover was 

different in the four polygons (Figure 2.5a). Sample scores of the two low-centred polygons 

overlapped, as did those of the high- and intermediate-centred polygons. Vegetation 

composition and cover was thus different between polygon types (low-centred vs. high- and 

intermediate-centred).  The  fitting  of  environmental  variables  to  ordination  results 

demonstrated that the vegetation-based PCA biplot is significantly correlated with 

microtopography, represented by relative surface height and active layer thickness, and with 

substrate, represented by pH and TOC (Figure 2.5a). 

In PCA of vegetation cover data from the low-centred Herschel and Ptarmigan polygons 

(Figure 2.5b, c), sample plots were clearly grouped according to their position on moist 

elevated rims or wet depressed centres. Environmental fitting analysis demonstrated that 

relative surface height correlated significantly with taxa composition and cover in both low- 

centred polygons. In Herschel Polygon, active layer thickness and pH also showed significant 

correlation with the ordination. In the PCAs of vegetation cover data from the intermediate- 

centred Komakuk Polygon (Figure 2.5d) and the high-centred Roland Polygon (Figure 2.5e), 

only  plants  of  elevated  mesic  sites  are  found,  and  no  clear  vegetation  groups  were 
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distinguished. In these two polygons, none of the measured environmental parameters 

significantly correlated with the taxa distribution in the PCA. 
 

2.5.3 Relation of shrub species with microtopography 
 
Shrub species were present in all investigated polygons. They were especially dominant in the 

high-centred Roland Polygon, the intermediate-centred Komakuk Polygon, and on the ridges 

of the low-centred Ptarmigan and Herschel Polygon (Supplementary Table S2.3, Figure 2.4a). 

Shrub species restricted to elevated parts (in the highest 10 cm) in the polygons include 

Betula glandulosa, Rubus chamaemorus, Empetrum nigrum, and Vaccinium vitis-idaea. Salix 

pulchra, S. reticulata, Dryas integrifolia, and Ledum decumbens were found both in 

transitional and elevated surface height ranges (in the highest 16 cm). The relative surface 

height ranges we identified for each shrub species are shown in Figure 2.4b. Salix fuscescens 

was associated with transitional to low-lying heights (below the highest 16 cm). Active layer 

thickness (19-36 cm, Table 2.1) did not show clear trends in this analysis (Supplementary 

Table S2.4). We did not find S. fuscescens and D. integrifolia on active layers less than 30 cm 

in thickness. All other shrub species were also found on active layers of less than 30cm 

thickness.  Shrub  species  as  a  group  were  found  on  high  and  intermediate  heights 

(10-14[-20] cm) and on intermediate active layer depths. We found no shrubs in seasonally 

submerged situations. 
 

2.6 Discussion 
 
Permafrost thaw, thermokarst processes and degradation of ice wedges have been increasing 

during  the  last  several  decades  over  most  of  the  Arctic  tundra  biome,  and  the  trend  is 

projected to continue and increase in intensity (AMAP 2011, Barros et al. 2014). Since 

polygon mire morphology is directly linked to permafrost conditions and the ground thermal 

regime, a continuation of this trend will likely trigger landscape-scale changes in lowland 

polygons. 

We found that (1) our studied polygons on the Yukon Coastal Plain have undergone recent 

degradation, (2) the best predictor for vegetation and substrate was microtopography, and (3) 

shrub cover was greater in high-centred polygons. These findings suggest that a transition 

towards greater shrub cover could occur if recent permafrost thaw continues to increase as 

projected and these polygonal landscapes drain. 
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2.6.1 Polygon morphology and substrate characteristics 
 
The four studied polygons are in different ice wedge degradation states, all showing signs of 

recent degradation. Most of the ice wedges delineating the polygons are deeply thawed and 

the resulting troughs are water-filled (Figures 2.2, 2.3). Ice wedges belonging to the same 

polygon are not necessarily all in the same state of degradation (Figures 2.2, 2.3). This is 

consistent with findings from the Siberian Arctic, where ridge morphology of low-centred 

polygons has been found to be highly variable (De Klerk et al. 2011, Donner et al. 2012, 

Teltewskoi et al. 2016). Jorgenson et al. (2006) observed a series of stages of ice wedge 

degradation and stabilization in northern Alaska. According to their classification scheme, ice 

wedges  belonging  to  Herschel,  Ptarmigan  and  Komakuk  polygons  show  intermediate 

(obvious settlement and shallow standing water) to advanced (deep, water-filled pits) 

degradation.  The  ice  wedges  surrounding  Roland  Polygon  are  in  state  of  advanced 

degradation to initial stabilization (robust aquatic sedges in shallow water). The presence of 

higher-order ice wedges within the polygons (Figure 2.2) also indicates degrading primary ice 

wedges. Mackay (1993, 2000) argues that secondary or tertiary ice wedges develop in order to 

relieve thermal stresses when primary ice wedges become deeply thawed and crack less 

frequently. Our results strongly suggest that ice wedge degradation is ongoing on the Yukon 

Coastal Plain and already advanced in some cases. 

Continuing ice wedge degradation leads to a relief inversion in low-centred polygons 

(Jorgenson et al. 2006, French 2007), which ultimately drain the wet low-lying polygon 

centres through subsurface flow paths (Fortier et al. 2007) (Figure 2.3a, b). Individual ridges 

around a polygon may develop differently, but generally the formerly wet to submerged 

centres will become drier during ice wedge degradation (De Klerk et al. 2011, Donner et al. 

2012, Teltewskoi et al. 2016). Deeper thaw in ridges of low-centred polygons has been linked 

to flow paths of water created by thermal erosion processes (Minke et al. 2009, De Klerk et al. 

2011, De Klerk et al. 2014). In our polygons, relative surface height and subsurface water 

pathways are strongly linked to the relative height of the permafrost table (Figure 2.3, 

Supplementary Table S2.2). 

The substrate characteristics of our surface samples are generally comparable to those of 

lowland polygonal terrain on the Coastal Plain of Alaska and in northeast Siberia (Lipson et 

al. 2010, Donner et al. 2012, Zibulski et al. 2013). We found very low pH values in high- 

centred polygons and on the elevated ridges of low-centred polygons, and slightly acidic to 

neutral pH values in low-lying areas (Table 2.1, Supplementary Table S2.4). Lipson et al. 
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(2010) and Donner et al. (2012) found a similar negative correlation between pH and relative 

surface height. Nutrient contents, approximated by electrical conductivity and nitrogen 

contents, also correlate negatively with relative surface height (Supplementary Table S2.2). 

High-centred  polygons  contain  more  elevated  ground  and  consequently  lower  nutrient 

contents than low-centred polygons (Figure 2.6). Thus, a change in polygon morphology over 

much of the Yukon Coastal Plain could lead to changes in soil geochemistry, with a lowering 

of the pH and a decrease in the amount of available nutrients. 
 

2.6.2 Relation of vascular plant species with microtopography and 
substrate 

In the polygons we studied, the best predictor for vegetation and substrate was 

microtopography (Figures 2.4, 2.6). The highest surfaces provided mesic, acidic, nutrient- 

poor habitats. In low-centred polygons there was a transitional zone of a few centimetres 

towards wet, circumneutral and less nutrient-poor habitats. Peaty substrates develop from 

plant litter. They therefore not only provide the basis for vegetation growth, but are also 

highly influenced by vegetation composition. Acidic, nutrient-poor substrates on elevated 

surfaces are unsuitable for many plant species. In our study, elevated areas in high-centred 

polygons were dominated by Betula glandulosa, Eriophorum vaginatum tussocks, and 

ericaceous dwarf shrubs, while elevated areas in low-centred polygons were dominated by 

Salix sp., Rubus chamaemorus, ericaceous dwarf shrubs and a variety of graminoids and forbs 

(Figure 2.6). Low-lying areas were dominated by Carex sp., Eriophorum sp. and to some 

extent Salix fuscescens (Figure 2.6). The highest shrub cover occurred in the highest 10-15 cm 

(Supplementary Table S2.4). Studies of Siberian and Alaskan ice-wedge polygons have found 

a similar relationship between surface height and plant species composition (Bliss 1956, De 

Klerk et al. 2009, Zibulski et al. 2013, De Klerk et al. 2014). 

We found fewer vascular plant species in high-centred polygons compared with low-centred 

polygons (Supplementary Table S2.3). Forbs and graminoids found on elevated areas, such as 

Carex williamsii, Eriophorum vaginatum, Poa arctica, Pedicularis sudetica, Pyrola 

grandiflora, Polygonum viviparum, Saxifraga nelsoniana, and some less abundant species, 

could face increased competition for light, nutrients and rooting space if their current habitat 

is subject to shrub increase. Our findings suggest that a change from a low-centred polygon 

landscape to a high-centred one would have a significant impact on plant species abundance, 

with a potential overall increase in shrubs vs. graminoids in low arctic tundra. 
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2.6.3 Regional implications 
 
During recent decades climatic warming (Burn & Zhang 2009), greening of the landscape 

(Fraser et al. 2012), and local shrub increase (Myers-Smith et al. 2011a) have been observed 

in the study area. We found that height differences of a few centimetres are sufficient to alter 

vegetation and substrate conditions in degrading polygon mires on the Yukon Coastal Plain 

and Herschel Island (Figures 2.4b, 2.6, Supplementary Table S2.4). 

We suggest that continued climatic warming, leading to permafrost thaw and ground 

subsidence preferentially on top of ice wedges, is likely to enhance microrelief inversion in 

polygon mires. This, in turn, could promote an increase of acidic shrub tundra and a 

corresponding decrease of circumneutral graminoid tundra in lowland polygonal terrain 

(Figure 2.6). While plant species shifts that are strictly climatically driven are theoretically 

reversible, polygon degradation and subsequent vegetation change is irreversible on decadal 

to centennial time scales. 
 
 
 

 
 

Figure 2.6.         Schematic diagram showing three main microhabitats of ice-wedge polygon mires (low- 

centred low-lying, low-centred elevated, high-centred elevated). Dominant vascular plant taxa are 

indicated for each microhabitat. Permafrost table and ground surface heights are taken from graphically 

interpolated actual measurements (Supplementary Table S2.4) every metre. Position, size and depth of ice 

wedges and ground surface height in the troughs of Roland Polygon are schematic illustrations. 
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The impact of environmental change on vegetation in ice-wedge polygons could partly be 

compensated by regional landscape heterogeneity, which provides a buffer for ecosystem 

response to global warming (Post et al. 2009). The availability of suitable microhabitats limits 

or enhances shrub expansion in tundra landscapes (Lloyd et al. 2003). Modern vegetation 

patterns suggest that the polygonal lowlands of the Yukon Coastal Plain could experience 

shrub increase on newly elevated polygon centres and a decrease in shrub cover in widened 

and submerged polygon troughs. Species typically found in low-lying polygon centres could, 

however, potentially prevail around the narrow edges between elevated centres and deeply 

submerged  troughs.  These  potential  vegetation  pathways  for  polygonal  wetlands  on  the 

Yukon Coastal Plain relate to changes in plant species cover and to changing dominance. 

Plant species diversity may not be directly affected by a conversion of low-centred polygons 

into high-centred polygons. As long as polygonal structures are preserved, different 

microhabitats will likely exist within a close range of each other. An increase of shrub 

dominated tundra at the expense of graminoid dominated tundra could, however, considerably 

alter land surface properties. Snow retention potential could for instance be increased through 

the growth of shrubs, thereby altering albedo and ground thermal regime (Myers-Smith et al. 

2011b, Myers-Smith et al. 2015). Melting of ice wedges could promote the interconnection of 

polygon troughs and promote water flow across the landscape (Liljedahl et al. 2012, Godin et 

al. 2014). All of these changes could drastically alter ecosystem exchange dynamics at the 

land surface. In other areas of the Arctic, ponding and vegetation changes have been shown to 

trigger substantial changes in the surface energy balance (Langer et al. 2011b, 2011a, Muster 

et al. 2012). 

We therefore suggest three main implications of a possible increase in high-centred polygons 

in the region: (1) shrub increase and acidification on elevated polygon centres, (2) snow 

redistribution on the landscape, and (3) increased connectivity of surface water on top of ice 

wedges. 
 

2.7 Conclusions 
 
Our  study demonstrates  that  vegetation  composition  in  ice-wedge  polygon  mires  on  the 

Yukon Coastal Plain and Herschel Island is strongly related to microtopography, which is 

controlled by geomorphological processes such as ice wedge degradation. Ericaceous and 

other dwarf shrubs and low shrubs (Rubus chamaemorus, Betula glandulosa, Salix spp.,) are 

generally more abundant on elevated areas in the polygons. Graminoids, especially sedges 

(Carex spp.), are more abundant in low-lying settings. We suggest that a regime shift towards 
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shrubby high-centred polygons is possible if recent permafrost thaw continues to increase as 

projected. Plant species shifts that are strictly climatically driven are theoretically reversible, 

but widespread polygon degradation leads to changes in microtopography that are irreversible 

on decadal to centennial time scales. However, increased ponding between polygons induced 

by thawing permafrost may limit the areal expansion potential of shrubs and provide new 

microhabitats for aquatic species. In the course of the next years and decades, the regional 

water balance will likely determine future vegetation trajectories for tundra wetlands. We 

therefore stress the importance of including geomorphological change in addition to climatic 

change parameters such as rising summer temperatures in vegetation change predictions. 
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3.1 Abstract 
 
Palaeoclimatic reconstructions for the Northern Yukon show cooler conditions before AD 

1850 followed by gradual warming, and twentieth century temperature measurements 

indicate decadal-scale temperature fluctuations. The impact of climate on regional vegetation 

and lake systems has seldom been observed on this scale, however. With this study we 

provide a subdecadal reconstruction of regional vegetation and lake basin development for the 

past 300 years, covering Little Ice Age and recent warming trend, in low Arctic tundra. We 

analysed a short lake sediment core from the Yukon Coastal Plain. The age depth relationship 

of the core is  based  on  210Pb/137Cs validated by AMS  radiocarbon dating.  We analysed 
 

terrestrial pollen abundances as proxies for regional vegetation development, and we used 

grain size and biogeochemical analyses (TC, TOC, TN, TOC/TN, δ13C), and the analysis of 

semiaquatic pollen to describe the lake development. Stable abundances of regional pollen 

taxa between AD 1730 and AD 2012 accompanied by climatic warming indicated that the 

regional vegetation was not sensitive to climate change. Based on changes in TOC/TN, δ13C, 

and pollen of shallow-water taxa we reconstructed a lake water level increase after AD 1910 

that likely followed climatic warming. We attributed this development to climate driven thaw 

subsidence in the lake basin. The impact of widespread permafrost thaw on regional vegetation 

needs to be better constrained in order to predict the limits of vegetation stability and drivers 

of lake changes in the region. 

 
3.2 Introduction 

 
Arctic environments are particularly susceptible to warming, as two of their main 

characteristics,   the   presence   of   permafrost   and   tundra   vegetation,   depend   on   low 

temperatures. The Yukon Coastal Plain is especially vulnerable to the impacts of climatic 

warming because of its unconsolidated sediments with high ice contents (Rampton 1982, 

Harry et al. 1985). Increased permafrost thaw inland and along coastal bluffs has the potential 

to change land surface properties on a large scale (Barros et al. 2014). Such geomorphological 

change would most likely trigger tundra vegetation change on a local to regional scale. Yet, 

few high resolution archives documenting vegetation and permafrost response to warming are 

available for the region. 

Regional temperature reconstructions from the western Canadian Arctic based on tree-ring 

records show climatic fluctuations on decadal to centennial scales, indicating cool conditions 

that have been attributed to the Little Ice Age, followed by warming that started at around 
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AD 1850. This broad trend was superimposed by annual variations and decadal oscillations. 

A warmer decade was observed between about AD 1940 and AD 1950, but the strongest 

temperature increase in the region occurred after AD 1970 (Burn & Kokelj 2009, Burn & 

Zhang 2009, Harris et al. 2014). This increase was accompanied by a rise in mean annual 

ground temperatures recorded east of the Yukon Coastal Plain in the Mackenzie Delta, and 

also on Herschel Island immediately adjacent to the mainland coast of the Yukon (Smith et al. 

2005, Burn & Kokelj 2009, Burn & Zhang 2009). 
 

Increasing temperatures may trigger geomorphological change through increased permafrost 

thaw. Thawing of ice-rich permafrost causing ground surface subsidence is known as 

thermokarst (Van Everdingen 2005), and thermal erosion is the erosion of ice-rich permafrost 

through moving water (Van Everdingen 2005). Both processes may cause irreversible regime 

shifts. Examples of geomorphological regime shifts caused by increased thaw include relief 

inversion causing alteration of the surface hydrological regime (Lloyd et al. 2003, Fortier et 

al. 2007, Godin et al. 2014), lake drainage, coastal and river bank erosion (Jorgenson & 

Osterkamp 2005, Grosse et al. 2011, Günther et al. 2013), active layer detachments (Kokelj & 

Lewkowicz 1998, Lamoureux & Lafrenière 2009) and retrogressive thaw slumping (Kokelj et 

al. 2009, Lantuit et al. 2012). Changes in the geomorphological regime can in turn contribute 

to altered hydrological conditions and thus water, nutrient and oxygen availability in the soil. 

Substrate characteristics such as texture, pH, and plant available nutrients, and permafrost 

conditions such as annual thaw depth and permafrost temperature are typically modified by 

thaw-induced geomorphological change as well. 

Ecological theory proposes both linear and non-linear response mechanisms of vegetation to 

changing environmental conditions. In general, vegetation response to climate change can be 

characterized by gradual transition, abrupt switching between alternative stable states, or 

resilience (Holling 1973, Scheffer et al. 2001). Transition zones between dwarf shrub and low 

shrub tundra and between low shrub and tall shrub tundra are thought to be especially 

susceptible to change (Lantz et al. 2010, Myers-Smith et al. 2015). In subarctic tundra, lichen 

decline (Joly et al. 2009, Elmendorf et al. 2012a, Fraser et al. 2014) and shrub expansion 

(Tape et al. 2006, Frost & Epstein 2014, Myers-Smith et al. 2015) have been identified as the 

most widespread vegetation changes in the course of recent warming. Tundra vegetation 

composition and cover are not solely influenced by climate, but also by climate-driven 

permafrost characteristics (Brancaleoni et al. 2003, Lloyd et al. 2003, Schuur et al. 2007, 

Virtanen et al. 2010, Myers-Smith et al. 2011b, Frost et al. 2014). These are in turn influenced 

by  vegetation  composition  and  cover,  which  provide  insulation  of  varying  effectiveness 
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(Brown 1966, Blok et al. 2010, Loranty & Goetz 2012, Myers-Smith et al. 2015). Such 

dependencies exemplify the complex climate-permafrost-vegetation feedbacks in arctic 

environments. Studies of recent tundra vegetation response to environmental change have 

used  experimental,  plot  monitoring  or  remote  sensing  approaches  with  observations  on 

decadal time-scales (Tape et al. 2006, Myers-Smith et al. 2011a, Elmendorf et al. 2012a, 

Elmendorf et al. 2012b, Fraser et al. 2014). Long-term regional vegetation reconstructions 

focusing on centennial to millennial time-scales revealed broad patterns of long-term tundra 

development following large-scale climate regime shifts (Cwynar 1982, Anderson et al. 1994, 

Fritz et al. 2012a). Yet, the response of tundra vegetation to short-term climatic fluctuations 

such as the Little Ice Age or the ongoing global warming is still not fully understood, 

especially in remote areas of the world. With this study we aim to provide a palaeo- 

perspective on the complex relationships between climate, vegetation, and permafrost. In 

particular, we examined the response of 

i. regional vegetation and 

ii. the studied lake basin 

to temperature change by studying a short lake sediment core, covering the end of the Little 

Ice Age and the recent warming in a permafrost setting in low Arctic tundra of the western 

Canadian Arctic. 
 

3.3 Study area 
 
The study area is situated in the far north of the Yukon Territory in the Western Canadian 

Arctic (Figure 3.1). The Yukon Coastal Plain is the terrestrial portion of the Beaufort shelf 

and is consequently relatively flat and low-lying. It reaches from the Mackenzie Delta to the 

Alaskan border, where it adjoins the Arctic Coastal Plain of Alaska. It is flanked by the 

British, Barn and Richardson Mountains in the south and the Beaufort Sea in the north. 

Three features characterize the study area: continuous permafrost, tundra vegetation and 

proximity to the sea. Permafrost depth reached 142 m near the studied lake in the Roland Bay 

area (measured in 1973, 69.33° N; 139.95° W, data set compiled by Smith & Burgess (2002) 

(original data by Norquay (1983)). Even deeper permafrost can be expected in the unglaciated 

western portion of the coastal plain, which is more comparable with the Arctic coastal plain of 

Alaska (Rampton 1982, Gallant et al. 1995).  The thickness of the annually thawed layer on 

top of the permafrost (active layer) is generally below 50 cm except in bare gravelly deposits 

(Rampton 1982). On level to slightly sloping terrain, drainage is strongly impeded by the 
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Figure 3.1.         Location of the study area. The studied lake (black star) lies within the reconstructed 

former limit of glaciation (white dashed line) on the Yukon Coastal Plain. It is situated in a morainic 

landscape characterized by tundra wetlands and studded with numerous lakes. Vegetation classes and 

their boundaries are taken from the Circumpolar Arctic Vegetation Map (CAVM Team 2003). 

 
underlying permafrost. This promotes the development of wetlands and thaw lakes, which 

cover 25-50% of the land surface (Hagenstein et al. 1999).The regional vegetation is broadly 

classified as tundra, and is dominated by mosses, graminoids and dwarf and low shrubs 

(CAVM Team 2003, Walker et al. 2005) (Figure 3.1). The wetland character of a large 

portion of the land surface favours the growth of mosses and graminoids, while areas with 

improved drainage are characterized by tussock cottongrass (Eriophorum vaginatum), lichens, 

mosses, and dwarf shrubs (Ericales , Salix spp., Betula glandulosa, Rubus chamaemorus) 

(Bliss 1956, Wolter et al. 2016). Sheltered conditions in river valleys support the growth of 

both low and tall shrubs (Salix spp., Alnus crispa, Betula glandulosa) (Viereck & Little 1975). 

While the treeline reaches far north in the Mackenzie Delta, coming as close as 130 km to the 

studied lake, it runs south of the mountain range further to the west on the coastal plain 
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(MacDonald & Gajewski 1992). At treeline, black spruce (Picea mariana), white spruce 

(Picea glauca), paper birch (Betula papyrifera), and balsam poplar (Populus balsamifera) 

grow (MacDonald & Gajewski 1992). The coastal plain itself remains treeless, except for 

isolated occurrences of small trees in sheltered reaches along the foothills of the mountain 

range. The short growing season lasts from mid-June to the end of August (Hagenstein et al. 

1999). 
 

The Yukon Coastal Plain has a subarctic climate: Mean annual air temperatures of -11°C have 

been recorded at Komakuk Beach (Figure 3.1), and -9.9°C are documented for Shingle Point 

(1971-2000 annual means, data available from Environment Canada; 

http://climate.weather.gc.ca). Mean July air temperatures are 7.8°C at Komakuk Beach and 

11.2°C at Shingle Point (1971-2000 means, data available from Environment Canada; 

http://climate.weather.gc.ca). Both climate stations are situated close to the sea, and areas 

further inland may be more affected by the cold Beaufort Sea and may experience higher 

summer air temperatures (Haugen & Brown 1980, Burn 1997). The snow cover is thin (mean 

25 cm), but can vary significantly due to wind redistribution. It prevails for 250 days per year, 

and snowfall may occur in any month (1971-2000 means, data available from Environment 

Canada; http://climate.weather.gc.ca). Annual precipitation ranges from 161.3 to 253.9 mm 

per year and falls as snow and rain in about equal proportion during a given year (1971-2000 

means, data available from Environment Canada; http://climate.weather.gc.ca). 

The Yukon coast experienced several advances of the Laurentide Ice Sheet during the 

Quaternary. The furthest and most recent advance in the late Wisconsin, which has been dated 

to about 23-16 ka BP reached just west of Herschel Island (Figure 3.1) (Mackay 1959, Dyke 

& Prest 1987, Fritz et al. 2012b). It left behind a moraine landscape quite different from the 

unglaciated landscape in the western part of the coastal plain. This moraine landscape has 

since been reworked in several ways. Large thaw lakes formed and drained when they 

coalesced or when they were tapped by the sea (Figure 3.1). Rivers originating in the 

mountains south of the coastal plain incised the Quaternary and Holocene deposits. Wetlands 

developed on level ground with impeded drainage. 
 

3.4 Lake Setting 
 
The studied lake (coring site 69.32823° N, 139.02766° W) is situated on a remnant ground 

moraine between depressions formed by drained lakes and stream valleys. It is surrounded by 

low-lying polygonal wetlands and slightly drier elevated surfaces. The lake covers about 

0.14 km².   It has a relatively flat bathymetry, steep sides and a maximum depth of 3.7 m 
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(Figure 3.2a). The lake has no major inflows along the shores and a well-defined small 

catchment (Figure 3.2a). There is evidence of both stabilized and active slumping of moderate 

extent on the southeast shore of the lake (Figure 3.2b), about 200 m from our coring location. 

There is a seepage outlet through an ice wedge polygon field at the western lakeshore and 

down into a stream valley (Figure 3.2a). The lake water column showed no stratification 

during sampling in summer, with narrow ranges for pH (7.5-7.7), electrical conductivity 

(384-404 µS/cm), and hydrogen carbonate (114-119 mg/l) at different depths. 

There are five main landforms around the lake that are traced by the surrounding vegetation. 

The western and northern surroundings of the lake are characterized by low-centred ice- 

wedge polygons (flat low-lying surroundings), which support wetland vegetation dominated 

by graminoids, especially by sedge (Carex) and cottongrass (Eriophorum) species, and dwarf 

shrubs  (Ericales,  Salix  spp.,  Betula  glandulosa,  Rubus  chamaemorus).  High-centred  ice- 

wedge polygons prevail to the east and south of the lake (steeper banks and elevated 

surroundings). They are covered by mesic wetland vegetation dominated by dwarf shrubs 

(Betula glandulosa, Ericales) and Eriophorum vaginatum tussocks (Wolter et al. 2016). 
 
 
 

 
 

Figure 3.2.         Setting of the studied lake. (a) Lake catchment and bathymetry. The background image is 

a true colour pan-sharpened Geoeye-1 scene (acquired 18 July 2011) with 0.5 m ground resolution. The 

watershed (black dashed line) was delineated on the basis of 1) contour lines extracted from a 12.5 m 

ground  resolution  intermediate  DEM  from  the  German  TanDEM-X  mission  and  2) the  very  high 

resolution Geoeye image. Lake depths were interpolated using natural neighbours on the basis of point 

measurements from a bathymetric survey (red line) performed in 2012. (b) Aerial image of the studied 

lake showing surrounding tundra landscape. Orientation of the photograph follows that of (a). 
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The elevated rolling moraine surface provides better drainage and supports typical tussock tundra, 

with Eriophorum vaginatum being the dominant species. The vegetation cover in active thaw 

slumps is sparse and dominated by few species, most notably mastodon flower (Senecio 

congestus) and grasses. The nearly continuous vegetation cover in stabilized thaw slumps is 

characterized by grasses and Salix clumps relocated from the tops of the slump headwalls and re-

established at their feet. The lakeshore vegetation consists of grasses and sedges, dwarf and low 

shrubs and an increased abundance of forb species compared with the other vegetation types. 

Chickweeds (Stellaria spp.), marsh marigold (Caltha palustris), horsetails (Equisetum spp.), grow 

in wet to shallow submerged areas of the lake margin, while common   cottongrass   (Eriophorum   

angustifolium),   small   water   crowfoot   (Ranunculus gmelinii) and common mare’s tail 

(Hippuris vulgaris) grow in deeper submerged areas of the lake margin. Pondweed (Potamogeton 

spp.) may grow anywhere within the lake. 
 

3.5 Material and methods 
 
We selected the lake using satellite imagery because of its well-defined, small catchment, 

relatively little shoreline slumping and no major inflows. In the field we documented main 

landforms and vegetation of the area surrounding the lake. The lake itself was surveyed for water 

chemistry and bathymetry. A short core of 49 cm length was retrieved from 3 m water depth  in  

the western  central  part  of the lake in  the deepest  area (Figure 3.2a) using an UWITEC® 

gravity corer. 

We transported the core upright and subsampled it in the field in 0.5 cm slices to prevent 

disturbance of the upper centimetres. Freeze-dried subsamples of the upper 14 cm of the core 

were subjected to 210Pb/137Cs analysis by direct gamma assay at the Environmental Radioactivity 

Research Centre (University of Liverpool, UK) using well-type coaxial low background intrinsic 

germanium detectors (Ortec HPGe GWL series) (Appleby & Piliposian 2013). In the absence of 

identifiable terrestrial plant material, aquatic moss remains (Drepanocladus sp. water type) from 

five subsamples throughout the core, one of which was overlapping  with   the   210Pb/137Cs   

dated  core  part,   were  used   for   Accelerator   Mass Spectrometry (AMS) 14C dating at 

Poznań Radiocarbon Laboratory (Adam Mickiewicz University, Poland). The biogeochemical 

parameters total carbon content (TC), total organic carbon content (TOC), total nitrogen content 

(TN), stable carbon isotopes (δ13C), and grain size distribution were analysed in every second 

subsample to characterize organic matter and sedimentation parameters within the lake. Freeze-

dried, ground and homogenized subsamples were used for elemental analysis (TC, TN:  

Elementar Vario EL III; TOC: Elementar Vario MAX C). Carbonates were removed from 
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subsamples for stable carbon isotope analysis, which was conducted using a Finnigan DELTA-S 

mass spectrometer coupled to a gas mixing system (CONFLO III) and an elemental analyzer 

(Thermo Finnigan Flash EA 1112 Series). Stable carbon isotopes are given relative to the Vienna 

Pee Dee Belemnite (VPDB) standard in the delta per mil notation. The setup yields a measuring 

accuracy of 0.2 ‰. Organic-free subsamples were used for grain size analysis in a Coulter LS 200 

laser particle sizer, which was set up to measure particles between 0.375 µm and 1000 µm. Pollen 

sample preparation followed standard procedures described by (Faegri & Iversen 1989) using 

HCL (10 %), NaOH (10 %) treatments, cold HF (42 %) treatment (eight hours), hot HF (42 %) 

treatment (twice one hour), and acetolysis treatment using C4H6O3 and H2SO4 for 2.5 minutes. 

We added one Lycopodium spore tablet (Batch No. 1031, n=20848) to each pollen subsample 

(1 cm³, 0.5 cm³ where little material was available). Prepared samples were finally stored in 

glycerine. We counted and analyzed 41 pollen  subsamples  along  the  core  using  a  Zeiss  

Axiostar  Plus  light  microscope  at 400x magnification and pollen identification manuals 

(Richard 1970, McAndrews et al. 1973, Beug 2004). Between 203 and 677 terrestrial pollen 

grains were counted per sample, depending on pollen concentration. All biogeochemical and 

pollen analyses were performed at Alfred Wegener Institute Potsdam, Germany. 

To address our aims of investigating the effects of climatic fluctuations on regional vegetation and 

on the studied lake we separated semiaquatic taxa (Ranunculus, Cyperaceae, Equisetum) from 

purely terrestrial taxa for further data analyses and interpretation. We based this decision on the 

pollen diagram, our ecological understanding of the taxa involved and the results of a preliminary 

principal component analysis (PCA). The structure in pollen abundance data of regional taxa 

was assessed using PCA. We used 16 pollen taxa that we associated with a regional 

vegetation signal, including only taxa reaching at least 0.5 % in at least 5 samples in the analyses 

(Ter Braak 1983). Pollen abundance data were Hellinger-transformed to balance the effects of rare 

taxa. Constrained Incremental Sum of Squares (CONISS) analysis was calculated to find possible 

stratigraphic relations, and broken stick modelling was used to identify the maximum number of 

sediment units that significantly differ from the random model (Bennett 1996). 

We used five parameters (percentages of Cyperaceae, Ranunculus, Equisetum as calculated 

relative to the terrestrial pollen sum, and TOC/TN and δ13C) related to lake margin vegetation to  
represent  the  lake  signal  in  PCA  using  square-root  transformed  pollen  abundances. 

Sediment parameters δ13C, TOC, TOC/TN, and silt and sand contents were standardized to their 
ranges. The zonation of the record is based on the results of depth constrained clustering 
(CONISS) and broken stick modelling on these five lake vegetation related parameters. 

The relationship of i) regional vegetation and ii) lake basin development with climate was 

assessed by performing redundancy analyses (RDA) on regional pollen abundances and lake 
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related parameters. We used the preselected and transformed regional pollen abundance data as 

response variables in the RDA examining regional vegetation response. The explanatory 

variable (reconstructed temperature) derives from Regional Curve Standardized (RCS) tree-ring 

composites from the Yukon Territory (D'Arrigo et al. 2006). We smoothed the temperature curve 

by calculating a running average of 11 years (±5 years) to account for the time integrated in one 

studied subsample. We used the preselected and transformed data of lake-related parameters (see 

above) to examine lake basin response. RDA results were presented as adjusted R² and 

significance level after permutation testing. To account for the issue of temporal autocorrelation in 

the explanatory variable and in lake parameters, we additionally estimated the significance level 

by repeating the RDA 10000 times using surrogate time-series with the same lag-1 

autocorrelation as the sample lag-1 autocorrelation from our explanatory variable. Both methods 

have limitations, and both results are shown to tentatively address the question of significance of 

the RDA results. 

Statistical analyses were carried out using the software R version 3.1.2 (R Core Team 2013) 

using the packages “vegan” (Oksanen et al. 2013), “analogue” (Simpson & Oksanen 2015) and 

“rioja” (Juggins 2015). The data we used for each analysis may be found in the supplementary 

material. 

 
3.6 Results 

 
Age depth relation 

 

Our analyses supported a chronologic age depth relation in the core covering the time from 
 

AD 1730 to AD 2012 (Figure 3.3). Chronologic 210Pb/137Cs dates were reported for the upper 
 

13 cm   of   the   core   from   AD 1936   to   AD 2012   (Supplementary  Table   S3.1).   210Pb 
concentrations were close to the limit of detection below 9 cm depth, resulting in higher 

uncertainties below that depth.  The artificial 1963 137Cs fallout maximum was identified in a 
well-defined peak in sample 7-7.5 cm (Appleby & Piliposian 2013). We based our age model on 

extrapolated 210Pb/137Cs dates, using the mean sedimentation rate of 0.17 cm/yr that was 
calculated in the dated part of the core. The estimated basal age of  the short core was 

284 years, corresponding to the year AD 1730. The parallel date obtained at 13 cm depth 

indicated  that  the  radiocarbon  date  was  1146 years  older  than  the  210Pb/137Cs  date.  We 
attributed this discrepancy and the fluctuating nature of the ages to a reservoir effect. The 
dated aquatic mosses could have incorporated old remobilized carbon from the lake water. We 

corrected the AMS 14C dates by a reservoir age of 1146 years to relate the results to 
210Pb/137Cs dates. The general trend in the corrected radiocarbon dates supported the age 

model (Figure 3.3, Supplementary Table S3.2), but the actual temporal resolution was coarse, 

with overlapping age ranges. 
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Figure 3.3.         Age depth model showing an extrapolated basal date of about AD 1730 for the studied 

short core. 210Pb/137Cs dates indicated chronological sedimentation between AD 1936 and 2012 (see also 

Supplementary Table S3.1). The measured 137Cs activity reached its maximum in 7 cm depth (inset panel), 
indicating the 1963 fallout maximum. Radiocarbon analyses showed an ambiguous signal (Supplementary 
Table S3.2), with overlapping dates and a slight age inversion, but a trend generally similar to that seen in 
210Pb/137Cs dates. The age model was calculated from extrapolated 210Pb/137Cs dates, using the mean 

sedimentation rate in the dated part. 210Pb/137Cs dates are indicated as filled circles, open circles represent 

extrapolated ages. Calibrated median AMS radiocarbon dates are shown as filled circles with error bars 

based on 2 sigma age ranges. 
 

Regional vegetation signal 
 

The regional pollen record was mainly composed of 18 taxa. It was dominated by Betula 
 

(27-46 %, mean 37 %) and Alnus (18-35 %, mean 25 %) throughout. Ericales (7-17 %, mean 
 

11 %) and Poaceae (4-18 %, mean 10 %) were recorded with moderate abundance. Picea 

(1-7 %, mean 5 %), Salix (0.8-6 %, mean 3 %) and Brassicaceae (0.4-5 %, mean 2 %) reached 

abundances of 5 % to 7 %. All other pollen taxa were below 5 %. 

The  regional  vegetation  record  showed  very  little  variation  (Figure 3.4).  Broken  stick 

modelling of ordination results from PCA and CONISS on regional vegetation pollen 

(Supplementary Table S3.3) supported no zonation or grouping in the core. Minor changes 

were observed in Artemisia, Asteraceae p.p. and Alnus pollen abundance. Artemisia pollen 

decreased slightly from a mean of 1.9 % to a mean of 0.7 % after about AD 1850, while 

Asteraceae p.p. pollen abundance increased very slightly from a mean of 1.2 % to a mean of 

1.6 % after about AD 1910. The pollen taxa Alnus, Ericales, Salix and Betula include pollen 

from shrub species. No clear trends were indicated in these taxa. We found a minor increase 

in Alnus pollen from a mean of 23.6 % before AD 1920 to a mean of 27.7 % from about 
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Figure 3.4.         Stratigraphic pollen diagram showing stable regional vegetation and changes in lake 

margin vegetation. In all pollen abundance graphs, black silhouettes represent original pollen abundance, 

and black lines indicate fivefold exaggeration. Pollen taxa reaching at least 0.5 % abundance in at least 

five samples are shown in the diagram. The temperature reconstruction curve is based on a Regional 

Curve Standardized (RCS) tree-ring composite for the Yukon provided by (D'Arrigo et al. 2006). We 

applied an 11-year moving average to the curve to approximate the temporal resolution of the core. 

 
AD 1920 to AD 2012. We found no clear trends in Ericales or Salix pollen. Betula pollen 

even decreased slightly from a mean of 38.9 % to a mean of 34.1 % after AD 1920. The ratio 

of tree and shrub pollen taxa to herb pollen taxa reached its highest values after AD 2000. It 

corresponded with a recent warming trend we saw in time series temperature data compiled 

by the University of East Anglia Climatic Research Unit (CRU TS 3.22) (Harris et al. 2014), 

lagging about one decade behind the  temperature development (Figure 3.5). Redundancy 

analysis, using reconstructed temperature as an explanatory variable, showed no significant 

relation between regional vegetation and temperature (Table 3.1). 
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Figure 3.5.         Relation between the ratio of tree and shrub (woody) to herb (non-woody) pollen and the 

CRU TS 3.22 temperature curve for the 20th century (Harris et al. 2014), which was smoothed with an 
 

11-year moving average. 
 
 
Lake basin signal 

 

The parameters associated with lake or lake margin vegetation showed more variation 

(Cyperaceae, Ranunculus and Equisetum, TOC/TN, and δ13C, Figure 3.6) than the pollen taxa 

related to regional vegetation. The most prominent features were fluctuating abundances of 

Ranunculus pollen (0-13 %, mean 2 %), TOC contents (3.1-9.9 wt. %, mean 5.3 wt. %), and 

TOC/TN ratios (9.7-18.6, mean 13.2). Changes were also observed in Cyperaceae (11-36 %, 

mean 21 %), Equisetum (0-2.4 %, mean 0.6 %) and stable carbon isotopes (-30.3 to -27.5 ‰ 

vs. VPDB). We established a zonation for the record based on broken stick modelling on PCA 

and CONISS ordination results of the five lake-related parameters Cyperaceae, Ranunculus, 

and Equisetum abundance, TOC/TN and δ13C (Figure 3.6). The two zones we identified by 

applying CONISS were also reflected by results of a PCA. A relation with the warming trend 

in reconstructed temperature (Figures 3.4 and 3.6) was indicated by results of a redundancy 

analysis, i.e. 17 % of the variation in the parameter ensemble was explained by temperature 

change (Table 3.1). 
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Table 3.1.           Results of redundancy analysis and permutation testing on regional vegetation pollen 

data (response variables for regional vegetation) and reconstructed temperature (explanatory variable), 

and on lake-related parameters (response variables for lake basin development) and reconstructed 

temperature (explanatory variable). We examined the correlation of climate with i) regional vegetation 

and ii) lake basin development. The pseudo F statistic describes the ratio of between-cluster variance to 

within cluster variance and is a measure of the quality of cluster separation. Higher values indicate 

greater separation of clusters. 
 

Redundancy analysis Permutation testing 
Proportion 
explained by 
reconstructed 

 
 
Significance 
(estimated p-value, 

 
 

Regional 

temperature 
(RDA1) 

R² (adjusted)  
Pseudo-F 

Significance 
(P value) 

accounting for 
autocorrelation) 

vegetation 4.6% 0.018 1.608 0.073 0.18 
Lake 

  parameters  16.7%  0.137  5.606  0.003  0.12   
 
 

The relation was, however, statistically non-significant (P=0.12), when the temporal 

autocorrelation in the temperature data was taken into account. Uncertainties related to the 

age depth model and strong autocorrelation in the data impeded accurate significance testing. 

Zone 1 (AD 1730-1910) was characterized by relatively high and variable amounts of total 

organic carbon (TOC) (Figure 3.6). Peaks in the ratio of organic carbon to nitrogen (TOC/TN) 

coincided  with  peaks  in  TOC  and  Ranunculus  pollen  and  drops  in  δ13C  in  this  zone 

(Figure 3.6). The source of organic matter in the sediment was a mixture of terrestrial C3 

plants and lacustrine algae (Supplementary Figure 3.4). Grain size distribution was dominated 

by the silt fraction, with some peaks in sand contents (Figure 3.6) and stable conditions during 

the period AD 1800-1880. Ranunculus pollen showed some peaks in this zone (up to 12.7 %, 

mean 3.8 %). The increased amount of Ranunculus pollen in Zone 1 was very likely caused 

by aquatic to semiaquatic Ranunculus species. This was indicated by seed occurrence of the 

aquatic subgenus Batrachium. Pollen of the semiaquatic and wetland taxon Cyperaceae 

increased from 20 % to 35 % until about AD 1850, after which it fluctuated within this range. 

Equisetum also showed slightly elevated abundance in this zone compared with Zone 2. The 

abundance of pollen of lake margin vegetation was generally higher in Zone 1 than in Zone 2. 

In  Zone 2  (AD 1910-2012),  all  sediment  parameters  (TOC,  TOC/TN,  δ13C,  grain  size  

distribution) displayed narrower ranges (Figure 3.6) than in Zone 1. Both TOC and TOC/TN 

decreased markedly from Zone 1 to Zone 2 (Table 3.2, Figure 3.6). A higher contribution of 

lacustrine algae to the source of organic matter was indicated by sediment parameters in 

Zone 3.2 (Supplementary Figure 3.4). Grain size distribution was similar to Zone 1, with 

dominant silt, some fluctuation between sand and silt contents before AD 1940 and stable 
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proportions after AD 1940 (Figure 3.6). Cyperaceae and Equisetum spores decreased from 
AD 1910 to AD 2012, and Ranunculus pollen virtually disappeared in Zone 2 (Figure 3.6). 

Decreased TOC and TOC/TN and increased δ13C corresponded with decreased pollen 

abundance of lake margin taxa. 

 
 

Figure 3.6.         Stratigraphic diagram showing lake-related parameters. Parameters used in CONISS 

ordination to designate zones are shown in black. Parameters in grey show additional lake-related data 

not included in the CONISS. Black silhouettes represent original pollen abundance. The black line in the 

Equisetum graph represents a fivefold exaggeration of spore abundances. Boxplots on the right show data 

value distribution in Zone 1 (AD 1730-1910) and Zone 2 (AD 1910-2012) for the sedimentary parameters 

sand, silt and clay content, organic carbon content (TOC), the ratio of organic carbon to nitrogen 

(TOC/TN) and stable carbon isotopes (δ13C). For an explanation of the temperature reconstruction curve, 

see Figure 3.4 and methods section. 

 
3.7 Discussion 

 
Pollen vegetation relationship 

 

The pollen record reflects the regional low Arctic vegetation on the Yukon Coastal Plain, 

which consists largely of tussock tundra and wetland vegetation, interspersed with shrubby 

river valley vegetation. Disturbed ground provides habitat for pioneer vegetation along coastal 

tracts, river valleys and lake shores, while warmer microsites are colonized by warm-adapted 

taxa such as tall shrubs. Typically, pollen records from subarctic tundra contain at least 50 % 

shrub and tree pollen and up to 40 % graminoids (Ritchie et al. 1987, Klemm et al. 2013). In 
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our core, pollen of tree and shrub taxa (“woody taxa”) amount to 60-78 % (mean 67 %) of 

total terrestrial pollen, and graminoids (Cyperaceae and Poaceae) make up about 19-43 % 

(mean  32 %)  (Figure 3.4).  Low  growth,  low  pollen  productivity  and  predominant  insect 

pollination promote the underrepresentation of non-graminoid herbs in pollen spectra from 

arctic tundra. Accordingly, such taxa remain between 3 % and 15 % (mean 8 %) in our core. 

In flat and treeless arctic landscapes, wind dispersal makes up a large part of the pollen load 

to lake sediments (Birks & Birks 2000). Up to 10 % of pollen in our record is wind-borne 

pollen from woody taxa of extraregional origin, especially of Picea and Pinus trees from 

within the treeline. Additionally, Alnus pollen contributes between 18 % and 35 %, even 

though alders are not present around the lake. Pollen source area increases with basin size, 

and medium-sized lake basins such as the studied lake predominantly capture an extralocal 

(2 to 20 km distance to the lake) to regional (20-200 km distance to the lake) pollen rain 

(Prentice 1985). 
 

Regional vegetation stability 
 

Despite evidence for regional climatic fluctuations (D'Arrigo et al. 2006), our record indicated 

that the regional tundra vegetation remained largely stable throughout the past 300 years 

(Table 3.1, Figures 3.4 and 3.7a) or at least the method of pollen analysis was not sensitive 

enough to reflect potential minor changes. Woody taxa increased only in most recent years, 

indicating moderate shrub expansion that was linked with air temperature development, with 

a time lag of about one decade (Figure 3.5). 

The results of PCA indicated a minor stratigraphic trend (Figure 3.7a), but broken stick 

modelling on stratigraphically constrained clustering (CONISS) showed that randomly 

generated groups consistently explained more data variance than the groups calculated by 

PCA and CONISS analysis, so that no statistically significant zonation could be supported for 

regional pollen data. Redundancy analysis showed no significant correlation of the regional 

pollen signal with the temperature reconstruction (Table 3.1), indicating that climatic changes 

at the end of the Little Ice Age did not provoke a gradual vegetation response. 

Other records from the region covering longer time periods show more change in vegetation 

(Cwynar 1982, Bird et al. 2009, Fritz et al. 2012a). During the last few centuries, however, 

the most pronounced vegetation changes in low Arctic tundra have been observed mostly 

after the 1970s (Hinzman et al. 2005, Myers-Smith et al. 2011a, Frost & Epstein 2014). 

Slightly more change was reported from the Siberian taiga-tundra ecotone during that time, 

especially in tree pollen (Niemeyer et al. 2015). 



· Chapter 3 · 

51 

 

 

 
 
 
Stable ecological systems in changing environments may be described as resilient (Holling 

 

1973). We suggest that the main reasons for vegetation stability across short-term and low- 

amplitude climatic gradients in the region are related to, firstly, landscape heterogeneity, 

secondly, a location well within the biome at some distance to the tundra-taiga ecotone, and, 

thirdly, the continuous well established vegetation cover that seems to be relatively inert 

against moderate temperature changes. 

Small-scale landscape heterogeneity may to some extent mitigate climate impact on large- 

scale vegetation composition by providing close-by refugia for plants (Wolter et al. 2016). 

This seems especially important in the diverse microrelief in ice-wedge polygon fields and 

less important in well-established tussock tundra, where microrelief and hydrological 

conditions are less diverse. On the Yukon Coastal Plain, ice-wedge polygon fields are 

especially abundant in drained thaw lakes and on the glacial outwash plain close to the coast 

(Rampton 1982, Harry et al. 1985, Fritz et al. 2016). The studied lake is situated close to the 

boundary between upland tussock tundra and predominant lowland polygonal terrain. 
 
 
 

 
 

Figure 3.7.         Principal component analysis (PCA) of studied core samples and analysed parameters. 

Crosses represent species scores and are labelled with the name of their respective pollen taxon. Sample 

scores are coded to stratigraphic zones, with samples from Zone 1 (AD 1730-1910) being represented by 

circles, and samples from Zone 2 (AD 1910-2012) being represented by stars. (a) Regional vegetation 

pollen taxa. The first two PCA axes explain 30 % of the variation in the data. (b) Parameters related to 

lake margin vegetation. The first two PCA axes explain 75 % of the variation in the data. 

 
Ecological change under future climatic change is predicted to be largest at the intersections 

between biomes, where species are close to their range edges (Neilson 1993, Epstein et al. 

2004, Myers-Smith et al. 2015). In accordance with ecological theory these transition zones 



· Chapter 3 · 

52 

 

 

 
 
 
are likely to experience the strongest change, while rather stable conditions might prevail 

within biomes (Neilson 1993). On the Yukon Coastal Plain the tundra-taiga ecotone is the 

nearest transition zone. The subarctic tundra is, however, shielded from the south by the 

British Mountains, and the tundra-taiga ecotone in the Mackenzie Delta lies at more than 100 

km distance to the studied lake. This position well within the biome may have contributed to 

vegetation stability in the recent past. 

Additionally, most of the region has a continuous vegetation cover, so that competition for 

rooting space and bare ground for seedling establishment is high (Lantz et al. 2009, Myers- 

Smith et al. 2015). Myers-Smith et al. (2015) found that shrub growth is not climate sensitive 

in the northern Yukon, and that further away from range edges other factors such as 

competition and facilitation are more important than climate. Disturbances that disrupt the 

continuous vegetation cover may facilitate establishment of warm-adapted species, in low 

Arctic regions most prominently of tall shrubs (Myers-Smith et al. 2011b). The predicted 

increase in permafrost thaw is likely to trigger disturbance increase in the Low Arctic (AMAP 

2011). 
 

The interpretative value of pollen analysis in an arctic context is often limited by low pollen 

production  of  the  taxa  involved  and  low  taxonomic  resolution  of  pollen  identification 

(Cwynar  1982,  Ritchie  1995,  Birks  &  Birks  2000).  The  reconstruction  of  past  shrub 

expansion may be impeded by the lack of information on shrub growth height, or even on the 

species involved. Salix, for example, is a low pollen producer often relying on vegetative 

reproduction, and different Salix species may be from few centimetres to several metres tall, 

making it hard to reconstruct a conversion from low-shrub tundra to tall-shrub tundra, as 

predicted for the Low Arctic (Epstein et al. 2004, Lantz et al. 2010, Myers-Smith et al. 

2011b), by means of pollen analysis. We did, however, find indication for a relation between 

pollen from woody taxa and temperature and for a slight increase in woody vegetation in the 

region after AD 2000.  The ratio of tree and shrub (woody) to herb (non-woody) pollen 

followed the CRU TS 3.22 temperature curve for the 20th century (Harris et al. 2014), with the 

ratio increasing from between one and two before AD 1940 to more than three after AD 2000 

(Figure 3.5).   The   pollen   record   lagged   about   10-15 years   behind   the   temperature 

development. The temporal resolution of the pollen record did not allow for a more accurate 

description of the relation with air temperature development, but it does illustrate that woody 

vegetation is more temperature sensitive than non-woody vegetation, at least on a decadal 

timescale. 
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Minor  variations  were  observed  in  Artemisia,  Betula,  Asteraceae  p.p.,  and  Alnus  pollen 
(Figure 3.4). Artemisia and Betula mainly belong to pioneer vegetation (De Groot et al. 1997, 

Tarasov et al. 2007, Birks & Birks 2008), and their slight decrease in the late 19th  and early 

20th century could indicate the end of the Little Ice Age. The small increase in Asteraceae p.p. 
 

pollen occurred at the onset of the 20th century. One of the most prominent Asteraceae p.p. in 

the coastal reaches of the Yukon Coastal Plain is Senecio congestus, which often occurs in 

nearly pure stands on freshly disturbed fine-grained ground, most notably in retrogressive 

thaw slumps along the coast or along lake shores and river valleys (Cody 2000, Lantz et al. 

2009, Cray & Pollard 2015). Non-Artemisia Asteraceae p.p. are insect-pollinated and produce 

low amounts of pollen. Their pollen is generally underrepresented in pollen assemblages from 

lake sediment and it often represents local flora. The increase in Asteraceae p.p. pollen might 

be a local signal, possibly originating from slumping around the lake. The scars of partly 

stabilized slumps are visible on the eastern and southern lake shores today (Figure 3.2b). The 

increase in Alnus pollen from a mean of 24 % to a mean of 28 % after AD 1920, with 

individual samples reaching 35 % (Figure 3.4), could represent an approaching Alnus 

shrubline. On the Yukon Coastal Plain, shrub Alnus is present only on warm sites, especially 

along rivers, but it is not present around the studied lake. Alnus produces large amounts of 

pollen, which is readily dispersed by wind. In lake sediments on the Yukon Coastal Plain and 

Herschel Island, Alnus abundances generally reach about 20 % even if the taxon is not present 

in the wider catchment (Fritz et al. 2016, Fritz et al. under review), and increase to about 50 % 

when present in the catchment (Fritz et al. 2012a). 
 
Lake basin signal 

 

The main trend in the record relates to change in the semiaquatic vegetation found in shallow 

waters along lakeshores (Figures 3.4, 3.6, and 3.7b). The abundance of lake margin vegetation 

indicated in pollen of semiaquatic taxa and in biogeochemical parameters decreases from 

Zone 1 (AD 1730-1910) to Zone 2 (AD 1910-2012) (Figure 3.6). Accordingly we assume a 

shift from a dynamic lake margin environment, indicated by positive and scattered negative 

values of PC1, to a lake centre environment, indicated by more uniformly negative values of 

PC1, took place at the coring location around the beginning of the 20th century (Figure 3.7b). 
 

These changes coincided with an increase in reconstructed temperature (Figure 3.6). 
 

In Zone 1 (AD 1730-1910), we found a local, fluctuating signal. Simultaneous peaks in 

Ranunculus pollen, TOC, and TOC/TN ratios along with drops in δ13C and findings of 
Ranunculus Batrachium seeds indicated high contribution of organic matter from semiaquatic 
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lake margin vegetation to the lake sediment. We found that terrestrial plants contributed more 

to organic matter composition in Zone 1 than in Zone 2 (Supplementary Figure S3.4). In a 

lake environment, we were expecting a larger input from lacustrine algae. All lake-related 

parameters in Zone 1 indicated that the coring site was situated within or in the immediate 

vicinity of the vegetation belt around the lake between about AD 1730 and AD 1910. The 

vegetation belt was a dynamic environment, where individual taxa experienced short-term 

fluctuations (Figure 3.6). 

In Zone 2 (AD 1910-2012), a stable regional signal could be identified in the record. All 

sediment parameters showed narrower ranges and became more uniform (Figure 3.6), 

indicating stable lake sedimentation. This coincided with a decrease in organic carbon and 

nitrogen contents, which we interpret as a reduction in plant debris input to the site. The 

source of organic matter shifted towards lacustrine algae (Supplementary Figure S3.4). The 

presence  of  local  semiaquatic  vegetation  in  the  vicinity  of  the  coring  location  was  not 

indicated in this zone. Pollen and spores from the lake margin taxa Cyperaceae and Equisetum 

decreased markedly, Ranunculus pollen nearly disappeared from the record (Figure 3.4). The 

studied parameters indicated that during the 20th  century the coring location was situated 
 

outside of the lakeshore vegetation belt in a lake centre environment very similar to what we 

found in the field in 2012, catching the regional pollen rain. 

The reconstructed situation of the coring site within or close to the lake margin vegetation belt 

during Zone 1 (AD 1730-1910) could have been caused by either deepening of the lake basin 

or by partial drainage of the lake and subsequent refilling. Deepening of the lake basin 

accompanied by increased lake water amounts is possible. Ice-rich unconsolidated sediments 

in continuous permafrost regions experience ground subsidence and thermokarst during 

periods  of increased  thaw and  in  topographically derived  warmer microclimates  (French 

2007). Thermokarst produces flat depressions that develop into lake basins filled with water 

from melted ice in the ground. The studied lake basin has a typical thermokarst bathymetry. It 

is a flat and shallow basin (3.7 m maximum depth) with steep sides. Neither ground ice 

contents nor talik presence beneath the lake have been analysed, though, and we cannot 

ascertain the origin of the lake through thermokarst. The region is, however, characterized by 

a diverse and complicated Quaternary geology, and ice-rich sediments have been found under 

much of the Yukon Coastal Plain, especially in lowland polygonal terrain close to the coast 

(Rampton 1982, Harry et al. 1985, Fritz et al. 2012b). It is likely that the lake was underlain 

by ice-rich permafrost and deepened through thaw subsidence, which is a common 

phenomenon on the Yukon Coastal Plain and generally in lowland tundra in the Arctic (Burn 
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& Smith 1990, Murton 2001, West & Plug 2008, Kokelj & Jorgenson 2013). Thaw-induced 

thermokarst lake deepening may have happened in the studied lake at the beginning of the 

20th century. 
 

Secondly, it is possible that the lake drained partly and refilled again. Lakes on the Arctic 

coastal plains of Alaska and Western Canada frequently experience drainage (Mackay 1999, 

Hinkel et al. 2007, Jorgenson & Shur 2007), some of those lakes may refill again (Yoshikawa 

& Hinzman 2003, MacDonald et al. 2012). The so-called thaw lake cycle is a debated concept 

(Billings & Peterson 1980, Jorgenson & Shur 2007), and more than one pathway may be 

relevant for any given lake (Jorgenson & Shur 2007, Fritz et al. 2016). One of the relevant 

questions is where the water that re-fills a lake basin would be coming from. The studied lake 

has a small catchment, so that surface runoff into the lake would not be large (Figure 3.2a). 

Changes in surface flow patterns, for example the former existence of a direct or diffuse 

inflow, could be relevant. 

We suggest that a very shallow lake existed at the coring site since before AD 1730, which 

deepened and filled through increased thaw subsidence and melting ground ice. The lake 

could have been shallow because it had partly drained before or because thermokarst was just 

starting to develop. The strong temporal autocorrelation in the temperature time-series data 

prevented accurate significance determination for the relation between lake related parameters 

and   temperature.   The   statistical   relation   we   estimated   was   non-significant   (P=0.12, 

Table 3.1), although a trend might still be present. Uncertainties in the age depth model 

(Figure 3.3) could additionally have weakened the correlation with temperature. Visually, a 

tentative link between our established zonation and the reconstructed temperature is best 

represented in the stratigraphic diagrams (Figures 3.4 and 3.6). The timing of Little Ice Age 

(ca. AD 1600-1850) and modern warming trend (after AD 1850) that was proposed for the 

wider region (D'Arrigo et al. 2006, Bird et al. 2009, McKay & Kaufman 2014) coincides 

approximately with  the  zonation  in  the  studied  core  (Figures 3.4 and 3.6).  The proposed 

deepening of the studied lake around the beginning of the 20th century coincided with climatic 

warming. Thermokarst expansion during phases of warmer temperatures has been reported 

from the Holocene (Burn & Smith 1990, Romanovskii et al. 2000, Schleusner et al. 2015). 

Our study suggests that the deepening of the lake was induced by increased permafrost thaw 

due to intensified warming, which in turn enhanced thermokarst. 
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3.8 Conclusions 
 
The low Arctic tundra vegetation on the Yukon Coastal Plain remained largely stable for the 

past 300 years despite the known warming after the regional end of the Little Ice Age around 

AD 1850. We assume that the observed vegetation resilience to climate change was due to 

three main circumstances: (1) The rather central position of the study site within the tundra 

biome, (2) the heterogeneity within regional landscapes, which provided easily accessible 

alternatives for micro-scale species migration as an answer to increased stress, and (3) the 

density of the vegetation cover, where competition and facilitation were probably more 

important  drivers  of  vegetation  dynamics  than  climate.  However,  we  found  that  minor 

changes in the woody/non-woody pollen ratio were related to temperature change, particularly 

in most recent decades. 

The studied lake system seems to have been more sensitive to climatic change than regional 

vegetation. We found that regional climatic warming was followed by an increase in lake 

water-level probably fed by melting ground ice in a lake basin deepened by thaw subsidence. 

Our  findings  indicate  that  resilience  of  tundra  vegetation  to  climate  change  can  occur 

alongside the sensitivity of lake systems to climate change in Arctic environments. This 

indicates some decoupling of the processes involved. 
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Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada). Quaternary 
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4.1 Abstract 
 
Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to 

climatic and environmental change. We present the results of a multidisciplinary 

paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory 

analyses were carried out on a permafrost core and the overlying seasonally thawed (active) 

layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 

Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we 

report sedimentary data including grain size distribution and biogeochemical parameters 

(organic carbon, nitrogen, C/N ratio, δ13C), stable water isotopes (δ18O, δD), as well as fossil 

pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to 

the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) 

during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 

3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after 

drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is 

characterized by planktonic-benthic and pioneer diatom species indicating circumneutral 

waters, and very few plant macrofossils. The pollen record has captured a regional signal of 

relatively stable vegetation composition and climate for the lacustrine stage of the record until 

3950  cal  yrs  BP.  Palustrine  conditions  with  benthic  and  acidophilic  diatom  species 

characterize the peaty shallow-water environments of the low-centered IWP. The transition 

from lacustrine to palustrine conditions was accompanied by acidification and rapid 

revegetation  of  the  lake  bottom  within  about  100  years.  Since  the  palustrine  phase  we 

consider the pollen record as a local vegetation proxy dominated by the plant communities 

growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately 

after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. 

Permafrost  aggradation  through  downward  closed-system  freezing  of  the  lake  talik  is 

indicated by the stable water isotope record. The originally submerged IWP center underwent 

gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost 

landscapes to climate and environmental change throughout the Holocene. 
 

4.2 Introduction 
 
IWPs are among the most typical permafrost features of Arctic lowlands. In the northern 

hemisphere, IWPs are thought to occupy up to 2,600,000 km2  (Mackay 1972) of the tundra 

and the boreal forest zones, which is equivalent to up to 31% of the arctic land mass including 

glaciated regions. IWPs are characterized by peat formation and occur extensively in the 
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coastal lowlands of eastern Siberia, Alaska and northwestern Canada. They are also common 

on poorly drained ground, such as river terraces and floodplains, and on the bottom of drained 

thermokarst lakes. These drained lakes occupy large areas of Arctic lowlands (Grosse et al. 

2013), and IWPs located therein have stored large quantities of organic matter (OM) on 

geological timescales (Schirrmeister et al. 2011a) so that they are regarded as greenhouse gas 

sinks (Schuur et al. 2015). (Hugelius et al. 2014) have estimated the soil organic carbon stock 

for northern peatlands to be between 302 and 338 Pg C. (Walter Anthony et al. 2014) 

emphasized the very large quantities of organic carbon (up to 159 ± 24 Pg C) stored in 

thermokarst lake basins of Holocene age in the Yedoma-region. Yedoma deposits formed 

during the late Pleistocene cold stages in unglaciated Beringia and are characterized by high 

ice contents, fine grain size, and a good preservation of organic carbon (Schirrmeister et al. 

2013). As the terrestrial Arctic warms up, permafrost soils, including those located in IWPs in 

drained lake basins, are expected to release substantial greenhouse gas emissions that will 

generate  a  positive  feedback  to  global  warming  (Dutta  et  al.  2006,  Koven  et  al.  2011, 

Schaefer et al. 2014). Walter Anthony et al. (2014) indicated that widespread permafrost thaw 

could ultimately result in reduced lake and wetland abundance caused by drainage and drying, 

facilitating rapid decomposition of freeze-locked organic matter. Yet, these estimations were 

based on sampling performed on thermokarst basins in permafrost environments of the 

Yedoma  region.  They  did  not  consider  the  specifics  of  drained  lake  environments  in 

epigenetic permafrost environments outside the Yedoma region, which are by far more 

abundant and where epigenetic ice-wedge growth produces different IWP morphologies 

(French 2007). In this paper, we study IWP peatland development after lake drainage in a 

thermokarst basin that formed in ice-rich epigenetic permafrost. Moreover, the presence of 

IWPs in Arctic drained thermokarst lake basins is well-known but the mechanisms involved 

in their formation remain largely unclear apart from IWP formation resulting from 

experimental drainage (Mackay 1981, 1986, 1988, Mackay & Burn 2002). Climate has been 

proposed to be driver of thermokarst lake development and drainage (e.g. Vardy et al. 1997, 

Vardy et al. 1998), but the role of local settings in surface morphology and hydrology is also 

stressed by a few studies (Vardy et al. 2005, Ellis & Rochefort 2006, Zibulski et al. 2013). 

External climate forcing and internal processes such as permafrost phenomena, small-scale 

changes in morphology, hydrology, and vegetation succession interact with each other, 

including a complex chain of feedback mechanisms (Wolter et al. 2016). The role and impact 

of climate and vegetation feedbacks to permafrost is especially important in this context. 
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Based on a 233-cm-long permafrost section including the seasonally frozen active layer from 

an IWP mire, we investigate the relationship between thermokarst, IWP formation and 

vegetation on a decadal to centennial resolution in order to understand the interplay of 

thermokarst lake and IWP mire dynamics. This multidisciplinary study aims at: 

(1) reconstructing  IWP  development  and  peat  accumulation  in  areas  of  continuous 

permafrost, 

(2) evaluating the influence of internal and external environmental drivers of IWP mires, 

and 

(3) reviewing  Holocene  IWP  formation  and  development  in  response  to  permafrost 

formation, thermokarst, lake drainage and vegetation succession. 
 

4.3 Background 
 
 

4.3.1 Thermokarst and thaw lake dynamics 
 
Permafrost degradation (thermokarst) leads to the formation of thaw lakes which expand in 

size due to shore erosion and in depth due to surface subsidence together with ground-ice 

melting. Thermokarst lakes in arctic tundra landscapes are very dynamic features with a 

highly variable timing in terms of life cycle (Lenz et al. 2016a). This cycle includes initiation, 

expansion, drainage and eventual re-initiation (van Huissteden et al. 2011). Their lifetime – in 

contrast to the onset – largely depends on local factors such as geomorphology, ground-ice 

conditions, hydrology and ground-surface stability (Jones et al. 2011, Jones et al. 2012, Jones 

& Arp 2015). The initiation of many thermokarst lakes in northwest Canada, Alaska, and 

Siberia is related to increasing air temperatures, available moisture and permafrost thaw in 

response to short-term warming events during the Pleistocene-Holocene transition or later on 

during the Holocene thermal maximum (Rampton 1988, Brosius et al. 2012, Walter Anthony 

et al. 2014). However, (Burn & Smith 1990) noted that such lakes may also develop in 

response to site-specific factors such as ground disturbance, which are not necessarily related 

to regional climatic change. 
 

4.3.2 Ice-wedge-polygon (IWP) development 
 

Strongly decreasing air temperatures in winter lead to thermal contraction of the exposed 

ground so that frost cracks occur (Lachenbruch 1962). Snow, hoar frost and spring meltwater 

fill in the cracks to form vertical ice veins that may grow into ice wedges after numerous 

freeze-thaw cycles. Physical self-organization leads to the surface expression of polygonal 
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patterns on the ground surface with ice wedges below the rims and sedimentary centers 

together forming ice-wedge polygons (Krantz 1990). Lateral and vertical material 

displacement during frost cracking and infilling of cracks with ice in primary IWPs form 

elevated rims above the ice wedges and low water-logged centers, i.e. low-centered IWPs 

with intrapolygonal ponds (Fig. 4.1a). High-centered IWPs (Fig. 4.1c) develop due to 

topographic inversion when ice wedges melt and IWP rims degrade or when peat growth and 

sediment accumulation rates in the centers exceed syngenetic growth rates of ice wedges 

(French 2007). IWPs are not only characterized by this modern typology, but also by different 

generations of ice wedges and corresponding sedimentary records under the IWP centers. 

Surficial expression is mostly associated with recent or actively cracking IWPs. Inactive IWP 

and associated ice wedges that have been degraded in depth are often buried under a sediment 

cover with a thickness that roughly corresponds to the paleoactive-layer depth, added by the 

sediment thickness deposited since thaw and subtracted by the excess ice volume (cf. Burn et 

al. 1986, Burn 1997; see section 4.6.2.2). Therefore, remote sensing methods fail to reliably 

register IWPs that are missing a surface expression. A substantial underestimation of the 

surface area covered by IWPs in the Arctic ultimately misjudges the extent and impacts of 

future thaw and degradation. 
 

The combination of high contents of intrasedimental ice in IWP centers and massive ice 

wedges below troughs/rims with small-scale topographic variations on the surface leads to 

very heterogeneous  conditions,  which  make  IWP  systems  extremely sensitive  to 

environmental change. Furthermore, IWP ponds and thermokarst lakes are abundant aquatic 

ecosystem         types         in         the         Arctic         (Grosse         et         al.         2013). 
 
 
 

 
 

Figure 4.1.         Examples of different IWP types along the Yukon coast. (a) Low-centered IWPs (within 

the glacial limit) with elevated rims, low centers and sometimes with an intrapolygonal pond. (b) Flat - 

centered IWPs (within the glacial limit) with depressed areas above slightly degraded ice-wedge troughs. 

This represents a transitional type between (a) and (c). (c) High-centered IWPs (beyond the glacial limit) 

with elevated centers and strongly degraded troughs due to ice-wedge melting. 
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They are hotspots of biological activity and diversity (Smol & Douglas 2007), providing 

diverse habitats for microorganisms, plants, birds, and aquatic communities (Palagushkina et 

al. 2012, Bobrov et al. 2013, De Klerk et al. 2014).Continuous organic matter accumulation 

and preservation during syngenetic permafrost aggradation make northern IWPs a valuable 

climate and environmental archive. A number of paleoenvironmental reconstructions from 

NE Siberian permafrost employ late Pleistocene and Holocene IWP deposits (e.g. Andreev et 

al. 2011, De Klerk et al. 2011, Wetterich et al. 2014) to reconstruct long-term environmental 

history and to develop an understanding of IWP formation and degradation. North American 

studies on IWPs focus mainly on postglacial deposits, because of the regional Quaternary 

history (Ovenden 1982, Vardy et al. 1997, Eisner & Peterson 1998a, Eisner & Peterson 

1998b, Vardy et al. 1998, Eisner et al. 2005, Vardy et al. 2005). These investigations apply 

palynology, plant macrofossils, loss on ignition, and sometimes stable water isotopes to 

reconstruct climate-related patterns of hydrology and vegetation change as well as to assess 

the influence of permafrost on carbon storage in polygonal peatlands. 
 

4.4 Study area 
 
The Northern Yukon is characterized by continuous permafrost (Brown et al. 1998) and 

tundra vegetation in a subarctic climate. North of the British Mountains the Yukon Coastal 

Plain stretches 200 km from the Alaskan border to the Mackenzie Delta. It is confined to the 

north by the Beaufort Sea where Herschel Island is the only prominent island apart from 

barrier islands along the mainland coast (Fig. 4.2). 
 

Unconsolidated sediments and high ground ice volumes make the region vulnerable to ground 

subsidence and erosion under permafrost thaw conditions (Rowland et al. 2010, Fritz et al. 

2012b). Herschel Island is a glacial push-moraine originating from an advance of the 

Laurentide Ice Sheet into the Northern Yukon during the Late Wisconsin (23–15 kyr BP) 

(Mackay 1959, Dyke & Prest 1987, Fritz et al. 2012b). It is made up of redeposited marine 

and terrestrial sediments mixed into a glacial diamicton (Bouchard 1974, Rampton 1982). The 

island measures 15 by 8 km across and rises to ca. 180 m above sea level. Ground ice 

volumes exceeding 50% (Couture 2010), high coastal bluffs, and a generally high relief 

energy  promote  coastal  erosion,  intensive  gullying  through  thermal  erosion  and  locally 

variable ground subsidence through thawing permafrost. These processes provide Herschel 

Island with a high spatial and temporal variability in surface relief and disturbance regime 

(Obu et al. 2015, Fig. 4.3a). Ice wedges underlie most of the island's surface and include 

syngenetic, anti-syngenetic and epigenetic formations. 
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Figure 4.2.         Location map of the western Arctic and Herschel Island in the northern Yukon, with the 

red dot indicating the location of the studied IWP field. The limit of the Late Wisconsin Laurentide Ice 

Sheet follows that of Dyke and Prest (1987). The base layer was provided by Yukon Geomatics. 
 

The setting of the studied IWP mire on Herschel Island is comparable to that of low-centered 

IWP fields on the Yukon mainland and in the Alaskan or Siberian Arctic lowlands (see 

above).Mean annual air temperatures are −11 °C ca. 50 km west of Herschel Island at 

Komakuk Beach and −9.9 °C ca. 100 km east of Herschel Island at Shingle Point for the 

period 1971–2000 (Environment Canada; http://climate.weather.gc.ca). Mean annual 

precipitation for the same period amounts to 161 mm at Komakuk Beach and 254 mm at 

Shingle Point. Mean ground temperature (August 2014–August 2015) in the studied polygon 

at 90 cm depth was −4.6 °C in the center and −5.4 °C under the polygon rim (unpublished 

data). Burn & Zhang (2009) studied permafrost conditions at Collinson Head on Herschel 

Island and measured mean annual ground temperatures at 1 m depth in the range from −4.0 

°C beneath a snow bank to between −9.0 and −6.2 °C at other sites. The depth of zero annual 
 

amplitude was estimated to 14.5 m with a mean annual ground temperature of −8.0 °C (Burn 
 

& Zhang 2009). The vegetation on Herschel Island is classified as erect dwarf shrub tundra in 

the Circumpolar Arctic Vegetation Map (Walker et al. 2005), although more recent studies 

have shown an increase in low shrubs on the island (Myers-Smith et al. 2011a). Wetland 
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vegetation in the region consists of mosses, sedges and erect dwarf shrubs less than 40 cm tall 

 

(Walker et al. 2005). 
 
 

4.5 Material and methods 
 
 

4.5.1 Field work 
 

 
 

Figure 4.3.         Study site on Herschel Island, northern Yukon. (a) GeoEye satellite image showing the 

studied IWP (white rectangle) in true color composite. The limit of the IWP field is indicated by a dashed 

line and the arrows point at a drainage channel. Spatial resolution of the multispectral image, which was 

taken on 2011-09-08 at 21:13 GMT, is 1.65 m. (b) LiDAR digital elevation model of the IWP site and 

adjacent coast. Elevations are vertically exaggerated by factor 5. The digital elevation model with 1 m 

horizontal resolution was derived from a LiDAR point cloud dataset. LiDAR scanning took place in July 

2013 with the research airplane POLAR5. (c) Schematic drawing of the studied IWP morphology and 

dimensions. Photographs of the studied polygon, the active-layer pit and the unfrozen peat monolith can 

be found in Supplementary Fig. S4.1. 
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At the coring location, a detailed terrain and vegetation survey was undertaken to characterize 

the surface. The studied IWP (69.57953°N, 138.95740°W) is part of an IWP field situated in a 

shallow basin between rolling hills (Fig. 4.3a, b). The IWP field has a drainage outlet towards 

the coast, where coastal bluffs are about 25 m high (Fig. 4.3a, b). The troughs surrounding the 

IWP are water-saturated, often with visible ponds (Fig. 4.3c). The polygon measures 16 m 

from rim to rim and the maximum elevation difference between low-lying center and elevated 

rim is 25 cm. The vegetation in the IWP consists of graminoids, dwarf shrubs and mosses. 

Forbs occur in low abundance. There is a clear difference in vegetation composition between 

elevated rims and low-lying centers (Wolter et al. 2016). The IWP center is dominated by 

sedges (Carex aquatilis, C. chordorrhiza, C. rariflora, C. williamsii) and Alaska bog willow 

(Salix  fuscescens).  Pedicularis  sudetica,  Polygonum  viviparum,  and  Luzula  wahlenbergii 

occur in low abundance. On the IWP rims, various dwarf shrubs (Betula glandulosa, Salix 

pulchra,   S.  reticulata,  Rubus   chamaemorus,   Cassiope  tetragona,  Ledum  decumbens, 

Vaccinium uliginosum, V. vitis-idaea), tussock cottongrass (Eriophorum vaginatum) and other 

herbs  (Carex  rariflora,  Pyrola  grandiflora,  Poa  arctica,  Hierochloë  alpina)  are  found. 

Common cottongrass (Eriophorum angustifolium) dominates in ice-wedge troughs and is 

accompanied by water sedge (Carex aquatilis), marsh cinquefoil (Potentilla palustris), and 

mare's tail (Hippuris vulgaris). Mosses are ubiquitous, but have not been surveyed in detail. 

The core material was accessed by digging a pit until the permafrost table was reached. The 

32-cm thick active-layer monolith (code: YC12-HP-Mc) was recovered and subsampled in 

one-centimeter increments (32 samples). Coring was carried out on 3 August 2012 with a 

SIPRE permafrost drill equipped with a Stihl BT 121 engine and auger barrel with a diameter 

of 7.5 cm. The permafrost core of 201 cm (code: PG2100) was sampled continuously in 2–3 

cm increments (77 samples). 
 
 

4.5.2 Radiocarbon dating and geochronology 
 
Hand-picked terrestrial plant remains >250 μm from 14 samples at selected depth levels were 

dated using Accelerator Mass Spectrometry (AMS) 14C radiocarbon dating (Table 4.1). All 

plant fragments were first cleaned with water. Very small and fragile samples were pre- 

treated with 1% HCl (A) only (ca. 10 h, room temperature) to remove possible inorganic 

carbon. Larger plant fragments were treated by standard acid-alkali-acid extraction (AAA) to 

remove both inorganic carbon and humic substances by sequential extraction with 1% HCl, 

1% NaOH (4 h, 60 °C), and again 1% HCl (ca. 10 h, room temperature). After each extraction 

step the plant fragments were washed repeatedly with Milli-Q water. The dried (60 °C)  
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samples were then graphitized with an automatic graphitization system (Wacker et al. 2010, 

Rethemeyer et al. 2013) and 14C concentrations were analyzed at CologneAMS, Germany 

(COL), and Poznan Radiocarbon Laboratory, Poland (Poz). The conventional 14C ages are 

reported in years before present (yrs BP) with one-sigma measurement uncertainty. The 

obtained conventional 14C ages were calibrated using the IntCal13 calibration curve (Reimer 

et al. 2013). The age depth relation was constructed with Bacon 2.2 modelling routines in R 

(Blaauw & Christen 2011). The weighted average of the probability distribution was used to 

fix a specific age for each centimeter along the core. In the model we used default settings, 

but changed accumulation mean to 15 cm, memory strength to 15 and memory mean to 0.45. 

Calibrated radiocarbon ages are given as cal yrs BP. 
Table 4.1.           Accelerator mass spectrometry radiocarbon dates from active layer (YC12-HP-Mc) and 
permafrost core samples (PG2100). The sample pretreatment method (A, AAA) for each sample is keyed in 
the text. 

 

Lab No. 

Depth 
level 

[cm below 
surface] 

Age 

[14C yrs BP] 

Calibrated 
age ranges 

[cal yrs BP] 
1σ confidence 
interval 

Dated material 

(Terrestrial plant remains) 

C 

[μg] 

δ13C  

[‰ vs.VPDB] 

Sample 
pre-
treatment 

Active-layer samples (YC12-HP-Mc) 

COL2940.1.1 7–8 232 ± 32 0–306 Cyperaceae 988 −25.5 AAA 

COL2941.1.1 15–16 1259 ± 32 1179–1261 Cyperaceae 988 −26.4 AAA 

COL2942.1.1 23–24 1777 ± 32 1621–1731 Carex sp., Eriophorum sp., Ericaceae 994 −23.4 AAA 

Poz-56552 30–31 1980 ± 40 1889–1986 Carex sp., Ledum decumbens, other Ericaceae 600 −41.3 AAA 

Permafrost core samples (PG2100) 

COL2639.1.1 34–36 2192 ± 37 2148–2306 Carex sp., Ledum decumbens, other 
Cyperaceae 

1000 −27.1 A 

COL2640.1.1 40–42 2280 ± 37 2185–2348 Carex sp. 820 −27.1 A 

COL2641.1.1 66–68 2988 ± 35 3078–3215 wood, Eriophorum sp., unidentified plant 
remains 

1000 −27.6 AAA 

COL2642.1.1 95–98 3139 ± 36 3269–3438 Carex sp., moss, unidentified plant remains 988 −26.4 A 

COL2643.1.1 128–130 3467 ± 37 3649–3826 Carex sp., wood, unidentified plant remains 895 −27.8 A 

COL2644.1.1 145–148 3622 ± 37 3885–3980 Carex sp., Potentilla palustris, wood, 
unidentified plant remains 

930 −26.6 A 

COL2645.1.1 154–157 3511 ± 36 3721–3838 Carex sp., Eriophorum sp., Potentilla palustris,  

  

988 −24.5 A 

COL2646.1.1 176–179 3388 ± 37 3586–3687 Carex sp., Potentilla palustris, moss 994 −25.1 A 

COL2647.1.1 214–216 3678 ± 38 3933–4084 Potentilla palustris, Rubus chamaemorus, 
unidentified plant remains 

1000 −26.9 A 

COL2648.1.1 228–231 4363 ± 43 4865–4968 Cyperaceae, moss, unidentified plant remains 552 -29.1 A 
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4.5.3 Sedimentology 
 
The gravimetric water content in frozen sediments, expressed as weight percent (wt.%), was 

determined as the mass ratio of ice to dry sample according to (Van Everdingen 2005). A 

laser particle analyzer (Coulter LS 200) was used for grain-size analyses on freeze-dried and 

organic-free (treated with 30% H2O2) subsamples. Total organic carbon (TOC) and total 

nitrogen (TN) contents were measured with Elementar Vario MAX C and Elementar Vario 

EL III element analyzer, respectively, and are given as weight percent (wt.%). The C/N ratio 

is expressed by the quotient of TOC and TN values. Stable carbon isotope ratios (δ13C) of 

TOC   were   measured   on   carbonate-free   samples   with   a   Finnigan   DELTA-S   mass 

spectrometer. The values are expressed in delta per mil notation (δ ‰) relative to the Vienna 

Pee Dee Belemnite (VPDB) standard. 
 

Sediment units were defined using the parameters TOC, C/N and δ13C in a stratigraphically 

constrained cluster analysis and a broken stick model. For these analyses the data was 

normalized using range transformation (function tran in R package ‘analogue’) to bring the 

parameters onto the same scale. We calculated a Euclidean dissimilarity matrix (function 

vegdist in R package ‘vegan’) to quantify the dissimilarity between samples in a simple way 

minimizing pre-assumptions about the data structure. This quantification was needed to 

calculate the Constrained Incremental Sum of Squares (CONISS) algorithm (Grimm 1987) 

and a broken stick model (functions chclust and bstick in R package ‘rioja’) to find the 

maximum feasible number of sediment units (Bennett 1996). 

 
4.5.4 Stable water isotopes of pore water and intrasedimental ice 

 
Pore water and supernatant water from thawed sediments was extracted using rhizon soil 

moisture samplers (SMS 5 cm, Eijkelkamp). The hydrogen and oxygen isotope composition 

(δD, δ18O) was determined with a Finnigan MAT Delta-S mass spectrometer, using the 

equilibration technique (Horita et al. 1989). Values are given as per mil difference from 

Vienna Standard Mean Ocean Water (VSMOW), with internal 1σ errors of better than 0.8 and 

0.1 ‰ for δD and δ18O, respectively (Meyer et al. 2000). The results are presented in δD–δ18O 
 

diagrams with respect to the Global Meteoric Water Line (GMWL; δD = 8δ18O+10; (Craig 
 

1961) and to the modern Local Meteoric Water Line (LMWL) derived from long-term 

observations in Inuvik (δD = 7.3δ18O−3.5; R2 = 0.98; (IAEA/WMO 2015). Second-order 

parameters, such as the linear δD-δ18O regression slope and the deuterium excess (d-excess = 

δD−8δ18O; (Dansgaard 1964), were calculated and provide insight into the water source of the 
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initial precipitation and the presence or absence of secondary non-equilibrium fractionation 

processes. 
 

4.5.5 Palynology and plant macrofossils 
 
A total of 35 samples, each consisting of 0.3 up to 1.1 g of dry sediment, were taken every 

 

5-10 cm and treated for pollen analysis using the standard procedure that includes treatment 

with  HCl  and  KOH,  sieving  (250 μm),  treatment  with  HF,  acetolysis,  and  mounting  in 

glycerin (cf. Faegri & Iversen 1989). One Lycopodium spore tablet was added to each sample 

in order to calculate total pollen and spore concentrations (cf. Stockmarr 1971). Pollen and 

spore residues were analyzed under a light microscope Zeiss AxioImager D2 at 400× 

magnification. Identification of pollen and spores was performed using pollen atlases (e.g. 

Beug 2004). Non-pollen palynomorphs (NPPs) were identified using descriptions and 

photographs published by (Van Geel 2001). In total, 56 palynomorph types including 43 

pollen and spore taxa were identified. A minimum of 300 terrestrial pollen grains per sample 

was counted. Pollen and spores that appeared to be redeposited were excluded from 

percentages of pollen and spores and from cluster analysis for zonation. The results of pollen 

analysis are displayed in a simplified pollen diagram produced with Tilia software (Grimm 

2004); the definition of the pollen zones (PZs) is supported by the CONISS algorithm. The 

complete counting protocol is available in the supplementary online material (SOM) to this 

article. Mean July air temperatures (TJuly) were reconstructed using the modern analogue 

technique (MAT) and a calibration data set (training sets) from North America and Greenland 

(Whitmore  et  al.  2005).  Only  sites  located  north  of  55°N  (excluding  Greenland)  were 

included into the model. The resulting TJuly training set contained 1070 sites, 134 pollen taxa 

and a temperature gradient from 0.7 to 17.8 °C. The MAT model had a coefficient of 

determination r2 = 0.83 and a root mean square error of prediction (RMSEP) of 1.38. 

Reconstruction was performed using C2 version 1.5 (Juggins 2007). 

Macrofossils of vascular plants were picked from 50 ml sample volumes. The material was 

washed through a 250 μm sieve and picked under a stereo-microscope. Seeds and leaves were 

identified by comparison with reference material and by using seed identification manuals 

(e.g. (Berggren 1969, 1981, Anderberg 1994). The presence or absence of Sphagnum leaves, 

Daphnia resting eggs and Trichoptera cases was recorded and the composition of 

unidentifiable plant material was characterized by giving percentages for moss, Cyperaceae 

and wood. 
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4.5.6 Diatom analysis 
 
A total of 20 samples were processed for diatom analysis, following the standard technique 
for diatom extraction in a water bath described by (Battarbee 1986), using 30% H2O2, 10% 

HCl,  1%  NH4+   for  removal  of  carbonates  and  organics,  and  Naphrax  diatom  mounting 

medium for slide preparation. Slides were examined at 1000× magnification using a Zeiss 

Axioplan microscope equipped with an oil-immersion objective. Up to 300 valves per sample 

were counted and identified. Taxa with abundances of ≥10% per sample were defined as 

dominants, and taxa with abundances of ≥5% were defined as subdominants (see section 

4.5.5). The complete counting protocol is available in the SOM to this article. The 

identification  of  diatoms  was  made  at  the  lowest  possible  taxonomic  level  following 

(Krammer  &  Lange-Bertalot  1986,  1988,  1991).  Biogeographical  and  ecological 

characteristics of the taxa, with respect to preference of habitat, water salinity and pH, were 

described following (Barinova et al. 2006). The trophic level of the lake was classified 

according to (Reynolds 2003). Principal component analysis (PCA) was performed using 

CANOCO 4.5 (Ter Braak & Smilauer 2002) to provide insights into the underlying data 

structure. The reconstructions of pH and total phosphorus (TP) were based on the European 

Diatom Database facility (Battarbee et al. 2001) using combined TP and pH datasets. 

Stratigraphic diagrams were produced using C2 version 1.5 (Juggins 2007). The diatom 

diagram was subdivided into two zones based on stratigraphical cluster analysis performed in 

the software PAST (Hammer et al. 2001). 

 
4.6 Results 

 
 

4.6.1 Geochronology 
 
The fourteen radiocarbon dates indicate a mid to late Holocene age for the record, which 

spans the time between about 4950 cal yrs BP and 2012 CE, when the material was recovered 

(Table 4.1, Fig. 4.4). Sediment accumulation in the upper 70 cm was very slow (0.03 cm 

year−1). Slight age inversions (Table 4.1) were not excluded from the age-depth model as they 

were not recognized as outliers by the model. High accumulation rates between 4000 and 

3500 cal yrs BP led to overlapping age ranges and dated material occasionally consisted of 

unidentified plant macro-remains which could have contained slightly older material. The 

general trend in the age-depth relationship, however, is maintained so that continuous 

deposition is assumed. Sample depths were transformed into depositional ages with decadal 

resolution in subsequent analysis and interpretation of the proxy data. 
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4.6.1 Sedimentology 
 
Three   major   sediment   units   (SU)   were   defined   with   regard   to   sedimentary   and 
biogeochemical properties of the permafrost core and the active layer (Fig.  4.5). The 

presented division of the record is based on the parameters TOC, C/N and δ13C, which serve 

as proxies for organic matter accumulation, preservation and its origin. 
 
 
 
 
 

 
 

 
Figure 4.4.         Age-depth model for the active-layer peat section YC12-HP-Mc and the permafrost core 

PG2100 on Herschel Island, northern Yukon. The age-depth model was calculated using Bacon 2.2 

modelling routines (Blaauw and Christen, 2011) from 14 AMS 14C dates and calibrated with the IntCal13 

calibration curve (Reimer et al., 2013). The red dotted line indicates median ages modelled for each 

centimeter along the core. Calibrated AMS 14C dates are shown as transparent blue violin plots. Grey 

stippled lines illustrate 95% confidence intervals of the modelled age-depth relationship. The three upper 

graphs describe the quality of Markov Chain Monte Carlo iterations the model produced. The left graph 

shows the variance between iterations. The middle and right graphs show prior (green lines) and posterior 

(grey histograms) density functions for accumulation rate and memory. 
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SU1 (4950–3950 cal yrs BP) is characterized by variable water contents between 61 and 88% 

(mean: 74% ± 6.9). TOC values range between 4.1 and 12.2% (mean: 5.7% ± 1.9) with a low 

standard deviation, which depicts the general homogeneity of SU1. C/N-ratios vary between 

11 and 16 (mean: 12 ± 1.3), and δ13C values vary very little between −28.0 and −27.3‰ mean: 

−27.5‰). The grain size composition is rather variable; generally silt- dominated, with 

values between 19 and 68% (mean: 49% ± 13.4), but also holds considerable amounts of clay 

(mean: 21% ± 9.1) and sand (mean: 29% ± 22.2). 

In SU2 (3950–3120 cal yrs BP), the water content varies between 71 and 85% with a mean 

value of 79% (±11.1), which is somewhat higher than in unit SU1. TOC also reaches much 

higher values between 7.1 and 22.6% (mean: 14.7% ± 5.1) and suddenly rises from values 

below 10% towards values well above 15%. C/N-ratios range from 12 to 20 (mean: 16 ± 2.7), 

and δ13C values are between −28.7 and −27.5‰ (mean: −28.1‰), showing a wider range than 

in SU1. Sediments are silt-dominated with values between 39 and 65% (mean: 57% ± 13.0). 

Compared to SU1, clay admixtures (mean: 26% ± 8.5) are elevated and the sand content is 

lower (mean: 16% ± 22.2). 

 
SU3 (3120 cal yrs BP to 2012 CE) is characterized by high TOC values between 17.8 and 

 

39.0% (mean: 30.2% ± 5.0), high C/N ratios between 16 and 30 (mean: 22 ± 3.1), and low 

δ13C between −29.1 and −26.9‰ (mean: −27.8‰). This indicates good preservation of fresh 

and young organic material. C/N ratios are roughly constant until the base of the observed 

active layer. After reaching the maximum, C/N decreases again before it reaches a secondary 

maximum toward the surface. The water content basically follows the curve propagation of 

TOC from 3120 cal yrs BP until today. In parts older than 3120 cal yrs BP the water content 

is more variable. The silt fraction amounts to a mean value of 47% (±8.5); clay admixtures are 

decreased (mean: 16% ± 6.4) and sand admixtures (mean: 38% ± 13.5) are higher compared 

to SUs 1 and 2. 
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Figure 4.5. Summary of sedimentological and biogeochemical parameters of the permafrost core and 

overlying active layer from Herschel Island, northern Yukon. Median grain size in μm is displayed as 

white circles overlying the grain-size distribution. Long-term active-layer depth was defined based on 

cryolithological changes and stable water isotope properties (see Fig. 4.6). 
 

Below the base of the observed active layer at 32 cm below surface, we found the base of the 

long-term active layer at ca. 42 cm below surface, visible as a change in cryostructures, stable 

water isotope characteristics (see section 4.5.3) and in water content that increased from 86% 

above to 91% below this boundary (Fig. 4.5). Waterlogging at the permafrost table and a 

minimum in δ13C of −28.1‰ suggest inhibited OM degradation. TOC and C/N are generally 
 

related to each other with parallel curve propagation; especially in SU1. The C/N ratios 

generally increase bottom-up, with a maximum at the base of the observed thaw depth. 

In summary and based on the studied sediment proxies we assume lacustrine conditions of a 
thermokarst lake between about 4950 and 3950 cal yrs BP (SU1),  mainly based on OM 

signatures in a C/N-δ13C biplot indicating lacustrine algae with low C/N and isotopically 

lighter δ13C (Fig. S4.2). 
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Figure 4.6.         Stable water isotope parameters (δ18O, δD and d-excess) plotted against age. Long-term 

active-layer depth, which separates the record into two distinct isotope units (IU), was defined based on 

cryolithological changes and stable water isotope properties. 
 

After a proposed single event or repeated lake drainage at 3950 cal years BP, a transition unit 

towards terrestrial conditions is reflected by increasing C/N and lower δ13C in SU2, which 

accumulated between about 3950 and 3120 cal yrs BP. Since 3120 cal yrs BP until today, 

terrestrial signatures of C3 plants with C/N mainly >20 and high TOC contents prevail in SU3 

(Fig. 4.5). However, the long-term active-layer depth at about 42 cm below surface altered the 

OM decomposition and consequently the C/N and δ13C composition. 
 

4.6.2 Stable water isotopes of pore water and intrasedimental ice 
 

Stable water isotopes structure the record into two isotope units (IU, Fig. 4.6)  that re separated 
by a transition zone between the base of the long-term active layer and the observed active 

layer. IU1 (4950–2350 cal yrs BP) is characterized by increasing δ18O and δD values 
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bottom-up; from −18.2 to −14.0‰ and from −143 to −116‰, respectively. This is 
accompanied by decreasing d-excess values from +3.5 to −7.0‰. 

 
IU2 (2350 cal yrs BP to 2012 CE) is characterized by decreasing δ18O and δD values towards 

the surface; from −14.0 to −17.6‰ and from −116 to −127‰, respectively. This is 

accompanied by increasing d-excess values from −7.0 to +14.2‰. Near the surface we see a 

typical evaporation signal with a sudden increase in heavy isotopes accompanied by a drop in 

d-excess (Fig. 4.6). 

 
4.6.3 Pollen and plant macrofossils 

 

 
 

Figure 4.7.         Pollen diagram of the permafrost core and active layer from Herschel Island, northern 

Yukon. The diagram shows taxa in percent (silhouettes) of the total palynomorph sum; with an 

exaggeration factor of five for rare taxa (lines). Pollen zones (PZs) are based on CONISS cluster analysis. 

The mean July air temperature has been reconstructed using the modern analogue technique. The 

complete counting protocol can be found in the supplementary online material (SOM) to this article. 

 
The pollen diagram is subdivided into four pollen zones (PZs) based on changing pollen taxa 

composition and abundances (Fig. 4.7, SOM). The pollen record is dominated by Cyperaceae, 

Poaceae, Alnus and Betula. Ranunculaceae, Ericales and Salix. Ferns and Sphagnum contribute 

most  to  spore percentages.  Non-pollen  palynomorphs  (NPPs) are mostly 
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represented by algae (Botryococcus, Cosmarium and Zygnemataceae). The plant macrofossil 

record shows a shift from emergent aquatic taxa to wetland taxa that occurs at the boundary 

between sediment units SU2 and SU3 (Table 4.2). 
 
PZI (4950–4500 cal yrs BP) is characterized by highest abundance of Poaceae throughout the 

core (up to 50%). Cyperaceae, Alnus and Betula occur equally with about 15–20%. Plant 

macrofossils occur in very low quantities in this zone. 
 

In PZII (4500–3850 cal yrs BP) Cyperaceae become increasingly dominant (up to 40%), and 

Poaceae percentages decrease notably. Alnus and Betula remain relatively constant. The 

macrofossil record is dominated by emergent aquatics (Hippuris sp., Potentilla palustris) and 

remains of aquatic animals (Trichoptera cases, Daphnia resting eggs). Carex seeds and 

occasional dwarf shrub remains occur. Both PZI and PZII contain significant amounts of 

Sphagnum spores if compared to the upper pollen zones. Sphagnum leaves are found in PZ I– 

III. 
 

Table 4.2.           List of identified vascular plant macrofossils of the permafrost core and active layer from 

Herschel Island, northern Yukon. The plant macrofossil record shows a shift from emergent aquatic to 

IWP  mire  vegetation.  Macrofossil  taxa  are  ordered  by  their  requirements  towards  hydrological 

conditions. The presence of aquatic animal remains is indicated (x). 
 

 
 
PZIII (3850–2950 cal yrs BP) is characterized by a significant increase in Salix pollen (up to 

 

20%) and by a slight increase in Cyperaceae. Plant material becomes more abundant in this 
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zone, but identifiable seeds and leaves are rare. Aquatic plant macro-remains decrease but are 

still present. 
 

PZIV (2950 yrs BP to 2012 CE) is characterized by a sharp increase in Cyperaceae percentage 

(up to 62%) and a decrease in Poaceae. Alnus increases in comparison to PZI-III. Ericales and 

Sphagnum decrease (Fig. 4.7). There is an increase to nearly 100% plant material in core 

samples from PZIV. Aquatic plant macro-remains are absent in this zone and wetland taxa 

(Carex sp., Eriophorum vaginatum, various dwarf shrubs) become more abundant (Table 4.2). 

The upper two plant macrofossil samples at 7–8 cm and 15–16 cm below surface consist 

nearly exclusively of sedge peat. No identifiable seeds or leaves are present in those samples. 
 

4.6.4 Diatoms 
 
The diatom diagram summarizes the most abundant and ecologically relevant taxa (Fig. 4.8). 

It also shows reconstructed pH and total phosphorus (TP), and the results of the PCA, and is 

subdivided into two diatom zones (DZs) based on diatom taxa composition and abundances. 

The overall ecological characterization of the diatom assemblage is summarized in Fig. 4.9. 

The first two PCA axes capture 57.1% (axis 1: 47.2%, axis 2: 9.9%) of the total variance in 

the diatom data, while mainly the first axis reflects the dispersion of diatom types in the 

ordination diagram (Fig. 4.8). Ordination of samples to PCA1 matches the zonation obtained 

by cluster analysis. The boundary between DZI and DZII is located in sediment unit 2 (SU2, 

Fig.  4.5)  which  was  outlined  as  a  transition  zone  from  lacustrine  towards  palustrine 

conditions. 
 

DZI (4950–3500 cal  yrs BP) is characterized by a relatively high diversity, with a taxa 

number between 32 and 43 per sample. Although benthic species dominate the whole record, 

benthic-planktonic, alkaliphilic and halophilic species reach highest overall numbers in DZI 

(Fig. 4.9) indicating lacustrine conditions. The presence of Fragilaria pinnata and F. 

construens in DZI points towards warm conditions and an extended open-water period. In the 

upper part of DZI, a gradual replacement of halophilic Fragilaria pinnata by halophobic F. 

leptostauron and Cymbella gracilis, and the appearance of the cold-water species Pinnularia 

brevicostata and Eunotia praerupta point to stagnant water and a gradual decrease in water 

level, temperature and salinity. Reconstructed pH ranges from 6.2 to 7.5, which is consistent 

with  the  dominance  of  alkaliphilic  diatom  species.  Reconstructed  total  phosphorus  (TP) 

concentration ranges from 1.6 to 2.0 μg L−1  and indicates ultraoligotrophic lake conditions 
 

(Reynolds 2003). 



 

 

· Chapter 4 · 
 
 
 
 

 
 

Figure 4.8. Diatom species abundance, PCA1, reconstructed pH and total phosphorus (TP) of the permafrost core and overlying active layer from Herschel 

Island, northern Yukon. Species counts are given in percent for subdominant (≥5%) and dominant (≥10%) species. Diatom zones ( DZs) are based on CONISS cluster 

analysis. The complete counting protocol can be found in the supplementary online material (SOM) to this article. 
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Figure 4.9.         Ecological preferences of diatom species assemblages from Herschel Island, northern 
 

Yukon indicate major shifts in habitat, salinity and pH; based on Barinova et al. (2006). 
 
DZII (3500 cal yrs BP to 2012 CE) is characterized by decreasing species diversity from 46 to 

 

19. Benthic forms increase, benthic-planktonic species decrease and purely planktonic forms 

are rare (Fig. 4.9). The arctic-alpine and cosmopolitan species Cymbella gracilis, C. tynnii, 

Gomphonema lagerheimii, G. clavatum, Pinnularia subcapitata, Eunotia bilunaris, and 

especially cold-water taxon E. praerupta are common (Fig. 4.8). These changes in dominant 

diatoms indicate ongoing cooling, water-level decrease, and acidification. The highest 

proportion of cold-water, halophobic, acidophilic and arctic-alpine species occurs in DZII. 

The reconstructed pH ranges from 6 to 6.9. TP varies from 0.9 to 2.0 μg L−1  and thus 
 

indicates ultraoligotrophic conditions. The sample scores of PCA axis 1 summarize the major 

shifts in the diatom assemblage, reflecting a shift from lacustrine conditions of a thermokarst 

lake to wetland conditions in an IWP mire with acidification upon peat growth (Fig. 4.8). 
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4.7 Discussion 
 
 

4.7.1 IWP development over time 
 
 

Stage 0: pre-lake stage (pre-Holocene) 
 
Herschel Island and the Yukon Coastal Plain are known to host ice-rich permafrost deposits 

containing various types of ground ice (Rampton 1982, Pollard 1990, Fritz et al. 2012b). 

Moraines within the Late Wisconsin Laurentide ice limit are often ice-cored with buried 

glacier ice and massive segregated ice (French 1998, Fritz et al. 2011). This leads to locally 

highly variable ground-ice contents in  fine-grained, matrix-based diamictons (Fritz et al. 

2012b). Differential thaw after deglaciation of the Herschel Island moraine ridge and formerly 

glaciated parts of the adjacent Yukon Coastal Plain led to thaw subsidence and thaw-basin 

development (Lenz et al. 2013), especially because of increased summer warmth during the 

Holocene thermal maximum (Burn 1997, Kaufman et al. 2004). Thaw basins often host 

shallow thermokarst lakes as presented in SU1 of our record (see section 4.6.1.2). 

 
Stage 1: thermokarst lake stage (≥4950 to 3950 cal yrs BP) 

 
Our hypothesis that a shallow thermokarst lake existed in the modern IWP field is supported 

by topographic constraints (see Fig. 4.3a, b). The modern IWP field is located in a shallow 

basin that is surrounded by a rim of approximately two meters above the bottom elevation of 

the current IWP field (see Fig. 4.3a, b). The onset of thermokarst in the northern Yukon is 

dated toward the Pleistocene-Holocene transition, with a minimum age of 11,200 cal yrs BP 

of thaw lake deposits on the Yukon mainland coast (Fritz et al. 2012b). Therefore, the age of 

the studied lake basin ranges between about 11,200 and older than 5000 cal yrs BP, the latter 

being the oldest date obtained in the present record. This is supported by a peak in basal ages 

of thermokarst lakes in northwest Canada and Alaska during the Holocene thermal maximum 

(Rampton 1988, Brosius et al. 2012). 

Throughout our pollen record, the proportion of long-distance transported (e.g. Picea, Alnus), 

to regional (e.g. Betula, Poaceae, some herbs) and local pollen taxa and groups (Ericales, 

Cyperaceae, Poaceae, herbs, spores and NPPs) varies. Our pollen-based reconstruction of past 

vegetation takes into account that pollen data derived from lake and IWP deposits represent 

different signal sources and spatial scales, and therefore carry different paleoenvironmental 

information. 
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SU1 matches PZI to PZII, which are characterized by relatively low pollen concentrations, 

high percentages of Poaceae, Sphagnum and Ericales, and relatively low Cyperaceae 

percentages (Fig. 4.7). Minimum values in the ratio between Cyperaceae and Poaceae (Fig. 

4.10) reflect the regional vegetation that produced pollen collected in the lake deposits. 

Reconstructed mean July air temperatures yielded values of around 9 °C, which is comparable 

to modern climate conditions in the area. Although the pollen record does not reveal any 

aquatic markers, indirect evidence for open water is deduced from the constant presence of 

the freshwater green algae Zygnema that occurs in limnic habitats (ditches, ponds and lakes; 

(Wehr & Sheath 2003). Very few plant macrofossils are present in the oldest (lower) part of 

SU1 (Table 4.2), which is expected in a lake part that lacks marginal vegetation (distal to 

shore), because macrofossils are generally locally distributed (Birks 1980). Remains of Carex 

sp. and the emergent aquatics Hippuris sp. and Potentilla palustris dominate the macrofossil 

record towards the younger (upper) part of SU1. The two species indicate shallow water only 

up to 0.4 m deep (e.g. Spetzman 1959) and point to water-level decrease and/or developing 

lake margin vegetation. The diatom record (DZI) indicates open water and considerable water 

depth by the abundance and dominance of planktonic-benthic diatom species such as 

Tabellaria flocculosa, Fragilaria construens var. construens. The ratio of planktonic-benthic 

to benthic diatoms is highest (Fig. 4.10) in DZI, which also indicates lacustrine conditions. 

The ecology of the diatom assemblage supports alkaline lake water conditions (Fig. 4.9) 

although the numerical pH reconstruction (Fig. 4.8) does not show distinct variation between 

DZI and DZII. Higher salinity as deduced from halophilic diatom species in DZI is typical for 

modern thermokarst lakes on Herschel Island (Lenz et al. 2013), and originates from ground- 

ice melt  of salty marine morainic deposits  in which  thermokarst  lakes  develop.  Finally, 

sedimentary parameters exhibit a lacustrine algae signature in terms of C/N (<15) and δ13C 
 

(−28.0 to −27.3‰) (cf. Meyers 1994) between 4950 and 3950 cal yrs BP (Supplementary Fig. 

S4.2) and support lacustrine conditions during accumulation of SU1. 
 

Stage 2: Lake drainage (at 3950 cal yrs BP) 
 
The thermokarst lake drained almost completely at about 3950 cal yrs BP and disrupted the 

lacustrine setting. TOC and C/N approach minimum values indicating OM degradation. 

Cluster analysis based on TOC, C/N and δ13C gives a clear split at 3950 cal yrs BP (Fig. 4.5). 

Thermokarst lakes commonly drain suddenly; and sometimes catastrophically (Mackay 1986, 

Jones et al. 2011, Jones et al. 2012, Jones & Arp 2015). 
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Figure 4.10.       Proxy  data  combination  of  sedimentary,  pollen,  diatom  and  stable  water  isotope 

parameters  illustrates  carbon  accumulation  and  preservation;  strength  and  timing  of  hydrological 

change; timing of different stages of landscape development; and permafrost conditions. 

 
We suggest lake drainage as the process associated with the split in the record because of 

gully incision from southerly direction.  Mackay (1981) pointed out that melt out of ice 

wedges is the most common reason to drain thermokarst lakes. Today, the incising drainage 

channel intersects two plateaus to the east and west and is clearly following the path of melted 

ice wedges (Fig. 4.3a, b). 
 
Reasons for thermokarst lake drainage are multifaceted. (Jones et al. 2011) have summarized 

typical thermokarst lake drainage mechanisms in continuous permafrost, which are all site- 

specific, such as ice wedge degradation, coastal erosion, lake tapping, stream erosion, 

development of a drainage network, bank overflow, as well as expansion of a lake toward a 

drainage gradient. In discontinuous permafrost areas, however, Smith et al. (2005) have 

invoked climate warming and the creation of open taliks to be responsible for the widespread 
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disappearance of lakes by drainage to the subsurface. In the northern Yukon, relatively stable 

conditions in terms of summer air temperature and annual precipitation since the middle 

Holocene, which are based on pollen-climate transfer functions (Fritz et al. 2012a), preclude 

climate as a major reason for lake drainage. 

 
Stage 3: mire development and ice-wedge cracking (3950-3120 cal yrs BP) 

 
After lake drainage, a shallow wetland remained, which is a common phenomenon (see 

Mackay 1981). Epiphytic and shallow-water diatoms such as Eunotia and Cymbella species 

indicate at least permanently wet conditions if not small remaining water bodies in subbasins 

of the former continuous lake basin. The diatom assemblage gradually changed to be 

dominated by benthic, acidophilic and halophobic species (Fig. 4.9). Persisting wet conditions 

led  to  the  establishment  of  a  transition  phase  between  lacustrine  (in  sensu  stricto)  and 

terrestrial palustrine conditions in a developing IWP peatland accompanied by acidification of 

the water body due to peat growth. We interpret the increased percentages of Salix and 

Brassicaceae pollen in this zone as an indication of drained lake revegetation on highly 

disturbed ground. The most pronounced peaks in Salix and Brassicaceae occur around 3800 

cal yrs BP. At the Illisarvik drained lake site, Salix and Brassicaceae had recolonized the site 

within 7 years after drainage (Ovenden 1986). Salix is often among the first species to 

recolonize disturbed ground because of its rapid growth and high seed production (Forbes & 

Jefferies 1999). Brassicaceae, represented by Descurainia in Illisarvik (Ovenden 1986), are 

also part of the pioneer vegetation after disturbance. We also observed a slight increase in 

Cyperaceae and a concomitant decrease in Poaceae, which might reflect the shift from a 

regionally  derived  pollen  signal  toward  representation  of  local  wetland  vegetation.  We 

assume that since lake drainage the pollen spectrum has the potential to capture a local pollen 

signal from the surrounding peat and moss polsters rather than being representative of a 

regional summer temperature and annual precipitation signal (Zibulski et al. 2013, De Klerk 

et al. 2014). This is useful for the reconstruction of local vegetation change following 

morphological and hydrological change in IWP mires (De Klerk et al. 2009). De Klerk et al. 

(2014) studied the recent pollen and modern vegetation assemblage of an IWP in NE Siberia 

and identified several groups of (i) pollen types representing regional and extraregional taxa, 

(ii) pollen types produced by local vegetation, and (iii) non-pollen palynomorphs and pollen 

from plants being present in the specific IWP. Our study supports that pollen records from 

arctic peatlands mainly reflect short-distance vegetation patterns. 
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Local conditions are best reflected by plant macrofossils, which are dominated by remains of 

emergent aquatic plants (Table 4.2). The presence of Daphnia resting eggs and Trichoptera 

cases further proves the continued presence of a water body. Occasional remains of plants 

associated with mesic conditions (e.g. on elevated areas within wetlands) suggest that those 

plants have been growing close to a water body. Sediment parameters follow this transition 

towards a terrestrial signature in terms of C/N-ratios, which increase from 15 to 20, and in 

terms of δ13C values, which decrease from −27.5 to −28.7‰ (Supplementary Fig. S4.2). TOC 
 

values also show an increasing trend and, together with increased C/N-ratios and lower δ13C 
 

values, indicate increased OM accumulation and preservation (Fig. 4.10). 
 

Shortly after drainage, ice-wedge cracking in winter was possible (cf. Mackay 1986). With 

similar dimensions to our drained lake basin, we can compare our paleoenvironmental 

implications with the modern analogue of Lake Illisarvik in the Tuktoyaktuk Coastlands, 

which was artificially drained in 1978 for the purpose of a long-term study on the growth of 

permafrost and periglacial features on the newly exposed drained lake bottom (Mackay 1981). 

The former Lake Illisarvik was about 600 m long, 350 m wide and had a maximum depth of 5 

m. At the time of drainage, the talik below the lake center was 32 m deep (Burgess et al. 

1982).  Already  in  the  first  winter  after  drainage  of  Lake  Illisarvik,  thermal  contraction 

cracking had started and the predominant orientation of the first primary cracks was normal to 

the topographic contour (Mackay & Burn 2002). We see a similar crack pattern at our study 

site with  cracks  normal  to  the contour,  which  are possibly primary cracks,  whereas  the 

possibly secondary cracks are aligned along the contour (Fig. 4.3a). At Illisarvik, cracks also 

propagated into the ice of a frozen residual pond and re-opened along the same line in 

succeeding winters (Mackay & Burn 2002). Mackay (1988) concluded that repetitive cracking 

along the same line in pond ice proves that the cracks originate in wedge ice below the pond 

and then propagate both upward and downward. In contrast to the Illisarvik site, where crack 

activity  diminished  rapidly  and  finally  ceased  due  to  an  increase  in  winter  ground 

temperatures as vegetation cover began to trap snow (Mackay 1986), we infer an incomplete 

drainage with extensively standing water or with at least permanently wet conditions that 

promoted ice-wedge cracking, because of the persistent presence of epiphytic and shallow- 

water diatoms (Cymbella gracilis, C. tynii, Eunotia bilunaris, E. praerupta), and the presence 

of macrofossils of emergent aquatic plants (Hippuris sp. and Potentilla palustris). 
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Stage 4: IWP succession (3120 cal yrs BP to 2012 CE) 
 
Since 3120 cal yrs BP the IWP mire is characterized by continuous peat growth and organic 

carbon sequestration. Obu et al. (2015) have shown that carbon storage in the uppermost 

meter below the surface on Herschel Island is highest in IWP peatlands with 79–91 kg C m−2. 

Water logging and anaerobic conditions promote organic matter preservation, which make 

IWP peatlands an important and vulnerable carbon sink throughout the terrestrial Arctic. Low 

accumulation rates in the uppermost part of the peat sequence, which corresponds to the last 

2000 years (Fig. 4.4), accompanied by decreasing C/N ratios indicate reduced organic matter 

production and/or preservation (Fig. 4.10). This could be related to climatic cooling (Wanner 

et al. 2008) and drier conditions in the late Holocene (Pienitz et al. 2000) together with low 

compaction of the uppermost decimeters. In northern Alaska, (Eisner & Peterson 1998a) have 

attributed declining peat accumulation rates to increased nutrient stress as permafrost 

aggradation  immobilized  mineral  nutrients.  In  northwest  Canada,  (Vardy  et  al.  1998) 

suggested that late Holocene regional cooling led to establishment of ombrotrophic (i.e. 

nutrient-poor)  conditions,  associated  with  the  enhanced  aggradation  of  permafrost  in 

peatlands. 

The localized pollen signal indicates that vegetation composition was relatively constant 

throughout the late Holocene. This in turn implies rather constant local moisture and 

micromorphology. The dominance of Cyperaceae is typical for wet low-centered IWP. Since 

peat accumulation started at around 3120 cal yrs BP, Cyperaceae are generally above 40%, 

and Poaceae ≤5% (Fig. 4.7) as illustrated in the high Cyperaceae/Poaceae ratio (Fig. 4.10). 

The palynological record of the last 3000 years also shows increasing percentages of 

Botryococcus spores. These shallow-water green algae indicate oligotrophic conditions 

(Jankovská & Komárek 2000) and are known from fossil IWP centers in eastern Siberia 

(Wetterich et al. 2011). Botryococcus percentages decrease again towards the top of the core, 

indicating drier conditions within the IWP. The diatom record (DZII) exhibits prevailing 

benthic, acidophilic and halophobic species (Fig. 4.9). The plant macrofossil record shows a 

mixture of taxa related to both elevated and non-submerged low-lying areas in low-centered 

IWPs (Table 4.2, Wolter et al. 2016). The absence of emergent aquatic plant macrofossils 

since 1500 cal yrs BP indicates disappearance of the intrapolygonal pond. 

Epigenetic permafrost aggraded in the initial phase of IWP development after lake drainage. 

Continuous downward refreezing of the talik is indicated as heavy isotopes become 

progressively depleted, while d-excess values concurrently increase (Fig. 4.6). We argue for 

closed-system freezing as it has been shown by Fritz et al. (2011) in ground ice. First, the δD- 
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δ18O regression slope of 4.88 (R2 = 0.97) in the permafrost core is well below the global (8.0) 

and the local meteoric water lines (7.3) (Fig. 4.11a). Second, we see a negative correlation 

between d-excess and δD (Fig. 4.11b) as it is expected during equilibrium freezing (Souchez 

et al. 2000). 
 
 
 

 
 

Figure 4.11.       (a) δ18O-δD diagram of permafrost (blue squares) and seasonally frozen (orange circles) 

material above the long-term active layer from Herschel Island, northern Yukon. Samples in permafrost 

plot along a δD-δ18O regression slope below the global meteoric water line (GMWL: δD = 8δ18O+10; 

Craig 1961)) and below the local meteoric water line for Inuvik (LMWL: δD = 7.3δ18O−3.5; R2 = 0.98; 

IAEA/WMO, 2015), which is indicative of a freezing slope. (b) Relationship between δD and deuterium 

excess (d-excess) of permanently frozen deposits and seasonally frozen material above the long-term active 

layer. The horizontal solid line represents the d-excess of the global meteoric water line (d-excess = 10). 
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The dashed line shows the d-excess of the local meteoric water line for Inuvik (d-excess = 14.9; 

IAEA/WMO, 2015). The negative correlation is indicative of fractionation under closed conditions; i.e. 

closed-system freezing. VSMOW = Vienna Standard Mean Ocean Water. 

Interestingly, increasing δD and δ18O values together with a decreasing d-excess – from the 

surface towards the base of the long-term active layer (Fig. 4.6, Fig. 4.10 and Fig. 4.11b) – 

point to a recharge of active-layer material with modern water from precipitation during cold- 

weather situations. The ‘normal’ active-layer condition is assumed to be characterized by 

δ18O values of around −15 to −14‰ and d-excess values between 0 and -5‰ (Fig. 4.6 and 

Fig. 4.10), which is typical for intrasedimental ice of near-surface peat (Vardy et al. 1997, 

Vardy et al. 1998, Fritz et al. 2012b) and surface water in modern thermokarst waters in the 

area (Fritz et al. 2015). Summer evaporation leads to strong kinetic fractionation in the top- 

most centimeters which is visible in steeply increasing delta values and a simultaneously 

decreasing d-excess (Fig. 4.6 and Fig. 4.10). 



· Chapter 4 · 

87 

 

 

 
 

4.7.2 Regional IWP development in NW Canada: review and data 
synthesis 

 
Late Wisconsin IWP development 

 

 
 
 

Figure 4.12.       Different stages and generations of ice wedges, IWPs and relicts of polygonal landscapes 

preserved in the northern Yukon. (a) Recently rejuvenated Holocene ice wedge after degradation. (b) Ice - 

wedge cast (ice-wedge pseudomorph) dating to the early Holocene indicates early Holocene degradation of 

ice wedges. Note that a Holocene ice wedge is cracking into an older ice-wedge cast. (c) Different stages 

and ages of ice wedges on Herschel Island and their stratigraphic setting. 

 
Late Pleistocene IWP development in the northern Yukon is not restricted to areas beyond the 

Late Wisconsin glacial limit. However, fossil indicators of full-glacial IWPs like in other 

regions of ice-free Beringia have not been observed yet. This might be due to the sedimentary 

environment at the eastern Beringian edge, which was close to the ice margin. An alluvial 

proglacial environment with high sedimentation rates and frequent flooding by meltwater was 

probably not favorable for ice-wedge formation and preservation (Fritz et al. 2012b). Herschel 
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Island and formerly glaciated parts of the Yukon Coastal Plain became ice-free by about 

 

16,000 cal yrs BP (Fritz et al. 2012a, Fritz et al. 2012b). Few remnants of Late Wisconsin ice 

wedges have been preserved on Herschel Island (Fig. 4.12c). Small ice-wedge roots likely 

represent epigenetic ice wedges that have been truncated by a distinct thaw unconformity. 

(Fritz et al. 2012b) reported δ18O signatures between −31 and −26‰ for such Late Wisconsin 

ice wedges, which is 5–7‰ lower than those of Holocene ice wedges in the western Canadian 

Arctic (cf. Mackay 1983, Burn et al. 1986, Michel 1990). The limited occurrence of Late 

Wisconsin ice wedges may have been due to low moisture supply in winter (Kotler & Burn 
 

2000). Their epigenetic nature might be responsible for the lack of thick peat sections as 

otherwise prominent syngenetic IWP fillings. Ice-wedge-cast deposits (Fig. 4.12b) dating 

back to 11,200 cal yrs BP also indicate that an early phase of IWP formation along the 

mainland coast occurred prior to the onset of the Holocene (Fritz et al. 2012b). This might be 

coincident with extensive lateglacial ice-wedge development prior to the end of the Younger 

Dryas as recorded in the Barrow region in northern Alaska (Meyer et al. 2010). 
 

Early Holocene IWP degradation and thermokarst 
 
We propose that a thermokarst lake developed prior to the maximum age of our record. The 

lake presence can still be seen at the beginning of our record. Initiation of a thermokarst lake 

in the studied basin and even the basin formation itself could likely have occurred in this 

period (Lenz et al. 2013). Several studies in northwestern Canada have invoked the early 

Holocene thermal maximum as a period of increased thermokarst activity and deepening of 

the active layer (Burn 1997, Vardy et al. 1997, Fritz et al. 2012b). Ice-wedge-cast deposits 

dating back until about 11,200 cal yrs BP (Fritz et al. 2012b) indicate an early period of ice 

wedge degradation and melting (Fig. 4.12b) at the onset of the Holocene. Ice-wedge growth 

would have been reduced or absent (Mackay 1992, Murton & Bateman 2007, Murton 2009) 

during such a period of near-surface permafrost thaw and thermokarst lake development. 

Active-layer deepening to as much as 1.5–3.0 m below the modern surface is recorded on 

Herschel Island and in the western Canadian Arctic by truncated ice wedges and a prominent 

unconformity (Fig. 4.12c) due to this greater thaw depth (Burn et al. 1986, Harry et al. 1988, 

Murton & French 1994, Fritz et al. 2012b). Peat growth along Komakuk Beach (Fig. 4.2) was 

extensive at least until 6700 cal yrs BP, gradually slowing afterwards (Fritz et al. 2012b). Our 

findings suggest that the prohibition of ice-wedge formation due to talik formation under a 

thaw lake can be topographically and geomorphologically constrained (Fig. 4.3). In this study, 
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lake drainage and subsequent onset of ice-wedge formation at the drained site was probably 

caused by channel erosion along degrading ice wedges surrounding the thermokarst lake. 

 
Middle and Late Holocene IWP mire succession 

 
Evidence from northwest Canada and northern Alaska indicate permafrost aggradation, re- 

initiation  of  ice-wedge  growth  and  thaw  lake  drainage  in  response  to  climate  cooling 

following the Holocene thermal maximum and persisting until the middle of the 20th century 

(Ritchie 1984, Mackay 1992). Today, IWPs west of the Late Wisconsin glacial limit (i.e. 

eastern Beringia) are mostly high-centered or flat-centered with signs of degradation (Fig. 

4.1b, c). Ice-wedge degradation usually causes high-centered IWPs to form so that formerly 

low-centered IWPs have probably been converted into high-centered IWPs, with improved 

drainage into the ice-wedge troughs. In the Tuktoyaktuk Coastlands (Northwest Territories) 

and in northern Alaska, accumulation rates of organic matter were highest during the early 

stages of peatland development during the early Holocene, declining after 5000 cal yrs BP 

(Vardy et al. 1997, Eisner & Peterson 1998a). In contrast, our record shows sustained high 

sedimentation rates until 3120 cal yrs BP with material that has substantial inorganic 

components (Fig. 4.5). This period corresponds to the thermokarst and wetland stages, when 

sedimentation in lacustrine and palustrine environments captured significant amounts of 

sediment from the catchment via running water into the basin center. Based on stable water 

isotopes and plant macrofossils, (Vardy et al. 1998) suggested that reduced accumulation rates 

were caused by the transition to ombrotrophic conditions in peatlands, possibly related to the 

aggradation of permafrost, in response to regional cooling. Increasing δ18O and decreasing d- 
 

excess  values  toward  the  surface  in  peat  sections  at  Komakuk  Beach  (northern  Yukon) 

indicate environmental conditions favorable for an ombrotrophic peatland and surface drying 

(Fritz et al. 2012b). Lower summer air temperatures in response to a long-term regional 

cooling (Viau et al. 2008, Bunbury & Gajewski 2009) and reduced productivity associated 

with paludification and permafrost aggradation may have led to reduced peat growth and 

lower carbon accumulation rates during the last 4000 years (Vardy et al. 1997, Eisner & 

Peterson 1998a, Vardy et al. 2000, Eisner et al. 2005). We would like to note that low 

accumulation rates in permafrost peatlands are not necessarily or purely climate-driven. 

Besides low growth rates because of unfavourable climate- or site-specific conditions, other 

factors that can explain low accumulation rates are organic-matter degradation, compaction, 

and limited ground-ice growth which would induce a volume increase of ca. 10%. 



· Chapter 4 · 

90 

 

 

 
 
There have been several episodes of IWP degradation and reactivation during the late 

Holocene. Coastal cliff exposures along the Yukon coast with deeply thawed Holocene ice- 

wedge surfaces and secondary or even tertiary ice-wedge generations support this view (Fig. 

4.11a). Recent permafrost conditions are probably best explained by the occurrence and size 

of rejuvenated ice-wedges along the Yukon coast. Here, the tops of primary wedges, which 

are approximately 1 m below the surface (Fig. 4.12a), mark the base of a relict active layer 

that is possibly a thaw unconformity of unknown age but postdating the Holocene thermal 

maximum (Fritz et al. 2012b). After this thaw episode, the renewed aggradation of permafrost 

has led to ice-wedge rejuvenation, indicated by new growth stages extending upward to the 

modern frost table (Mackay 1976, Harry et al. 1985). This renewed growth could have either 

developed in response to a climate cooling trend or to a reorganization of ice-wedge cracking 

in certain IWPs. Due to the widespread occurrence of rejuvenation in the western Arctic 

(Mackay 1976) we consider active-layer thinning in response to climate cooling as a primary 

mechanism. Viau et al. (2012) inferred from pollen data that the Little Ice Age was cooler 

than today across all of North America, thereby providing a possible climate framework for 

ice-wedge rejuvenation. This hypothesis, however, needs to be further tested. 
 

4.8 Conclusions 
 
Paleoenvironmental analyses of frozen peat and underlying lake sediments complemented by 

findings from the literature allowed the reconstruction of thermokarst, lake drainage and IWP 

development in the northern Yukon throughout the Holocene. At the onset of the Holocene, 

thawing of ice-rich permafrost led to thermokarst in the circum-arctic including the 

degradation of Late Wisconsin ice wedges and the widespread formation of thermokarst 

lakes. During the last 5000 years a field of mature IWPs developed at the study site on 

Herschel Island, in a basin that was previously occupied by a thermokarst lake. Changes in 

diatom and plant macrofossil assemblages indicate a rapid drainage of the thermokarst lake at 

about 3950 cal yrs BP. Drainage was not directly linked to climate variations but was caused 

by gully incision which tapped the lake. Reconstructed summer air temperatures based on 

pollen are similar to modern conditions since the middle Holocene. Aggrading permafrost 

affected  the  wetland  after  drainage,  which  was  successively  invaded  by  terrestrial  plant 

species with an affiliation to wetlands. Repeated ice-wedge cracking led to the closure of 

polygonal structures and thereby changed the hydrological regime that favored extensive peat 

formation in a wet low-centered IWP mire. Since 3120 cal yrs BP organic carbon was rapidly 

incorporated into aggrading permafrost under wet, acidic and low-oxygen conditions. This 
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process makes arctic IWP peatlands in general extensive carbon reservoirs. On the one hand, 

fossil pollen have recorded a very local vegetation signal since lake drainage, which does not 

allow any inference about regional climate variations. On the other hand, local vegetation 

succession and diversity patterns can be inferred, especially in combination with the study of 

plant macrofossils. 

Regional studies of IWPs have shown that different ice-wedge generations in the northern 

Yukon serve as a paleoenvironmental indicator of certain episodes of Holocene permafrost 

aggradation. In contrast, ice-wedge casts, thaw unconformities, and truncated ice wedges have 

recorded episodes of permafrost degradation since the Late Wisconsin. Environmental records 

from IWP centers and associated ice wedges suggest a high temporal diversity in IWP mire 

origin. IWP dynamics in the Arctic are defined by a complex array of conditions and 

feedbacks. Permafrost-specific phenomena such as ice-wedge cracking, thermokarst and 

refreezing of newly-exposed ground provide the basis for IWP formation and development. 

IWPs are modified by external forces such as temperature, precipitation or coastal erosion and 

internal processes such as small-scale changes in topography, morphology, hydrology, and 

vegetation succession. 
 

4.9 Acknowledgements 
 
 
 
We thank the Yukon Territorial Government, the Yukon Parks (Herschel Island Qiqiktaruk 

Territorial Park), Parks Canada office (Ivvavik National Park) and the Aurora Research 

Institute – Aurora College (ARI) in Inuvik, NWT, for administrative and logistical support. 

This study was partly funded by the International Bureau of the German Federal Ministry of 

Education and Research (BMBF grant No. CAN 09/001, 01DM12002 to H.L.) and the 

Helmholtz Association (grant No. VH-NG-801 to H.L.). The study contributes to the Arctic 

Ecological Network (BMBF grant No. 01DJ14003 to S.W.). L.N. and O.P. were sponsored by 

the Russian Government Program of Competitive Growth of Kazan Federal University and 

L.N. by the DFG (grant No. NA 760/5-1). Analytical work received great help from Ute 

Kuschel, Tyne Brückner, Izabela Milczarek, and Christin Kramer at AWI and from Heiko 

Baschek at GeoForschungsZentrum Potsdam, Germany. George Tanski assisted in the field 

and Stefanie Burmeister assisted in technical preparation of the paper. 



 

 

 



· Chapter 5 · 

93 

 

 

 

 
 
 
 
 
 
 
 
 

5 Mid- to Late Holocene development of 

ice-wedge polygon peatlands on the 

Yukon Coastal Plain, NW Canada: 

Sedimentary and plant macrofossil 

evidence for morphologic and hydrologic 

change4
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  An article with equivalent content is currently being prepared for the journal Permafrost and Periglacial 
 

Processes in collaboration with Lantuit H, Herzschuh U, Rethemeyer J, Plessen B and Fritz M. 
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5.1 Abstract 
 
In Arctic lowlands, ice-wedge polygons are widespread periglacial features and influence 

landscape carbon storage and hydrological conditions. These properties differ between high- 

centred polygons and low-centred polygons, from which the latter are thought to develop. The 

influence of climate and topography as regional and local drivers of polygon development is 

not entirely clear, which presents predictions of regionally simultaneous or locally erratic 

developments with high uncertainties. In this study we investigated the Mid- to Late Holocene 

development of three ice-wedge polygons (one low-centred, one intermediate-centred, one 

high-centred) to explore drivers for conversion of low-centred to high-centred polygons and 

reasons for long-term stability of low-centred polygons. We retrieved and subsampled six 

active layer cores and one permafrost core from the polygons, analyzing organic carbon and 

total nitrogen contents, stable carbon isotopes, and grain size distribution. Selected samples 

were subjected to plant macrofossil analysis. We found an overall development from aquatic 

to wetland conditions in the cores. In the Mid-Holocene portion of our reconstruction (ca. 

7000-6000 cal yrs BP) shallow lakes and partly submerged ice-wedge polygons existed at the 

studied sites. At the sites where high- and intermediate-centred polygons exist today, a 

hiatus of ca. 5000 years indicated erosion. Re-initiation of ice-wedge polygon development at 

these sites happened within the last millenium. The low-centred polygons were initiated 

within the last two millennia and experienced stable conditions for at least 1000 years. In the 

last century, the investigated ice-wedge polygons experienced drying through increased ice- 

wedge thaw, likely triggered by climatic warming. The influence of climate on ice-wedge 

polygon development was outweighed by geomorphology during the Late Holocene, with the 

possible exception of recent warming, which caused ice wedge degradation at the studied 

sites. The initiation of ice-wedge polygons was linked to lake drainage and sea level rise, 

while conversion of low-centred polygons into intermediate- or high-centred forms was 

triggered by ice wedge degradation and changes in the local topographic gradient. Stable 

conditions  were  found  where  no  geomorphic  change  or  disturbance  was  evident  and  a 

balanced water balance was maintained. In areas with strongly impeded drainage, low-centred 

forms may persist for millenia, while any drainage may trigger self-enhancing erosion. 
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5.2 Introduction 
 
Ice-wedge polygons are among the most common periglacial landforms in Arctic lowlands, 

and abundant features of the Yukon Coastal Plain. During times of peat accumulation ice- 

wedge polygons act as considerable sinks in the global carbon cycle (Oechel et al. 1993, 

Schuur et al. 2015). Widespread degradation and erosion of this peat may cause large-scale 

carbon emissions (Tarnocai 2006, Schuur et al. 2015). Depending on polygon type, ice wedges 

may also influence landscape hydrology by either providing barriers for surface and 

subsurface drainage through the active layer (low-centred polygons), or else by promoting 

flow through interconnected pathways (high-centred polygons) (Liljedahl et al. 2016). 

The synchronous growth or degradation of ice-wedge polygons at the regional scale may be 

caused by large-scale climate trends. Widespread permafrost degradation was recorded during 

the Early Holocene Thermal Maximum in the Western Canadian Arctic (Rampton 1982, 

Murton & French 1994, Burn 1997, Murton 2001). Geomorphological processes affecting 

topography and surface hydrology on a local to sub-regional level may yet, independently of 

the regional trend, trigger polygon growth or degradation in a given region (Godin et al. 2016, 

Steedman et al. 2016). The respective influence of climate and geomorphology on the 

evolution of different types of ice-wedge polygons is, however, not well understood because 

of large temporal and spatial discrepancies between climatic and geomorphological processes. 

In this study we reconstructed past landscape dynamics to discriminate climate-driven and 

geomorphology-driven changes in ice-wedge polygons on long time-scales. We considered 

the spatial heterogeneity within individual ice-wedge polygons, where rims have been shown 

to develop differently from centres (De Klerk et al. 2011, Teltewskoi et al. 2016). In order to 

address this complexity, we applied a multi-proxy approach, studying six peat cores from 

three different ice-wedge polygons, each with one core from the polygon centre and one core 

from the polygon rim/margin. 
 
Ice-wedge polygon development 

 

Ice-wedge polygons are most widespread in regions underlain by continuous permafrost 

(French 2007). They develop in areas with a very low relief energy, where drainage is 

impeded and the ground stays permanently waterlogged (Washburn 1979). They are 

characterized by wedge-shaped ice in the ground, which builds up over decades to millennia 

through repeated thermal contraction cracking during winter and meltwater infiltration into 

the cracks in summer (Lachenbruch 1962). We are using the term ice-wedge polygon in the 
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sense of polygonal peatlands, i.e. peat-forming areas underlain by a network of ice wedges 

that show a surface expression in the form of raised rims and/or low-lying troughs. 

One way to classify different morphological types of ice-wedge polygons is to distinguish 

low-centred polygons from high-centred polygons. Low-centred polygons are characterized 

by raised rims on either side of polygonally adjoining ice wedges enclosing a central 

depression. Surface flow is impeded, yet not completely prevented, where this type prevails. 

High-centred polygons are thought to develop from low-centred polygons due to (i) improved 

drainage causing (melt)water flow and thermal erosion along ice wedges , and/or (ii) self- 

organization through lateral material displacement as the underlying ice wedges grow wider 

and rim material is pushed towards the centres of polygons (French 2007). Relief inversion 

and an altered landscape hydrological regime ensue from the conversion (Liljedahl et al. 

2016). The raised centre consecutively dries up and may be eroded (Zoltai & Pollett 1983, 

Fortier et al. 2007), while thermal erosion along ice wedge pathways may enhance transport 

of material into adjacent landscapes. 

Permafrost development may be caused by large-scale climate trends. Thermal contraction 

cracking requires severe ground frost in winter (Mackay 1992, 1993, 2000, Kokelj et al. 

2014), which may be provided by a combination of low ambient temperatures and a thin snow 

cover. Cracking has been shown to be more frequent in peat than in mineral soil (Mackay 

1992, Kokelj et al. 2014). Ice-wedge polygon development also requires a sufficient moisture 

supply. Ice wedges are fed primarily by hoar formation within cracks in winter and by water 

from snowmelt and rain in summer (Lachenbruch 1962). These drivers of ice-wedge polygon 

development may, in turn, be influenced by the vegetation cover. Especially growth height 

and functional group composition determine effectiveness of ground insulation (Smith 1975, 

Walker et al. 2003, Myers-Smith et al. 2011b, Sharkhuu & Sharkhuu 2012) and snow retention  

potential  (Sturm  et  al.  2001).  Alterations  in  any  of  these  factors  (winter 

temperatures, snow cover, moisture supply, vegetation composition) may cause changes in 

cracking frequency or degradation of ice in the ground, and ultimately trigger changes in ice- 

wedge polygon morphology. 

Ice-wedge polygons also experience drastic geomorphological changes, most recently induced 

by permafrost thaw. Increased thaw has been observed to produce thicker active layers and 

degrading ice wedges (Jorgenson et al. 2006, Fritz et al. 2016, Liljedahl et al. 2016, Wolter et 

al. 2016), while stabilization of deeply degraded ice wedges has been reported as a result of 

thermal insulation through the accumulation of organic debris (Jorgenson et al. 2006). 

Increasing wetness due to increased thaw of ice-rich permafrost is thought to be reversed in 
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the long run, as increased evapotranspiration during warmer, longer summers are predicted to 

reduce moisture in the active layer as well as surface water in ponds and lakes (Yoshikawa & 

Hinzman 2003, Smol & Douglas 2007, Andresen & Lougheed 2015). Such ambiguous effects 

acting on various temporal and spatial scales all relate to the interplay between climatic and 

geomorphological drivers. 

Studies of long-term ice-wedge polygon development have shown that ice-wedge polygons 

may exist in a relatively stable state over millennia (Vardy et al. 1998, Zibulski et al. 2013, 

Fritz et al. 2016). They are, however, vulnerable towards changes in air temperatures, 

precipitation, and geomorphological disturbance. Modern studies have underlined that ice- 

wedge polygons may degrade over the course of years to decades as a response to such 

changes (Jorgenson et al. 2006, Fortier et al. 2007). We therefore investigated the Mid- to 

Late Holocene development of ice-wedge polygons in a Low Arctic setting to explore the 

effects of regionally synchronous climatic change vs. locally variable geomorphological 

processes on ice-wedge polygon development. We addressed the following specific research 

aims: 
 

• Reconstruction of ice-wedge polygon development on the Yukon Coastal Pain during 

the Mid- to Late Holocene. 

• Identification of drivers triggering i) initiation of ice-wedge polygon development and 

ii) conversion of low-centred polygons into high-centred polygons. 

• Discussion of factors promoting stability in ice-wedge polygons. 
 
 

5.3 Study area 
 
The study area is situated on the terrestrial part of the Canadian Beaufort Sea shelf. It is 

characterized by a subarctic, maritime climate, a flat to slightly undulating topography, and 

ice-rich unconsolidated sediments shaped by periglacial processes in the western part and by 

Pleistocene glaciations superimposed by periglacial processes in the eastern part (Rampton 

1982). 
 

The Yukon Coastal Plain stretches across 240 km of coastline from the Mackenzie Delta in 

the East to the Alaskan border in the West and is bordered by the Beaufort Sea in the North 

and by the British Mountains in the South, leaving it 10-40 km wide (Figure 5.1). Situated at 

about 69 °N, the Yukon Coastal Plain has a subarctic climate modified by the Beaufort Sea. 

Mean annual air temperatures are between -11 °C at Komakuk Beach and -9.9 °C at Shingle 

Point, with respective annual precipitation means of 161.3 mm and 253.9 mm (1971-2000 

means, http://climate.weather.gc.ca). About half of the scarce precipitation falls as snow, 
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resulting in a thin snow cover (mean 25 cm), which is locally variable due to strong wind 

redistribution and prevails for 250 days per year on average. The topography of the plain is 

characterized by a flat coastal part and rolling hills towards the Mountain range. This study 

focussed on the flat coastal reaches, which were shaped by i) Late Pleistocene advances of the 

 
 

Figure 5.1.         Location  studied  ice-wedge  polygons  on   the   Yukon  Coastal  Plain  close  to   the 

reconstructed limit of former glaciation. Base Map modified after (Wolter et al. 2016). 
 

Laurentide Ice Sheet, which reached its furthest extent about 16.2 ka BP (Dyke & Prest 1987, 

Fritz et al. 2012b) and ii) paraglacial and periglacial processes thereafter. The unglaciated 

landscape west of about 139.6° W was subject to periglacial conditions throughout the 

Quaternary, and is characterized by flat, low-lying wetlands and ice wedge growth (Rampton 

1982). The moraine landscape in the eastern part has higher coastal cliffs created by thick 

glacigenic sediment layers, leaving the base level of stream erosion well below the tops of the 

moraines and resulting in relatively deeply incised valleys and generally larger elevation 

differences than in the unglaciated part. Typical periglacial features on the Yukon Coastal 

Plain include thermokarst lakes, many of them at least partly drained, ice-wedge polygons, 

pingos, and retrogressive thaw slumps. Peatland development is favoured by continuous 

permafrost with shallow active layer depths (mostly below 50 cm), and the abundance of low- 

lying ground. A permafrost depth of 142 m has been documented near Roland Bay (Smith & 

Burgess 2002). The tundra vegetation is dominated by mosses, sedges and dwarf shrubs 
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(Walker et al. 2005), with sedges (Carex sp.) dominating sites with impeded drainage, and 

tussock cottongrass (Eriophorum vaginatum) dominating better drained, elevated surfaces 

(Wolter et al. 2016). Dwarf shrubs associated with wetlands include various Ericales, Salix 

spp., Betula glandulosa, and Rubus chamaemorus, while in river valleys sheltered conditions 

promote  taller  growth  of  the  shrubby  taxa  Salix  spp.,  Alnus  crispa,  Betula  glandulosa 

(Viereck & Little 1975). 

We investigated the Mid- to Late Holocene development of three ice-wedge polygons situated 

in the western and central coastal reaches of the Yukon. Polygon morphology and vascular 

plant taxa composition have been summarized in (Wolter et al. 2016). 
 
Komakuk Polygon (Figure 5.2a) lay outside the reconstructed terminal limit of Pleistocene 

glaciations  near  Komakuk  Beach  (Figure  5.1).  The  polygon  was  part  of  a  field  of 

intermediate-centred polygons on the southern, elevated banks of a lake about 1.5 km from 

the sea. Komakuk Polygon was an intermediate-centred ice-wedge polygon with a barely 

discernible raised rim around a slight depression and narrow wet troughs above the 

surrounding ice wedges. The polygon measured 10 m from rim to rim. The vegetation in the 

polygon  was  characterized  by  taxa  typically  found  on  mesic  wetland  sites,  such  as 

Eriophorum vaginatum, and dwarf shrubs including Betula glandulosa, Rubus chamaemorus, 

and Vaccinium vitis idaea. 

Ptarmigan Polygon (Figure 5.2b) was situated in a field of degrading low-centred polygons 

near Ptarmigan Bay on a glacial outwash plain south of Herschel Island only about 160 m 

from the coast (Figure 5.1). It measured 12 x 18 m and had clearly discernible rims enclosing 

a wet depression that was submerged in places. The polygon was surrounded by water-filled 

troughs on three sides and shared the fourth rim with a neighbouring polygon. The vascular 

plant taxa composition showed a clear distinction between low-lying (mostly Carex spp. and 

Eriophorum spp.) and elevated surfaces (Salix spp., Dryas integrifolia, Rubus chamaemorus, 

Pedicularis capitata, Polygonum viviparum, Saxifraga nelsoniana) within the polygon. 

Roland Polygon (Figure 5.2c) was located on a ground moraine between two lakes near 

Roland Bay and about 8.5 km inland from the coast (Figure 5.1). It was part of a field of high- 

centred polygons and measured 8 x 10 m. Its raised and domed surface was surrounded by 

water-filled troughs up to 7 m wide. Vascular plant taxa composition was even across the 

polygon, and consisted of taxa typical for mesic wetland sites: Betula glandulosa, Salix 

pulchra, Rubus chamaemorus, Ledum decumbens, Vaccinium vitis-idaea, Hierochloë alpina, 

Eriophorum vaginatum, and Luzula confusa. 
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Figure 5.2.         Settings of the studied ice-wedges polygons. (a) Satellite image and photograph showing 

surroundings of intermediate-centred Komakuk Polygon. (b) Satellite image and photograph showing 

surroundings   of   low-centred   Ptarmigan   Polygon.   (c)   Satellite   image   and   photograph   showing 

surroundings of high-centred Roland Polygon. All satellite images are true colour pan-sharpened Geoeye- 

1 scenes with 0.5 m ground resolution. 
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5.4 Material and Methods 
 
 

5.4.1 Field work 
 
In August 2012, two ice-wedge polygons were investigated, of which one was intermediate- 

centred, and the other was high-centred. These were situated on a moraine surface near 

Roland   Bay   (69.32471°N,   139.02092°W),   and   on   Komakuk   Beach   (69.57959°N, 

140.19853°W) outside the reconstructed limit of former glaciation, respectively. In July 2013, 

an additional low-centred polygon was investigated on the glacial outwash plain immediately 

south of Herschel  Island near Ptarmigan  Bay on the Yukon Coastal  Plain (69.49979°N, 

139.1815°W). The three studied ice-wedge polygons were labelled Roland Polygon, Komakuk 

Polygon and Ptarmigan Polygon throughout the study. The sampling approach was identical in 

both years. The results from a detailed survey of microtopography and vegetation have been 

published (Wolter et al. 2016). In the field, we retrieved blocks of 15 to 20 cm width from 

the active layer of the ice-wedge polygons using a saw. In total, we are presenting six such 

cores, one from the centre and one from the margin of each polygon, which in the 

intermediate- and low-centred polygons was represented by the ridge around the polygon. The 

cores retrieved in 2012 reached depths of between 27 and 33 cm. In Ptarmigan Polygon, an 

additional permafrost core was drilled directly subjacent to the active layer core we retrieved 

from the polygon centre, as the active layer itself was rather shallow (14 cm beneath the ridge 

and 22 cm beneath the centre). The total core length for Ptarmigan Polygon centre was 88 cm, 

including both active layer core and permafrost core. Due to logistical considerations, the 

permafrost core was photographed, described, and subsampled in 4-5 cm increments in the 

field before it thawed. 
 

5.4.2 Laboratory analyses 
 
The six active layer cores were photographed and described in the laboratory, before being 

subsampled in 1 cm increments. In three cores (Komakuk Polygon ridge, Roland Polygon 

centre, Ptarmigan Polygon ridge), the lowermost samples could not be reasonably divided 

further, so that the lowermost 1.5 or 2 cm were taken as one sample. Accelerator Mass 

Spectrometry (AMS) radiocarbon dating was carried out in Poznan Radiocarbon Laboratory, 

Poland (Poz) and CologneAMS, Germany (COL). In total, 19 AMS radiocarbon dates were 

obtained from terrestrial plant macrofossils picked from selected samples. 

We measured total organic carbon (TOC) and total nitrogen (TN) on freeze-dried, ground 

subsamples using an Elementar Vario Max C analyzer (TOC) and an Elementar Vario EL III 
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analyzer (TN). Element contents are expressed as weight percent (wt.%). The analysis of 

stable carbon isotopes (δ13C) was conducted on freeze-dried, ground, carbonate-free 

subsamples at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, 

Potsdam, Germany, using a ThermoFisher Scientific DELTAplusXL mass spectrometer. 

Stable carbon isotope analyses on subsamples of the core YC12-RP-Mr were measured at 

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, 

Germany, using a Finnigan MAT DELTA-S mass spectrometer. Stable carbon isotope values 

are expressed as per mil relative to the Vienna PeeDee Belemnite standard (‰ vs. VPDB). 

Grain size analyses were carried out on carbonate- and organic-free subsamples using a 

Beckman Coulter LS 200 laser diffraction particle sizer. In the upper centimetres of the cores, 

grain size analyses were precluded by very low contents of inorganic material in the peat. 

Grain sizes are given as volume percent (vol.%). Plant macrofossil analyses were conducted 

on selected subsamples (3-11 per core, 44 in total). For each subsample, 50 ml of sediment 

were wet sieved through 1mm and 250 µm mesh sizes. Due to the large amounts of coarse 

organic material in the samples, we limited the analyses to picking and identifying vascular 

plant remains in the >1mm fraction. This approach provided an overview of vascular plant 

taxa  that  were  present  in  the  cores,  while  a  full  plant  macrofossil  analysis  would  have 

included smaller seeds. 
 

5.4.3 Data and statistical and analyses 
 
The zonation presented for the cores was delineated using the Constrained Incremental Sum 

of  Squares  (CONISS)  algorithm  (Grimm  1987)  in  package  “rioja”  (Juggins  2015)  and 

validated by broken stick modelling in the software R, version 3.2 (R Core Team 2016) based 

on the parameters TOC, TOC/TN, and δ13C. 
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5.5 Results 
 
 

5.5.1 Komakuk Polygon 
 
The active layer core from the centre of Komakuk Polygon (YC12-KP-Mc) had a median 

basal age of 1597 cal. yrs BP (Table 5.1). The core showed a distinct sedimentary facies break 

at 14 cm depth. CONISS ordination validated by broken stick modelling supported two zones 

KPc1 and KPc2 for the core, which corresponded with the facies break and were mainly 

distinguished by a sharp increase in TOC (Figure 5.3a). 

In zone KPc1 (14-33 cm depth), TOC ranged from 7.5 wt.% to 17.1 wt.% (mean: 9.5 wt.% ± 
 

2.0), and TOC/TN showed low values between 15.3 and 20.4 and a small standard deviation 

(mean: 17.5 ± 1.3). Stable carbon isotopes δ13C had their highest values in this zone, ranging 

from -28.8‰ to -26.3‰ (mean: -28.1‰ ± 0.6). In KPc1, inorganic material was fine-grained, 

consisting of clayey silt and sandy silt, with about 20 percent plant material. A mixture of 

mesic terrestrial (wood fragments, occasional remains of Betula glandulosa, Ledum 

decumbens, cf. Ranunculus lapponicus), wet terrestrial (occasional Carex sp. seeds) and 

aquatic (Menyanthes trifoliata, Potamogeton sp.) plant macrofossils was preserved in this 

zone (Table 5.2). 

Zone KPc2 (0-13 cm depth) uniformly showed very high TOC contents between 37.9 wt.% 

and 44.2 wt.% (mean: 41.4 wt.% ± 2.2). TOC/TN increased towards the top of the core, 

ranging between 14.3 and 33.1 (mean: 21.2 ± 6.0), while δ13C decreased slightly, ranging 

from -30.2‰ to -28.0‰ (mean: -28.7‰ ± 0.7). The grain size composition was classified as 

silty sand. The amount of plant material rose to 100 percent in this zone (Table 5.2). Mesic 

(Betula glandulosa, Ledum decumbens, Eriophorum vaginatum) and wet taxa (Carex sp.) 

were found, and remains of aquatic plant taxa were absent. The active layer core from the rim 

of Komakuk Polygon (YC12-KP-Mr) showed a hiatus of about 5000 cal. years between 16 

cm and 17 cm depth (Table 5.1). The identified seeds and leaves of terrestrial plants from the 

upper part of the core (0-16 cm) showed ages within the last 300 years, while samples below 

that depth were dated to the middle Holocene (median ages: 5507 cal. yrs BP in 17 cm depth, 

5798 cal. yrs BP in 24 cm depth, 4641 cal. yrs BP in 31 cm depth), with an age inversion at 

the base of the core. A sedimentary facies break was evident at 14-15 cm depth, and two 

stratigraphic zones were delineated on the basis of CONISS ordination and broken stick 

modelling. In the upper zone, two subzones were identified. The boundary between zones 

KPr1 and KPr2 corresponded roughly with the age hiatus. 
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Table 5.1. Results of Accelerator Mass Spectrometry (AMS) radiocarbon dating. 
 

 
 
 
 
 

Lab code 

 
 
 

Depth 
[cm] 

 
 
 

Radiocarbon 
age 
[yrs BP] 

Calibrated 
age ranges 
[cal yrs BP] 
1 sigma 
confidence 
interval 

 
 

Median 
probability 
age 
[yrs BP] 

 
 
 
 
 

Dated material 
Komakuk Polygon 
YC12-KP-Mr (active layer core from polygon rim) 
COL2652.1.1 8-9 107 ± 33 31-257 115 Betula glandulosa twig and leaf, Eriophorum 

vaginatum seed, Cyperaceae leaf 
Poz#2-56521 15-16 -464 ± 37 NA NA Ledum decumbens leaf 
COL2653.1.1 16-17 4749 ± 40 5336-5583 5507 Dwarf shrub twig and bark, Carex seed, Cyperaceae 

leaf 
COL2654.1.1 23-24 5031 ±41 5718-5890 5798 Carex seed, Cyperaceae leaf, wood 
Poz#2-56522 30-31.5 4110 ± 73 4525-4811 4641 Carex seed, dwarf shrub leaf 
YC12-KP-Mc (active layer core from polygon centre) 
Poz#2-56519 30-31 1697 ± 25 1559-1681 1597 Betula glandulosa catkin scale, Ledum decumbens 

leaf, 
Carex seed, Menyanthes trifoliata seed 

Roland Polygon 
YC12-RP-Mr (active layer core from polygon rim) 
COL2655.1.1 8-9 42 ± 32 NA NA Betula glandulosa leaf and fruit, Ledum decumbens 

leaf 
COL2656.1.1 11-12 124 ±33 21-267 125 Betula glandulosa leaf and twig, dwarf shrub twig 
Poz#2-56550 13-14 -336 ± 24 NA NA Betula glandulosa leaf, Ericaceae leaf 
COL2657.1.1 16-17 4426 ± 58 4877-5261 5035 Betula glandulosa twig, Carex seed, Cyperaceae leaf 
COL2658.1.1 18-19 5871 ± 59 6634-6779 6691 Carex seed, Cyperaceae leaf 
Poz#2-56551 26-27 6192 ± 34 7021-7163 7085 Ericaceae leaf, Carex seed 
YC12-RP-Mc (active layer core from polygon centre) 
COL2659.1.1 11-12 170 ± 36 0-284 176 Betula glandulosa leaf and fruit, Ledum decumbens 

leaf 
Poz#2-56547 13-14 177 ± 40 0-286 176 Ledum decumbens leaf 
COL2660.1.1 13-14 185 ± 33 0-285 180 Betula glandulosa leaf and fruit, Ledum decumbens 

leaf, Carex seed 
COL2661.1.1 20-21 592 ± 33 547-639 603 Betula glandulosa twigs, Ledum decumbens leaf, 

Carex seed, wood 
Poz#2-56549 25-26 6147 ± 37 6982-7156 7058 Ericaceae leaf remains 
Ptarmigan Polygon 
YC13-PP-Mr (active layer core from polygon rim) 
COL2651.1.1 13-15 1199 ± 55 1058-1228 1127 Cyperaceae leaf remains 
PG2161 (permafrost core from polygon centre) 
COL2650.1.1 83-88 5609 ± 42 6318-6432 6380 Terrestrial plant remains 
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Figure 5.3.         Stratigraphic diagrams showing sediment parameters and established zonation (a) in the 

centre core and (b) in the rim core of Komakuk Polygon. Parameters used in the CONISS analysis are 

shown in black, while additional parameters not used in this analysis are shown in grey. The age ranges 

shown are calibrated 1 sigma ranges based on AMS radiocarbon dates (Table 5.1). The presence of 

aquatic organisms in the macrofossil record is indicated by hatching. 
 

In zone KPr1 (16-31 cm depth) TOC values exhibited strong variability between 17.9 wt.% 

and 40.4 wt.% (mean: 26.8 wt.% ± 6.7) without a clear trend, and stable TOC/TN values 

between 18.3 and 29.5 (mean: 24.1 ± 2.9). A narrow range from -27.8‰ to -29.0‰ (mean: -

28.3‰  ±  0.4)  was  observed  in  δ13C  values,  with  a  slight  decreasing  trend.  Grain size 

composition  fluctuated  between  sandy  silt  and  silty  sand  in  KPr1  (Figure  5.6).  Wood 

fragments and identifiable plant macrofossils were abundant in the zone, especially in the 

lower part, where seeds of the wet terrestrial Carex sp. dominated, accompanied by 
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occasional seeds of the aquatic Potamogeton sp. and Potentilla palustris as well as remains of 

mesic terrestrial Betula glandulosa and Ledum decumbens (Table 5.2). 
 

Table 5.2.           Summary of identified vascular plant macrofossils from the centre and rim cores of 

Komakuk Polygon. The overall composition of the sieving residue is described by giving the amount of 

plant material after sieving through 1 mm mesh size and the respective estimated amounts of Bryophyte, 

Cyperaceae and wood remains in each sample. Plant macrofossils that have been picked and further 

identified are ordered by hydrological requirements from taxa found under mesic conditions typical for 

ice-wedge polygon rims to taxa found in wet conditions typical for ice-wedge polygon centres. Finally, 

aquatic plant remains typical for subarctic ponds and lakes are listed. 
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Zone 

      Terrestrial         Aquatic   
       

mesic        
general 

 
wet 

 
emergent sub- 

merged 
 

Komakuk Polygon centre core YC12-KP-Mc (active layer) 

10  50 12.5 37.5 <0.1 1 1   1+  3    3    KPc2 
14  20 0 14 6  2         2     
15  10 0 2 8 1             4 KPc1 
16  10 0 2 8        1   1   3  
31 1597 7 0 2.1 4.9 1   1 1      1 1    
32  10 0 4 6 1          1   1  
33  10 0 4 6   1        2   1  
Komakuk Polygon rim core YC12-KP-Mr (active layer) 
5  50 30 7.5 12.5 5 4+ 1  14+ 18+ 20    1    KPr2B 
9 115 50 7.5 27.5 15 52 5 1  2 1+ 2  +++  3    KPr2A 
14  50 0 40 10       2    1     
15  50 0 47.5 2.5              2  
16 modern 25 0 20 5     1          KPr1 
17 5507 35 0 31.5 3.5        1 6  2  1   
23  50 0 45 5           12     
24 5798 45 0 27 18         1  14   1  
29  45 0 31.5 13.5 3          43  1   
31 4641 40 0 32 8 4 1   4     2 23   2  
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Zone KPr2 (0-15 cm depth) showed very high and uniform TOC contents between 35.7 wt.% 

and 42.5 wt.% (mean: 40.2 wt.% ± 2.1). TOC/TN ratios lay between 18.1 and 63.7 (mean: 

36.9 ± 15.6) and increased strongly towards the top of the core, and δ13C values ranged from 

-29.2‰ to -27.4‰ (mean: -28.2‰ ± 0.5). The two subzones were distinguished by an increase 

in TOC/TN from zone KPr2A (7-15 cm depth, mean: 25.8 ± 6.6) to zone KPr2B (0-6 cm 

depth, mean: 53.5 ± 7.3). Grain size analyses classified inorganic particles in KPr2A as silty 

sand and sandy silt. Very little inorganic material was present in KPr2B, and grain size 

analyses  could  not  be  carried  out.  Mesic  terrestrial  taxa  (Betula  glandulosa,  Ledum 

decumbens, Vaccinium vitis-idaea, Eriophorum vaginatum) dominated in this zone, while 

remains of wet terrestrial taxa (Carex sp.) were scarce and aquatic taxa (Potamogeton sp.) 

disappeared above 15 cm core depth (Table 5.2). There was a strong increase in remains of 

mesic terrestrial taxa from KPr2A to KPr2B. 

 
5.5.2 Ptarmigan Polygon 

 
The permafrost core from the centre of Ptarmigan Polygon had a median basal age of 6380 

cal. yrs BP in 88 cm depth (Table 5.1, Figure 5.4a). We delineated two stratigraphic zones 

PPc1 and PPc2 in active layer core and subjacent permafrost core (YC13-PP-Mc and PG2161) 

(Figure 5.4a). 

In zone PPc1 (24-86 cm depth) organic matter was characterized by relatively low TOC 

contents between 4.6 wt.% and 21.4 wt.% (mean: 7.7 wt.% ± 4.7). TOC/TN ratios uniformly 

showed low values between 13.6 and 23.7 (mean: 19.2 ± 3.1), and δ13C ranged from -29.8‰ 

to -27.1‰ (mean: -28.4‰ ± 0.7). Zone PPc1 had a sandy silt texture (Figure 5.6). The coring 

was stopped as a coarse-grained layer containing gravel was hit. Identifiable plant 

macrofossils occurred in low numbers (Table 5.3). In the lower parts of the zone, occasional 

Carex sp. seeds were found. The amount of plant material was generally low, with unidentified 

plant fragments mostly being Cyperaceae, and very few small fragments of wood and 

Bryophyte leaflets. 

In  zone PPc2 (0-23  cm depth), organic matter was  characterized by high TOC contents 

between 24.4 wt.% and 39.7 wt.% (mean: 32.7 wt.% ± 4.1), while TOC/TN ratios were 

similar to those found in zone PPc1 between 13.0 and 25.6 (mean: 18.9 ± 3.0), and δ13C was 

slightly lower than in PPc1, ranging from -30.9‰ to -27.8‰ (mean -29.6‰ ± 0.7). The 

sediment texture was silty sand. In this zone, samples consisted nearly entirely of Cyperaceae 
peat, yet identifiable plant macrofossils were nearly absent, consisting of one fragment of a 
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dwarf shrub twig and one Carex sp. seed (Table 5.3). The active layer core from the rim of 

Ptarmigan Polygon (YC13-PP-Mr) had a median basal age of 1127 cal. yrs BP. CONISS 

ordination validated by broken stick modelling supported no zonation in the core (Figure 

5.4b). TOC values were high, ranging from 26.0 wt.% to 41.4 wt.% (mean: 32.7 wt.% ± 5.2) 

TOC/TN ratios were between 14.7 and 32.4 (mean: 17.9 ± 4.5), increasing at the top of the 

core.  

 

Figure 5.4.  Stratigraphic diagrams showing sediment parameters and established zonation (a) in 

the centre core and (b) in the rim core of Ptarmigan Polygon. Parameters used in the CONISS analysis 

are shown in black, while additional parameters not used in this analysis are shown in grey. The age 

ranges shown are calibrated 1 sigma ranges based on AMS radiocarbon dates (Table 5.1). 
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A steady increase from about -30‰ at the bottom of the core to about -27‰ at the top of the 

core was observed in δ13C, (overall range: -30.1‰ to -27.7‰, mean: -28.8‰ ± 0.8). The texture 

of the scarce inorganic material was dominated by silty sand. All samples were nearly entirely 

made up of plant material (Table 5.3). In the lower part of the core, they consisted of 

Cyperaceae with a low amount of Bryophytes and one small leaf fragment of Betula 

glandulosa. In the middle part Cyperaceae and wood, and abundant dwarf shrub twigs were 

found. In the upper part, plant material consisted of Cyperaceae and wood, and fragments of 

at least one Betula glandulosa leaf, Ledum decumbens leaves, and abundant fragments of 

dwarf shrub twigs were found. 
 

Table 5.3.           Summary of identified vascular plant macrofossils form the centre and rim cores of 

Ptarmigan Polygon. The overall composition of the sieving residue/ organic material is described by giving 

the amount of plant material after sieving through 1 mm mesh size and the respective estimated amounts 

of Bryophyte, Cyperaceae and wood remains in each sample. Plant macrofossil that have been picked and 

further identified are ordered by hydrological requirements from taxa found under mesic conditions  

typical for ice-wedge polygon rims to taxa found in wet conditions typical for ice-wedge polygon centres. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ptarmigan Polygon centre core 

 
Terrestrial 
mesic general  wet 

Zone 

5  50 0 50 <0.1 1 1 PPc2 
20  50 0 50 <0.1    
28  5 0.5 2.5 2   PPc1 
48  10 0.5 9 0.5    
60  5 0 2.5 2.5  1  
75  5 0.5 1.5 3  1  
88 6380        
Ptarmigan Polygon rim core 
3 50 0 35 15 1+    10+  +++ 
5 40 0 12 28 +++ 
15 1127    50 2.5 47.5 0 1 
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5.5.3 Roland Polygon 
 

The active layer core from the elevated centre of Roland Polygon (YC12-RP-Mc) showed a 

hiatus but no age inversions (Table 5.1). The upper three dated samples at 12 cm and 14 cm 

depth originated within the last 300 years. At 21 cm depth the calibrated median age was 603 

cal. yrs BP. 

 
 

Figure 5.5.         Stratigraphic diagrams showing sediment parameters and established zonation (a) in the 

centre core and (b) in the rim core of Roland Polygon. Parameters used in the CONISS analysis are shown 

in black, while additional parameters not used in this analysis are shown in grey. The age ranges shown 

are calibrated 1 sigma ranges based on AMS radiocarbon dates (Table radiocarbon dates). The presence 

of aquatic organisms in the macrofossil record is indicated by hatching. 
 

A hiatus of nearly 6500 cal. years lay between this sample and the next dated sample at 26 cm 

depth, which had a median age of 7058 cal. yrs BP. On the basis of CONISS analysis of TOC, 

TOC/TN and δ13C we established two stratigraphic zones in the core (Figure 5.5a). The 
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boundary between RPc1 and RPc2 reflects the hiatus at 21 cm depth and 603 cal. yrs BP. The 

upper zone RPc2 was divided into two subzones RPc2A and RPc2B. RPc1 (22-27 cm depth) 

was characterized by low TOC values between 8.2 wt.% and 12.1 wt.% (mean: 9.8 wt.% ± 

1.3) and low TOC/TN ratios between 13.0 and 21.9 (mean: 17.8 ± 2.9). Relatively high δ13C 
 

values from -27.2‰ to -28.9‰ (mean: -27.8‰ ± 0.6) were measured in this zone. The 

sediment texture in RPc1 was clayey silt (Figure 5.6). 
 

Table 5.4.           Summary of identified vascular plant macrofossils from the centre and rim cores of 

Roland Polygon. The overall composition of the sieving residue is described by giving the amount of plant 

material after sieving through 1 mm mesh size and the respective estimated amounts of Bryophyte, 

Cyperaceae and wood remains in each sample. Plant macrofossil that have been picked and further 

identified are ordered by hydrological requirements from taxa found under mesic conditions typical for 

ice-wedge polygon rims to taxa found in wet conditions typical for ice-wedge polygon centres. Finally, 

aquatic plant remains typical for subarctic ponds and lakes are listed. 
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Zone 

      Terrestrial          Aquatic      
       

mesic        
general  

 
wet 

 
emergent sub- 

merged 

 
animal  

Roland Polygon centre core 

6  50 35 12.5 2.5 15+ +++ 21 4  +++  9 1          RPc2B 
7  50 20 25 5 12 +++ 2 1  +++  4    1       RPc2A 
12 176 50 15 32.5 2.5  * 1   ++ 1             
14 180 50 20 20 10 15 +++ 18 2  +++  9   1 3        
18  45 13.5 13.5 18 18 * 13   +++  5    2        
21 603 25 5 10 10      1      1        
22  25 3.75 10 11.25     1      1 4   1 2 1 3 RPc1 
24  25 1.25 10 13.75     2 9+      12  2  5 43 21  
25  20 2 10 8      5      4 1  1 3    
26 7058 25 2.5 7.5 15 2    1 2+              
27  20 6 12 2 2    1 2+    1  1        
Roland Polygon margin core 
9 modern 50 25 10 15 1 ++ 2   9+  10    1       RPr2 
12 125 30 1.5 15 13.5 ++ + 2   3  3    1       RPr1B 
14 modern 30 1.5 21 7.5  * 5   1  2            
17 5035 40 2 34 4 1       1    11        
19 6691 45 2.25 36 6.75  1    1  1    20      17 RPr1A 
26  50 25 10 15  1   2 +++ 2     50        
27 7085 50 22.5 22.5 5     9 5+ 1   1  30      2  
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Plant macrofossils were abundant and relatively diverse in this zone, with remains of mesic 

terrestrial dwarf shrubs (Betula glandulosa, Empetrum nigrum, Ledum decumbens) alongside 

seeds of wet terrestrial Carex sp. and emergent aquatic Hippuris vulgaris, Menyanthes 

trifoliata, and Potentilla palustris (Table 5.4). Remains of submerged aquatics (Potamogeton 

sp., Charophyta oogonia, Daphnia ephippiae) were frequent in this zone. 

 
 

Figure 5.6.         Ternary  diagram  illustrating  grain  size  composition  in  samples  from  all  six  cores. 

Symbols are colour-coded to individual ice-wedge polygons, with lighter colours representing rim or 

margin cores, and darker colours representing centre cores. Narrow crosses represent the uppermost zone 

in the corresponding core, while bold crosses represent the lower zone in each core. A general trend 

towards more fine-grained material downcore is visible in all except the Roland Polygon margin core. 
 

The grain size analyses classified inorganic particles from RPc2 as sandy silt (Figure 5.6). 

Mesic terrestrial plant macrofossils (Betula glandulosa, Ledum decumbens, Eriophorum 

vaginatum) became particularly abundant in RPc2, while Carex sp. seed occurrence declined 

gradually and aquatic remains disappeared entirely. 
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The active layer core from the margin of the high-centred Roland Polygon (YC12-RP-Mr) 

showed a similar hiatus and had a median basal age of 7085 cal. yrs BP that was nearly 

identical to the one in the centre core YC12-RP-Mc from the same polygon (Table 5.1). The 

age to depth relationship was also remarkably similar to the one found in the rim core of 

Komakuk Polygon. The upper part of the core showed modern ages or ages of up to 300 cal. 

yrs BP at 9, 12, and 14 cm depth, an age of 5035 cal. yrs BP at 17 cm depth, 6691 cal. yrs BP 

at 19 cm, and 7085 cal. yrs BP at 27 cm. The core showed no age inversion. A sedimentary 

facies break was present at 10-11 cm core depth. Two stratigraphic zones RPr1 and RPr2 were 

delineated based on CONISS ordination of parameters characterizing organic matter (TOC, 

TOC/TN, and δ13C), the lower zone was subdivided into RPr1A and RPr1B (Figure 5.5b). 
 

RPr1 (12-27 cm depth) had high TOC contents from 31.5 wt.% to 42.5 wt.% (mean: 37.5 

wt.% ± 4.6), TOC/TN  ratios were between 21.3 and 32.1  (mean: 26.0  ± 3.4). A slight 

decrease was observed in δ13C, which ranged from -27.3‰ to -29.0‰ (mean: -28.2‰ ± 0.6). 

TOC decreased from subzone RPr1A (18-27 cm depth, mean: 40.9 wt.% ± 1.9) to RPr1B (12- 

17 cm depth, mean: 32.7 wt.% ± 0.8), while TOC/TN ratios stayed similar (means: 24.5 ± 2.3 
 

vs.  28.2  ±  3.6),  and  δ13C  decreased  within  subzone  RPr1A  (mean:  -27.8‰  ±  0.4)  and 

stabilized in subzone RPr1B (mean: -28.7‰ ± 0.2). The grain size composition changed from 

silty sand in RPr1A to sandy silt in RPr1B (Figure 5.6). Plant macrofossils were abundant in 

zone RPr1, and were dominated by terrestrial taxa (Betula glandulosa, Empetrum nigrum, 

Ledum decumbens, Vaccinium vitis-idaea, Eriophorum vaginatum, Carex sp.) (Table 5.4). 

Remains of Betula glandulosa were rare in RPr1A and became abundant in RPr1B, while 

seeds of the wet terrestrial Carex sp. were abundant in RPr1A, and decreased strongly towards 

RPr1B. The only aquatic indicators were Daphnia ephippiae found in RPr1A. The trend 

towards more mesic taxa was mirrored by the occurrence of Eriophorum vaginatum seeds, 

which were missing from the lower part of RPr1A, and increased towards the upper part of 

RPr1B. 

In RPr2 (0-11 cm depth), TOC contents were between 37.7 wt.% and 43.2 wt.% (mean: 41.2 

wt.% ± 1.5), and TOC/TN ratios increased strongly within this zone, ranging from 27.9 to 

81.9 (mean: 48.7 ± 13.8), while δ13C fluctuated between -27.6‰ and -28.8‰ (mean: -28.2‰ 
 

± 0.4). There was no information on grain size composition for RPr2, as the peat contained 

very little inorganic material. Plant macrofossils were dominated by abundant remains of the 

mesic terrestrial taxa Betula glandulosa, Ledum decumbens, and Eriophorum vaginatum 

(Table 5.4). 
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5.6 Discussion 
 
 

5.6.1 Landscape and vegetation reconstruction 
 

 
 

Figure 5.7          Summary of interpretations and findings from all proxies and cores. The summer 

temperature reconstruction (Viau et al. 2006) and precipitation reconstructions (Fritz et al. 2012a) 

provide a baseline climate signal. 

 
Komakuk Polygon development 

 
Centre core 

 

The centre core exhibited two zones that we interpreted as lake sediments overlain by peat. In 

zone KPc1 (ca. 1600 cal. yrs BP to max. 300 cal. yrs BP), fine-grained sediments with TOC 

values around 10 wt.% indicated the presence of a lake environment rather than peat from an 

ice-wedge polygon.  While lake sediment in deeper parts of lakes in the region exhibits 

slightly lower TOC, lower C/N and higher δ13C (Fritz et al. 2012a, Lenz et al. 2013), the 

sediment we found resembled a transitional phase between lake drainage and ice-wedge 

polygon initiation identified in a study from Herschel Island (Fritz et al. 2016) as well as a 

phase of low lake water level reconstructed in a study from a lake near Roland Bay (Wolter et 

al. in review). The plant macrofossil assemblage showed a mixture of mesic terrestrial, wet 

terrestrial, emergent and submerged aquatic taxa, indicating a highly productive shallow- 

water environment in close proximity to drier terrestrial reaches. Modern satellite imagery 

showed the outline of a drained lake basin (Figure 5.2a). The studied polygon was situated in 

the marginal part of that former lake, which still existed during KPc1. 
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In KPc2 (max. 300 cal. yrs BP to modern) peat established. Strong parallels in composition, 

plant macrofossil assemblage and thickness of this peat layer and the dated peat in KPr1 

suggested a similar age range for KPc2. The plant macrofossil mixture of mesic and wet 

terrestrial taxa (Table 5.2) indicated a low-centred ice-wedge polygon with no or very little 

standing water in the centre (Wolter et al. 2016). Towards the top of the core TOC/TN 

increased. We suggest that this shift represented the conversion into an intermediate-centred 

polygon, as litter with high TOC/TN ratios is associated with mesic terrestrial plant taxa such 

as Betula glandulosa and Ledum decumbens (Moore 1984), which are typically found on 

well-drained sites within ice-wedge polygons (Wolter et al. 2016). 
 

Rim core 
 

The rim core featured a lower sediment facies typical of a low-centred polygons superceded 

by a hiatus that we interpret as an erosion surface, and recent peat accumulation in the upper 

part of the core. KPr1 was dated to the two millenia around 5000 cal. yrs BP, with an age 

inversion in the lowest sample (Figure 5.3, Table 5.1), suggesting a mid Holocene age range 

for KPr1. Fluctuating high TOC contents indicated either decomposing peat or varying input 

of inorganic material. Good preservation of plant macrofossils and narrow ranges in TOC/TN 

and δ13C showed that organic material composition was stable, while organic matter contents 

varied, proving that peat decomposition played a minor role. The pattern was more likely 

caused by varying input of fine-grained sediment originating from sporadic disturbances. 

Plant  macrofossils  comprised  mesic  and  wet  terrestrials,  and  emergent  and  submerged 

aquatics. This assemblage indicated a highly structured wetland as found in low-centred 

polygons with sufficiently deeply submerged centres to allow the growth of submerged 

Potamogeton (cf. Hannon & Gaillard 1997). KPr1 was followed by a hiatus of ~5000 cal. 

years, which coincided with a facies break. An undated facies break in the polygon centre 

core, which had a maximum age of 1600 cal. yrs BP, placed hiatus and facies break in a time 

slice lost from the rim core, indicating that lake sedimentation could have been active there at 

least after 1600 cal. yrs BP. We interpreted the upper surface of KPr1 and KPc1 as an erosion 

surface. 

The peat in KPr2 developed within the past 300 years, as indicated by the results of AMS 

radiocarbon dating (Table 5.1). Radiocarbon dates from this timeframe are generally 

ambiguous (de Vries effect (De Vries 1958), Suess effect (Suess 1955), atomic bomb effect 

(Rafter & Fergusson 1957)), limiting the temporal resolution for these depths. The zone was 

subdivided into KPr2A and KPr2B based on a shift in peat composition. Stable very high TOC 
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contents throughout KPr2 preclude increased decomposition of organic material as the cause 

of a pronounced increase in TOC/TN ratios. Instead, plant macrofossils showed a shift from 

wet conditions in KPr2A to mesic conditions in KPr2B. Taxa typical of well-drained elevated 

reaches within ice-wedge polygons (Betula glandulosa, Ledum decumbens, Vaccinium vitis- 

idaea, Eriophorum vaginatum) (Wolter et al. 2016) became dominant in subzone KPr2B, and 

their increasing abundance caused increased TOC/TN ratios in the peat. We suggest that this 

vegetation shift accompanied the conversion of a low-centred polygon into an intermediate- 

centred polygon within the last 300 years. 

The cores taken from Komakuk Polygon were spaced only 5 m apart, and reconstruction of 

polygon development at the site indicated the presence of a Mid-Holocene Peatland, followed 

or interrupted by a phase of aquatic conditions in a lake margin environment, during which 

sediment was lost from the polygon rim by erosion and/or decomposition of organic material. 

Regular peat growth reinitiated during the last 300 years. Both cores showed shifts from 

aquatic vegetation to mesic ice-wedge polygon vegetation, which is characterized by different 

habitats existing in close proximity. The conversion of a low-centred polygon into an 

intermediate-centred polygon occurred within the last 300 years. 

 
Ptarmigan Polygon development 

 
Centre core 

 

The centre core from Ptarmigan Polygon indicated lake sedimentation in the lower zone and 

peat accumulation typical of undisturbed low-centred polygons in the upper zone. The lower 

boundary of this core likely corresponded to the upper surface of the glacial outwash plain, 

since coarse-grained material typical of the unit described by (Rampton 1982) stopped the 

corer at 88 cm depth. This depth was assigned a median age of 6380 cal. yrs BP. In PPc1 

(beginning at 6380 cal. yrs BP), only small amounts of plant material of mixed origin were 

present, and low and stable TOC and TOC/TN values suggested a lake sedimentation 

environment, in which few terrestrial plant remains would be expected. Unlike in Komakuk 

Polygon, no aquatic plant macrofossils were found (Table 5.3), suggesting that the site was 

not located within the productive littoral zone of a lake, but in a deeper, more central part. In 

PPc2, sedge peat established, as evident from stable high TOC contents, consistently low 

TOC/TN ratios (Figure 5.4) and Cyperaceae remains. These stable modern conditions in the 

centre of the low-centred polygon showed no indication of drier or wetter conditions or 

disturbances. 
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Rim core 
 

The polygon rim core consisted of one peaty sediment horizon. The core showed peat 

accumulation since 1100 cal. yrs BP (Table 5.1, Figure 5.4). During that time, polygon rim 

conditions remained relatively stable, as indicated by stable TOC contents and grain size 

composition (Figure 5.6). A rise in TOC/TN ratios was accompanied by an increase in dwarf 

shrub makrofossils towards the top of the core (Figure 5.4). This indicated drier conditions on 

the polygon rim in the recent past.  Improved aeration in drier peat facilitates microbial 

activity and peat decomposition, and the gradual increase in δ13C values along the core could  

have been caused by increasing microbial utilisation of carbon, which discriminates against 

the lighter 12C and thus leads to 13C enrichment (Heyer et al. 1976). 

The combined information from both cores suggested the presence of a lake on the flat glacial 

outwash plain during the Mid-Holocene. In the course of the Late Holocene, before 1100 cal. 

yrs BP, that lake drained, and ice-wedge polygons started to develop on the former lake floor. 

Peat  initiation  in  Ptarmigan  Polygon  roughly  fell  within  the  timeframe  given  for  the 

inundation of Workboat Passage by the Beaufort Sea, which was caused about 1600-600 

years ago by sea level rise and which separated Herschel Island from the mainland (Forbes 

1980, Hill et al. 1985, Burn 2013). This event altered surface topography and hydrology, 

lowering the topographic gradient across the coastal plain, thus increasing surface water 

retention and facilitating the build-up of peat in ice-wedge polygons during at least 1100 

years. In modern times, the analysed polygon rim has experienced drying accompanied by 

carbon decomposition and an increase in shrubs. 

 
Roland Polygon development 

 
Centre core 

 

Sediment   composition   and   plant   macrofossil   assemblage   in   this   core   recorded   the 

development from a shallow lake environment (~7000 cal. yrs BP), to the initiation of a low- 

centred polygon (~ 600 cal. yrs BP), and subsequent gradual conversion to a high-centred 

polygon   (twentieth   century).   During   the   time   period   corresponding   to   zone   RPc1 

(~7000-600 cal. yrs BP), a lake environment existed, as indicated by abundant occurrences of 

Charophyte oogonia, Potamogeton seeds and Daphnia ephippiae along with low TOC, low 

TOC/TN, relatively high δ13C and a fine-grained sediment texture (Figures 5.5 and 5.6, Table 

5.4). Sediment composition and plant macrofossil assemblage resembled the productive lake 
 

margin or shallow lake environment already identified in KPc1 and in PPc1. The location of 
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the studied polygon in the marginal part of a former lake can be inferred from modern satellite 

imagery (Figure 5.2c), in which both former lake extent and drainage path are visible. 

During the time interval corresponding to RPc2 (~600 cal. yrs BP to modern) peat established 

and aquatic taxa disappeared (Figures 5.5 and 5.7, Table 5.4). Over the centuries following 

peat initiation, a low-centred polygon persisted at the site, as indicated by very high TOC 

contents, moderately high TOC/TN ratios and relatively high δ13C accompanied by remains of 

mesic and wet terrestrial plant taxa in subzone RPc2A. In RPc2B, modern mesic conditions 

developed as a high-centred polygon emerged. The lower boundary of zone RPc2B could not 

be more accurately dated, as the age range lay within the past 300 years, where radiocarbon 

dating is linked to large uncertainties (see above). In accordance with the available dates we 

suggest that the transition to drier conditions happened within the twentieth century. 

Macroremains of plants were entirely from mesic taxa that were identified at the site during a 

vegetation survey in 2012 (e.g., Eriophorum vaginatum, see Table 5.4, (Wolter et al. 2016). A 

sharp increase in TOC/TN and a drop in δ13C indicated that carbon increasingly derived from 

terrestrial plant sources (Meyers & Terranes 2001). TOC stayed very high and exceptionally 

stable, thus we infer that the carbon signature did not present a decomposition signal, but an 

alteration in carbon source, towards more mesic plant taxa, particularly to an increase in the 

deciduous dwarf shrub Betula glandulosa. 

Margin core 
 

The core showed peat of different genesis: the lower zone indicated a shallow submerged 

environment superceded by peat typical for low-centred polygons and a hiatus we interpreted 

as an erosion surface, until in the upper zone peat formation was re-initiated. The margin core 

from Roland Polygon was located only 4 m from the centre core, and basal dates (~7000 cal. 

yrs BP) matched the centre core. RPr1A was, however, not made up of lake sediment but of 

peat from wet terrestrial plants, as indicated by very high TOC, relatively low TOC/TN, and 

high δ13C. The plant macrofossil record contained no aquatic plants. Instead, mesic terrestrials, 

large amounts of Carex seeds and some Daphnia ephippiae were found (Figure 5.5, Table 

5.4). The genus Carex contains semiaquatic species such as C. aquatilis, which often 

dominates aquatic communities in tundra ponds associated with ice-wedge polygonal terrain 

(e.g. Bliss 1956). Daphnia is found in partly submerged areas around lakes or in ponds (e.g. 

Gliwicz 2003). We suggest that during the Mid-Holocene an ice-wedge polygon with a 

seasonally or permanently submerged pond existed in the shallow reaches of a lake as seen 

around modern lakes in the region (Figures 5.2a, c). 
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During the time period corresponding to RPr1B drier conditions established, indicated by 

decreasing δ13C, rising TOC/TN, decreasing amounts of Carex seeds, absence of aquatics, 
and increasing dominance of mesic terrestrials (Figure 5.5, Table 5.4). The vegetation mosaic 

reflected typical moisture gradients found in ice-wedge polygons in the region (Wolter et al. 
 

2016). Radiocarbon ages in RPr1B ranged from ca. 5000 cal. yrs BP to dates within the last 
 

300 years. The zone was capped by a distinct facies break, at which a hiatus of nearly 5000 

cal. years occurred within 3 cm of sediment (Table 5.1). This may have been caused by lateral 

displacement or decomposition of peat. We suggest that erosive action, rather than 

decomposition alone, caused the removal of material, as no signs of intensive decomposition 

were found in adjacent layers. A similar erosion surface was found in Komakuk Polygon, 

where it was most prominent in the polygon margin as well. 

RPr2 comprised modern peat that formed within the last 300 years. Very high and uniform 

TOC contents indicated stable peat accumulation. The shift towards drier conditions that we 

saw in the polygon centre core was repeated here, with TOC/TN decreasing strongly and 

Carex disappearing. This supported evidence for conversion from a low-centred polygon to a 

high-centred polygon, probably as recently as the twentieth century. 

Roland Polygon was located at the margins of a lake during the Mid-Holocene and at least 

seasonally covered by shallow water. At some point after lake drainage, erosive removal of 

material created a ~5000 cal. year hiatus. The centre core stabilized and has been accumulating 

peat in a low-centred polygon since 600 cal. yrs BP, and the margin core followed during the 

last 300 years. The modern high-centred polygon likely emerged during the last century. 
 

5.6.2 Climate vs. geomorphic disturbances as drivers of change in 
ice-wedge polygons 

The prerequisites for ice-wedge polygon development (waterlogged ground, permafrost, 

extreme ground-penetrating cold during winter) are determined by climate and 

geomorphology.  Ice-wedge polygon initiation and conversion of low-centred into high- 

centred polygons is therefore strongly related to the dynamics of and the interplay between 

both. 

Investigations into radiocarbon dates have revealed broad climate-induced simultaneous 

patterns of peatland initiation (MacDonald et al. 2006, Jones & Yu 2010). Strong seasonality 

and high summer temperatures have been suggested as drivers of intensive peatland formation 

during the Holocene Thermal Maximum in Alaska (Jones & Yu 2010). Our study of Mid- to 
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Late Holocene ice-wedge polygon development found spatially heterogeneous peat formation 

in polygons around 7000 cal. yrs BP (after the regional Holocene Thermal Maximum), under 

conditions much wetter than today (Figure 5.7). We found no climate-induced peat initiation 

in following millennia, when regional climatic patterns were largely stable. In the last 

millenium, however, re-initiation of ice-wedge polygon development and peat growth in 

Komakuk Polygon and Roland Polygon during the regional Little Ice Age (ca. AD 1600-1850 

(D'Arrigo et al. 2006, Bird et al. 2009, McKay & Kaufman 2014)), suggested a climatic link. 

Topographic evidence suggests geomorphic causes for ice-wedge polygon initiation on the 

Yukon Coastal Plain, where most polygon fields, including the ones we studied, are situated 

in drained thaw lake basins. Additionally, the initiation of Ptarmigan Polygon was likely 

linked to sea level rise. When Workboat Passage was flooded 1600-600 cal. years ago (Forbes 

1980, Hill et al. 1985, Burn 2013), the relative topography in the area was flattened, with very 

low coastal bluffs (1-2m). This increased water retention on land, facilitating ice-wedge 

polygon development and peat growth. 

The conversion of low-centred polygons to high-centred polygons is thought to be linked to 

internal self-organisation (Zoltai & Pollett 1983, Mackay 2000) or improved drainage (e.g. 

Hussey & Michelson 1966). Shifts from aquatic to high-moisture wetland vegetation and 

finally to mesic wetland vegetation were evident in our cores (Figure 5.7, Tables 5.2, 5.3, 

5.4). The conversion of low-centred polygons to better drained forms likely happened during 

twentieth century in all polygons (Figures 5.3, 5.4, 5.5, 5.7, Tables 5.2, 5.3, 5.4). Komakuk 

Polygon switched from a low-centred polygon with dwarf shrub growth on the rims to an 

intermediate-centred polygon where dwarf shrubs had also established in the polygon centre. 

Ptarmigan Polygon was the most stable, yet the polygon rim changed from Cyperaceae- 

dominated to dwarf-shrub-dominated, indicating drying (Table 5.3). Roland Polygon showed 

a complete development from low-centred to high centred. All three polygons have been 

reported to show signs of recent ice-wedge degradation (Wolter et al. 2016). 

The conversion of one polygon type to another may result from internal self-organization 

through two main processes: lateral movement of material adjacent to ice wedges may widen 

ice-wedge troughs and displace material towards the polygon centre, where a mound 

establishes (Mackay 2000). Vegetation growth in polygon centres exceeding the upwards 

growth of the surrounding ice wedges, may also result in a well-drained mound of peat 

surrounded by water-filled trenches (Zoltai & Pollett 1983, Ellis & Rochefort 2004). Both 

processes act on time-scales of centuries to millennia, contrasting with the rapid conversions 

we found. 
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Improved drainage may result from a change in topographic gradient and thus in surface flow 

patterns, or from ice wedge degradation promoting drainage of polygon centres into the 

surrounding ice wedge troughs. The modern position of Komakuk Polygon and Roland 

Polygon on elevated surfaces above lakeshore bluffs of several meters height (Figure 5.2a,c) 

indicate that drainage outweighs water input to these polygons, facilitating conversion to 

high-centred polygons. The climate-induced process of ice-wedge degradation is also evident 

in the polygons and may be rapid: Ice-wedge degradation and establishment of drainage 

channels within a few decades have been reported from the Arctic Coastal Plain of Alaska 

(Jorgenson et al. 2006, Liljedahl et al. 2016), the Eastern Canadian Arctic (Fortier et al. 2007) 

and Siberia (Czudek & Demek 1970). 

In the two studied ice-wedge polygons that experienced conversion from low-centred to 

intermediate-centred (Komakuk Polygon) or high-centred (Roland Polygon), both rim cores 

and one centre core showed a hiatus of at least 5000 cal. years caused by erosion of 

sedimentary material (Figure 5.7), indicating significant disturbance. Several processes might 

have caused material loss: lateral material displacement caused by ice wedge growth (Mackay 

2000), increased runoff (Liljedahl et al. 2016) facilitating thermal erosion, erosion as a result 

of ice-wedge degradation (Fortier et al. 2007), or peat decomposition as a result of better 

aeration, higher temperatures and increased microbial activity (Zoltai & Pollett 1983). No 

disturbances in peat accumulation were indicated in low-centred Ptarmigan Polygon (this 

study), nor in a low-centred ice-wedge polygon studied on Herschel Island (Fritz et al. 2016), 

which showed undisturbed peat formation for 3000 cal. years. The question whether 

disturbance triggered later drainage of the polygon centres and finally led to relief inversion 

cannot be answered at this stage, but will be worth investigating. To our knowledge, no 

similar erosion event in an ice-wedge polygon has been reported elsewhere in the Arctic. 

The changes we observed (peatland initiation, change from low-centred to high-centred) were 

mostly caused by geomorphological change such as sea-level rise, tapping and draining of 

adjacent lakes, or changes in drainage pathways across the landscape. In permafrost-affected 

landscapes, climatic change may trigger widespread geomorphological change, especially 

where unconsolidated ice-rich sediments dominate. Such climate-induced geomorphological 

change may have locally variable impacts, but its frequency is likely to increase under 

climatic change. Regionally synchronized ice-wedge polygon development requires a higher 

amplitude and seasonality of temperature and precipitation change than evident for the Mid- 

to Late Holocene. Our findings indicate that modern warming, however, may have triggered 



· Chapter 5 · 

122 

 

 

 
 
regionalized conversion from low-centred polygons to high-centred polygons. This process 

may rapidly initiate irreversible self-enhancing erosion of ice-wedge polygons. 
 

5.6.3 Factors promoting stability of ice-wedge polygons 
 
Roland Polygon experienced stability for at least 2000 cal. years during the Mid-Holocene 

(ca. 7000-5000 cal. yrs BP, Figure 5.5, Table 5.4), under considerably wetter conditions than 

today. The site was stable when a productive shallow lake area existed directly adjacent to or 

overlapping the partly submerged ice-wedge polygon. Ptarmigan Polygon had been stable at 

least from 1100 cal. yrs BP until recent drying and shrub expansion into the polygon. The 

protected and low coast along Workboat Passage likely facilitated ice-wedge polygon stability 

by minimizing drainage. Stable conditions over millennia have been reported from an ice- 

wedge polygon on Herschel Island (Fritz et al. 2016). Its position in a depression between 

rolling hills likely provided the polygon with excess surface moisture, outweighing drainage 

through an outlet channel down the coastal bluffs. 

Late  Holocene  climatic  conditions  were  relatively  stable  on  the  Yukon  Coastal  Plain 

compared with the high-amplitude oscillations at the Pleistocene-Holocene transition and 

during the Early Holocene. The main climatic change related to increasing proximity to the 

sea, causing lower summer temperatures (Burn 1997, Burn & Zhang 2009) and increased 

summer precipitation (Fritz et al. 2012a), both likely to stabilize ice-wedge polygons. Our 

results indicate that a non-negative water balance was the main factor promoting stability 

during low-amplitude climatic fluctuations. When continued moisture supply, e.g. from 

upslope, outweighs drainage, stable low-centred polygons prevail, while decreasing moisture 

supply from the surrounding landscape or increasing drainage caused by geomorphological 

processes such as coastal erosion, thermal erosion or thermokarst triggers conversion into 

high-centred polygons. 
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5.7 Conclusions 
 
This study reconstructed mid-Holocene a well as Late Holocene landscape features in coastal 

lowland tundra on the Yukon Coastal Plain. It traced the development of shallow lakes to low-

centred ice-wedge polygons and subsequently to high-centred polygons. During the Mid-

Holocene, the studied sites contained shallow lakes and generally wetter conditions. This was 

followed by an erosional hiatus of ca. 5000 years, which indicated disturbance in high- and 

intermediate-centred polygons. Re-initiation of ice-wedge polygon development coincided 

roughly with the Little Ice Age. In recent decades, ice-wedge polygons on the Yukon Coastal 

Plain experienced degradation and drying through warming-induced geomorphological change. 

In our study, the main driver of i) ice-wedge polygon initiation was lake drainage. The main 

driver triggering ii) conversion of low-centred polygons to high-centred polygons was improved 

drainage through ice-wedge degradation and changes in the local topographic gradient. On the 

other hand, stable conditions prevailed for millennia in ice-wedge polygons under low-amplitude 

climatic change as long as a non-negative water balance was maintained in the polygon field. 

Modelling of the development of polygon fields through time must thus focus on temperature 

constraints as well as landscape water balance and flow paths. Extreme climatic change 

triggered simultaneous developments such as widespread peat initiation during the Holocene 

Thermal Maximum. During low-amplitude climatic fluctuations in the Late Holocene, 

geomorphic disturbance was the main driver of locally variable ice-wedge polygon dynamics.  
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6 Synthesis and Discussion 
 
 
 
This thesis aimed at reconstructing landscape and vegetation of the Yukon Coastal Plain 

during the Mid- to Late Holocene and at identifying drivers of landscape development and 

vegetation change in periglacial tundra environments. It used a wide range of methods to 

examine the sedimentological, geochemical, ecological and limnological properties of lake 

and surficial sediments at sites located both inside and outside the former maximum extent of 

the Wisconsin glaciation. The strength of this methodological approach was to combine 

records related to different temporal scales and to articulate findings in both a regional and 

local context. This synthesis follows that general framework. It discriminates short-term from 

long-term environmental processes and pinpoints specific drivers of regional and local change 

as well as factors related to landscape and vegetation stability. It focuses on the interplay 

between climate, geomorphology, and vegetation, which is characterized by linear and non- 

linear relationships, both in time and space. 

 
6.1 Mid- to Late Holocene landscape and vegetation 

development of the Yukon Coastal Plain 
 

6.1.1 Long-term trends 
 
 
 
The most important climatic change on the Yukon coast during the last 6000 years was an 

increasing maritime influence on summer climate caused by sea level rise and shoreline 

transgression (Burn 1997, Fritz et al. 2012a). This led to a cooling of summer temperatures. 

Winter  temperatures  remained  largely  unaffected  because  the  frozen  sea  acts  as  a  land 

surface. Yet, sea ice cover is already decreasing and is projected to decrease further, both in 

spatial extent and seasonal duration (e.g. Holland et al. 2006, Comiso et al. 2008, Stroeve et 

al. 2012). A reduction in sea ice extent will further alter climatic seasonality, and could lead 

to increased annual precipitation by extending the length of cool and moist summers (e.g. 

Higgins & Cassano 2009). Impacts of sea ice decline on coastal areas also include increased 

permafrost thaw (Lawrence et al. 2008), a lengthening of the growing season and shrub 
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expansion (Bhatt et al. 2010, Post et al. 2013), an increase in tundra fires (Hu et al. 2010), or 

changes in carbon flux (Parmentier et al. 2013). 

 
Thaw lake initiation and decline 

 
The landscape on the Yukon Coastal Plain was strongly affected by the thawing of ice-rich 

permafrost over time. Thaw lake initiation was most widespread in the early Holocene, when 

increased thermokarst created a well-documented thaw unconformity during the Holocene 

thermal maximum (ca. 11500-9000 cal  yrs BP) (Rampton 1982, Burn  1997, Fritz et al. 

2012b). Thaw subsidence of ice-rich sediments initiated numerous large water-filled 

depressions, the so-called thermokarst lakes or thaw lakes. The modern topography of the 

coastal plain shows partially or entirely drained thaw lakes, in which ice-wedge polygons 

abound. These thaw lakes were already declining in spatial extent in the Mid-Holocene, as 

evident from our study of sediment cores from ice-wedge polygons, which were situated in 

marginal reaches of drained thaw lake basins (Chapter 5). The studied sites were only 

shallowly submerged or already part of a peaty ice-wedge polygon by 6000 cal. yrs BP. At the 

study site on Herschel Island, the thaw lake that preceded the modern ice-wedge polygon 

drained at approx. 4000 cal. yrs BP due to coastal erosion (Chapter 4). Climatic cooling after 

the Holocene thermal maximum likely decreased thermokarst activity, leading to thaw lake 

decline as more thaw lakes were drained than initiated. 

 
Ice-wedge polygon initiation and stages 

 
This thesis documented ice-wedge polygon initiation and maturation through different stages 

during the Mid- to Late Holocene. All studied ice-wedge polygons formed in drained thaw 

lake basins. The results of this thesis show that the initiation of ice-wedge polygon and peat 

development started before 7000 cal. yrs BP at the sites where an intermediate- and a high- 

centred polygon are found today. The modern low-centred polygons, however, were initiated 

during the Late Holocene (Chapters 4, 5). The Mid-Holocene decline in thaw lake extent 

facilitated ice-wedge polygon initiation by providing newly exposed waterlogged sediments. 

This agrees with findings from Alaska (e.g. Jones et al. 2011). The inception of ice-wedge 

polygons was followed by periods of stable peat accumulation in individual low-centred ice- 

wedge polygons on the Yukon Coastal Plain and Herschel Island, which lasted for millenia 

(Chapters 4, 5). This thesis showed that shallow lake environments developed into wet low- 

centred polygons and into mesic low-centred polygons at all investigated sites. Two of the 

sites   dried   and   degraded   further   and   became   intermediate-centred   or   high-centred, 
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respectively (Chapter 5). This supports the theory of successional stages of ice-wedge polygon 

development, as found in other studies (Ovenden 1982, Vardy et al. 1997, De Klerk et al. 

2011). Yet, no thaw lake cycles with renewed thaw lake initiation were found, as found by 

(Billings & Peterson 1980, Jorgenson & Shur 2007, Lenz et al. 2016b) for other locations in 

the North American Arctic. These cycles may simply not have been captured in the studied 

records, as they take many millennia to unfold. On the other hand, drastic changes in 

geomorphology caused by increased thaw and thaw subsidence, coastal erosion and thermal 

erosion in the context of recent warming are likely to disrupt these cyclicities. Some studies 

even found recurrent phases of wet and dry conditions in peat-forming ice-wedge polygons 

(Ellis et al. 2008, Teltewskoi et al. 2016), underlining that multiple pathways are possible. 

 
Vegetation development 

 
During the Holocene Thermal Maximum, the treeline extended further north into the 

Tuktoyaktuk Coastlands, persisting well into the Mid-Holocene (Ritchie et al. 1983). No such 

treeline advance was recorded on the Yukon Coastal Plain, where tundra vegetation prevailed 

throughout the entire Holocene (Fritz et al. 2012a), which could be supported by this thesis. 

The regional vascular plant species diversity likely did not change throughout the Mid- to 

Late Holocene, yet the decline of submerged surfaces in the context of the lake decline 

addressed in section 6.1.1.1 has altered local vegetation composition and cover. A Late 

Holocene decrease in aquatic and semiaquatic plant taxa in favour of terrestrial wetland and 

mesic taxa was found in the studied ice-wedge polygons (Chapters 4, 5). Palaeoecological 

studies of ice-wedge polygon development in northwest Canada have found a similar 

unidirectional vegetation succession (Ovenden 1982, Vardy et al. 1997), while other studies 

from the Canadian High Arctic and the Siberian Arctic have found repeated switches between 

taxa typical for wet conditions and taxa typical for dry conditions (Ellis & Rochefort 2006, 

Teltewskoi et al. 2016). 
 

6.1.2 Short-term trends 
 
 

Thaw lake deepening 
 
Chapter 3 presents impacts of short-term climatic fluctuations of the last three centuries on an 

extant thaw lake. This lake deepened around AD 1910, after the regional Little Ice Age (~AD 

1600-1850) (D'Arrigo et al. 2006, McKay & Kaufman 2014) ended and twentieth century 

warming started. Warming-induced deepening of thaw lakes is generally attributed to
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increased thaw of ice-rich permafrost under the lakes (Hopkins 1949, Rampton 1982, Lenz et 

al. 2013). This process may unfold within a few years to decades (Chapter 3). 

 
Rapid ice-wedge initiation and degradation 

 
Ice-wedge initiation and degradation can happen equally rapidly. Chapter 4 showed that 

revegetation of the exposed thaw lake floor after drainage was accompanied by initiation of 

ice-wedge cracking, probably within the first winters after drainage. This process has been 

observed on recently drained lakes on the Beaufort Sea coastal plains (Hopkins 1949, Mackay 

1974b, 1999). Ice-wedge degradation can act on decadal timescales (Mackay 1974b, Jorgenson 

et al. 2006, Fortier et al. 2007). This is supported by findings presented in Chapters 2 and 5. 

All four ice-wedge polygons studied in this thesis experienced drying (Chapter 5) and ice-

wedge degradation (Chapter 2) during the last century, likely within a few decades. 
 

Vegetation dynamics 
 
Short-term vegetation dynamics are often linked to geomorphic disturbances providing bare 

ground for seedling establishment or to rapid and strong climatic change such as the modern 

warming trend. Chapter 4 reconstructed the rapid revegetation of a thaw lake floor within 

about 100 years after drainage (ca. 4000 cal. yrs BP), with pioneer taxa typical for disturbed 

sites in the Arctic being succeeded by wetland vegetation typical for low-centred ice-wedge 

polygons (see also Chapter 2). Such local change as a response to geomorphic disturbances is 

very common in the Western Canadian Arctic (Ovenden 1986, Cray & Pollard 2015). 

Chapter 3 showed that the regional tundra vegetation remained fairly stable over the past 300 

years, but that short-term local change influenced its composition in the lake catchment. Local 

lake-margin vegetation declined within about 10-20 years at the beginning of the twentieth 

century, while the regional vegetation signal remained largely stable. A similar pattern has 

been found by Niemeyer et al. (2015) for the same time period on the Taymyr Peninsula in 

the Siberian Arctic. As their study site was closer to tree-line than the sites from this thesis, a 

slight increase in larch (Larix sp.) pollen was found in that study, yet the overall vegetation 

composition remained stable. Similarly, a slight recent increase of Alnus pollen was found in 

the study presented in Chapter 3, which could indicate an approaching Alnus shrubline. Shrub 

increase during recent decades has been reported from Herschel Island (Myers-Smith et al. 

2011a) and from other sites in the Alaskan (Tape et al. 2006), Canadian (Ropars & Boudreau 
 

2012), northeast European (Forbes et al. 2010) and Siberian Arctic (Frost & Epstein 2014). It 

is also indicated on the Yukon Coastal Plain (Chapters 2, 3, 5) (Fraser et al. 2014), yet pollen 
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analysis did not capture it well in the study presented in Chapter 3, possibly because of low 

pollen production of some of the taxa involved and a time lag between climate forcing and 

vegetation response. The investigation of modern vascular plant taxa composition and cover 

in the four studied polygons showed that dwarf and low shrubs (predominantly Betula 

glandulosa, various Ericales, and Salix spp.) were present in all of them on slightly elevated 

sites with some drainage (Chapter 2). This shows that these taxa are intrinsically associated 

with local geomorphology and that their expansion under the observed and projected higher 

temperatures and longer growing seasons in the Low Arctic (Høye et al. 2007, Post et al. 

2009) is likely if geomorphic conditions sustain or expand existing microhabitats. 
 
 

6.2 Drivers of change 
 
 

6.2.1 Thaw lakes 
 
Thaw  lakes  are  common  features  in  ice-rich  permafrost  regions,  and  their  initiation  is 

generally  associated  with  a  warm  climatic  period  (e.g.  MacDonald  et  al.  2006).  Their 

drainage, however, can be linked to drivers that are not linearly connected to climate (Jones et 

al. 2011). In this thesis, observed changes in thaw lakes related to lake deepening (Chapter 3) 

and lake drainage (Chapters 4, 5). The deepening of Roland Lake recorded in Chapter 3 

happened within a few years and its timing was linked to climatic warming. In ice-rich 

unconsolidated sediments increased thaw and ground subsidence may cause incipient shallow 

lakes to become deeper and the water-level to rise (e.g. Jorgenson & Shur 2007). Lake 

drainage, which has provided the basis for ice-wedge polygon development at all studied sites 

(Chapters 4, 5), is, however, not necessarily associated with climatic forcing. On Herschel 

Island,  the  timing  and  drivers  of  lake  drainage  are  well  constrained  (description  and 

discussion in Chapter 4). The lake drained at about 4000 cal. yrs BP as a consequence of gully 

incision triggered by erosion of nearby coastal bluffs. Similar geomorphic drivers of localized 

lake drainage have been identified along unconsolidated coasts around the Arctic 

(Romanovskii et al. 2004, Hinkel et al. 2007, Mars & Houseknecht 2007, Marsh et al. 2009). 

One of the most frequent reasons for thaw lake drainage is melting of ice wedges on the 

lakeshores, which at some point provide drainage pathways (Marsh et al. 2009, Jones et al. 

2011). This process likely caused at least two of the lakes that existed at the modern ice- 

wedge polygon sites studied in Chapter 5 to disappear. Thus, ice-wedge degradation and 

coastal erosion, both of which are rapid and climate-sensitive geomorphic processes, were the 

main drivers of lake drainage on the Yukon Coastal Plain during the Late Holocene. Both 
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processes are also climate-sensitive, however, and climatic warming may contribute 

significantly to increased thaw lake drainage. 
 

6.2.2 Ice-wedge polygons 
 
The results from this thesis indicate that the main drivers of change in ice-wedge polygons 

were alterations in drainage regime, some of them warming-induced. This may have been 

caused by landscape-scale geomorphic change such as stream incision or mass movements 

altering pathways of surface water flow (e.g. Rowland et al. 2010) or by relief inversion 

through ice wedge melt (Liljedahl et al. 2016) (for a comprehensive discussion of drivers of 

ice-wedge polygon initiation and development see Chapters 4, 5). It is also hypothesized that 

internal self-organization through lateral material displacement (Mackay 2000) or through 

gradual peat accumulation in polygon centres (Ellis & Rochefort 2006) may cause conversion 

into high-centred polygons. Although present, these two processes were not the main drivers 

for the conversions found in this study. All four polygons investigated in this thesis emerged 

from incipient shallow lake environments, developing first into low-centred ice-wedge 

polygons with wet to partly submerged conditions before experiencing improved drainage in 

the twentieth century, which led to intermediate- and high-centred polygons at two elevated 

sites (Chapter 5). High-centred polygons are known to occupy elevated sites with some 

drainage, while low-centred polygons are found in depressed low-lying sites with impeded 

drainage (Rampton 1982, Schirrmeister et al. 2011b). The findings of this thesis suggest that 

the intermediate-centred and high-centred polygons only experienced improved drainage 

conditions during the twentieth century (Chapter 5), indicating a recent shift in relative relief 

and landscape hydrological conditions during the period of modern warming. Both polygons 

are also currently situated on elevated sites close to lakeshores. The deepening of one of these 

lakes at the beginning of the twentieth century is documented in Chapter 3. Recent increased 

thermokarst activity accompanied by deepening of thaw lakes may have contributed to 

draining the polygons. Stream incision and coastal erosion are also contributing to changing 

drainage pathways and thus promoting the development of high-centred polygons. Such 

climate-induced geomorphic change is increasingly reported from the Arctic (Rachold et al. 

2000, Hinzman et al. 2005, Mars & Houseknecht 2007, Lantuit & Pollard 2008, Günther et al. 
 

2013) and is currently altering landscape water balance and flow paths, which in turn 

determine ice-wedge polygon type. Ice wedges and the surrounding permafrost responded 

rapidly even to low-amplitude climatic change on short time-scales in the studies conducted 

for this thesis (Chapters 2, 4, 5). 
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6.2.3 Vegetation 
 
Vegetation reconstruction in ice-wedge polygons revealed a broad regional development from 

aquatic to wetland taxa on centennial to millennial time-scales. A change towards mesic 

vascular plant taxa then happened during the twentieth century (Chapters 4, 5). The former 

development was locally variable, gradual and slow, while the latter appeared synchronous 

and much more rapid, acting on decadal time-scales and coinciding with climatic warming. 

While the direct cause of vegetation change was ice-wedge melt and the resulting changes to 

ice-wedge polygon morphology, this geomorphic change was indirectly warming-induced. 

This thesis also showed that vegetation patterns were strongly influenced by 

microtopography. In ice-wedge polygon environments, even a few centimetres of elevation 

differences may provide different microhabitats in terms of water availability (Chapter 2). 

These highly structured small-scale vegetation mosaics experienced drying during the 

twentieth century, which was reconstructed from vascular plant macrofossils and sediment 

parameters in peaty sediment cores (Chapters 4, 5). This signal was not reflected in the 300- 

year regional vegetation record from pollen and sediment parameters in a lake sediment core 

(Chapter 3). The core showed regional vegetation stability with only a slight indication of 

shrub increase during recent decades. This discrepancy highlights the diverging interpretative 

scope of different archives and proxies. Plant macrofossils in peat cores generally capture a 

highly localized signal, while pollen in lake sediment is more likely to reflect the regional 

vegetation. Arguably, pollen analysis has a limited taxonomic resolution and environmental 

reconstruction value in tundra environments (Birks & Birks 2000, Gajewski 2006). The 

combination  of  a  set  of  local  records  with  a  regional  one  may  allow  a  much  more 

comprehensive   environmental   reconstruction   than   either   approach   on   its   own.   The 

discrepancy also reflects upon differences in climate-sensitivity of local- and regional-scale 

change. Low-amplitude climatic fluctuations such as the Little Ice Age trigger rapid and 

localized geomorphic change by altering permafrost conditions. This may force a rapid 

vegetation response, while climatic change alone may be buffered within ecosystems, and the 

vegetation response may be strongly delayed (e.g. Davis 1989) and hard to predict. High- 

amplitude climate change as reported from the Pleistocene-Holocene transition (e.g. Andreev 

et al. 2002, Payette et al. 2002) may, however, cause a regional-scale vegetation response on 

long time-scales. 
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6.3 Environmental stability 
 
Environmental stability may be associated with periods of low climatic, geomorphic or 

biological stress, but it may also reflect the capability of a natural system to cope with stress 

up  to  a  certain  amplitude  and  duration  (i.e.  resilience)  (Holling  1973,  Gunderson  2000, 

Chapin et al. 2004). 
 

6.3.1 Thaw lakes 
 
Thaw lakes have been shown to be more stable on the Alaskan Coastal Plain than in the 

Western Canadian Arctic (Hinkel et al. 2007). This has been attributed to flatter terrain and 

consequently lower relief energy and to the presence of non-glacigenic sediments on the 

Alaskan Coastal Plain as opposed to the thick and ice-rich glacigenic sediment layers and 

undulating terrain in the Western Canadian Arctic. At all studied sites in this thesis, lakes 

have been undergoing substantial change in the past (Chapters 3, 4, 5). 
 

6.3.2 Ice-wedge polygons 
 
Stability of ice-wedge polygons is possible if three conditions are met: cold winter 

temperatures, poor ground insulation and a positive ground moisture balance (Kokelj et al. 

2014). Chapter 5 discusses these drivers for the polygons studied in this thesis. Active ice- 

wedge cracking is most widespread where mean annual air temperatures do not exceed -6°C 

(Péwé 1966). In the Low Arctic, where mean annual air temperatures are not much below this 

value, a thick snow and/or vegetation cover may prevent cracking, as it contributes to 

insulating the ground (Kokelj et al. 2014). Thus, a thin snow cover on low-growing vegetation 

facilitates continued ice-wedge cracking and growth in Low Arctic tundra. 

Sufficient moisture supply is another important factor, as thermal contraction is much greater 

in frozen wet ground than in dry ground (e.g. Mackay & Burn 2002). In the course of the 

Holocene, the increasingly maritime climate in the Western Canadian Arctic led to a slight 

cooling  in  summer  temperatures  and  an  increase  in  summer  precipitation,  while  winter 

climate was less affected (Burn 1997, Fritz et al. 2012a). Arguably, increased precipitation 

and lowered evapotranspiration in summer contributed to phases of long-term stability in the 

ice-wedge polygons studied in this thesis by ensuring a stable moisture supply (Chapters 4, 5). 

Finally, internal conditions within the polygon or polygon field itself may enhance stability. 

Minke et al. (2009) and (Donner et al. 2012) have argued that so-called “hydrological 

windows” (i.e. deeply thawed spots) in the rims of low-centred polygons stabilize the 

remaining rims by providing preferential flow paths for the relatively warm surface water in 
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polygon fields. In order to find these hydrological windows, they recommended studying the 

active layer in a 1x1 m grid. The low-centred polygon in which this was done in this thesis 

did reveal a deeper thawed spot and probable subsurface flow path through the polygon 

(Chapter 2). The same polygon has been stable for at least the last 1100 years (Chapter 5), and 

the presence of subsurface flow paths through the active layer may have contributed to 

stability. 
 

6.3.3 Vegetation 
 
Chapter 3 showed that during the last 300 years (ca. AD 1730-2012) the regional vegetation 

remained largely stable even though other elements of the landscape were affected by change. 

While in a European context palynological records covering the Little Ice Age have shown 

vegetation change (e.g. Bjune et al. 2008), the amplitude of change seems to have been lower 

in the Arctic (Niemeyer et al. 2015). On the Yukon Coastal Plain this was likely a 

consequence of localized vegetation change, which levelled out at the regional scale. The 

strong heterogeneity of the landscape, continuous vegetation cover and distance to the tundra- 

taiga ecotone on the Yukon Coastal Plain buffered vegetation response to low-amplitude 

climatic change (see Chapter 3 for a more detailed discussion of the stability signal from that 

study). This thesis also suggests that stable geomorphic conditions in individual low-centred 

polygons facilitated millennial-scale local vegetation stability, even across the low-amplitude 

climatic oscillations of the Late Holocene (Chapter 5). 
 

6.4 Challenges and Outlook 
 
This thesis shed a new light on the interplay between climate, geomorphology, permafrost and 

vegetation on the Yukon Coastal Plain. It identified new research questions directly related to 

these complex relationships at different time-scales during the Holocene. In the following 

section, several knowledge gaps are exemplified, which are relevant both at the regional and 

circumarctic scale. These should form the basis for a thorough understanding of the Holocene 

palaeoenvironment of the region and its recent evolution. These specific knowledge gaps 

should be addressed: 

• The spatial and temporal patterns as well as drivers of Mid-Holocene lake drainage 

on the Yukon Coastal Plain and its influence on regional vegetation composition, 

• The timing, drivers and impacts of erosion events in ice-wedge polygons, 
 

• The   influence   of   marine   transgression   during   the   Holocene   on   climate, 

geomorphology and vegetation of the Yukon Coastal Plain, 
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• The lack of a high-resolution regional climate reconstruction of the last 2000 years 

as a baseline signal, 

• The onset and intensity of shrub expansion during the twentieth century and during 

periods of known climatic warming in the Holocene, including a better 

understanding of the role of geomorphology, 

• The mechanisms behind landscape and vegetation resilience. 
 

This thesis used multiple short cores and a combination of abiotic and biotic proxies to assess 

landscape and vegetation dynamics on different spatial and temporal scales. This approach 

should be compared and extended to Low Arctic sites in Alaska and Siberia, so that the 

findings may be put into a circumarctic context. The use of palaeoecological tools to address 

ecological issues such as resilience to stress, and also the interaction between vegetation and 

geomorphic processes, has considerable potential in tundra ecosystems. The severe limitations 

that extreme climate and permafrost put on plant growth in the Arctic make the study of these 

relations especially promising because of the reduced complexity in the system. Adjusting the 

study design to specific ecological questions is often challenging in studies of the past, and 

requires carefully planned explorative and analytical investigations conducted at multiple sites 

and in a consistent manner. Such studies, however, have the potential to significantly improve 

our scarce knowledge of processes and relations between physical and biotic environment, 

especially in remote high-latitude regions of the Earth. 
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Annex – Supplementary material 
 
 
 
Supplementary material for Chapter 2: 

 

 
 

Supplementary Figure S2.1.        We investigated different ice-wedge polygon types on the flat coastal 

plain and on Herschel Island: (a) Herschel Polygon, low-centred; (b) Komakuk Polygon, intermediate- 

centred; (c) Roland Polygon, low-centred; (d) Ptarmigan Polygon, high-centred. 
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Supplementary Table S2.2. Spearman’s rank correlation coefficients of paired environmental 

parameters. Numbers in boldface show significant correlations (P < 0.01). 
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Relative surface height 0.91 -0.1 -0.14 -0.58 -0.28 0.42 -0.49 0.48 
Permafrost table 0.91 -0.41 -0.35 -0.40 -0.09 0.4 -0.34 0.38 
Active layer depth -0.1 -0.41 0.52 -0.01 -0.2 -0.21 0.06 -0.15 
Soil temperature -0.14 -0.35 0.52 -0.04 0.01 -0.25 0.01 -0.15 
pH -0.58 -0.40 -0.01 -0.04 0.36 -0.64 0.72 -0.75 
Electrical conductivity -0.28 -0.09 -0.2 0.01 0.36 -0.34 0.25 -0.35 
TOC 0.42 0.4 -0.21 -0.25 -0.64 -0.34 -0.52 0.85 
TN -0.49 -0.34 0.06 0.01 0.72 0.25 -0.52 -0.83 

  TOC/TN  0.48  0.38  -0.15  -0.15  -0.75  -0.35  0.85  -0.83   
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Supplementary Table S2.2. Vascular plant species percent cover for all recorded taxa. 

 
Herschel Polygon 
HP00 HP01 HP02 HP03 HP04 HP05 HP06 HP07 HP08 HP09 HP10 HP11 HP12 HP13 HP14 HP15 

Cyperaceae sum 0.526 1.15 0.446 0.531 0.415 0.44 0.535 0.556 0.508 0.383 0.436 0.44 0.305 0.525 1 0.63 
Cyperaceae undifferenciated 0.375 0.625 0.265 0.375 0.375 0.375 0.375 0.375 0.5 0.375 0.375 0.375 0.15 0.15 0.375 0 
Carex aquatilis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex chordorrhiza 0 0 0 0 0 0 0 0.001 0.001 0.001 0.03 0.03 0 0 0 0 
Carex rariflora 0.001 0.15 0.001 0.001 0.005 0.005 0.005 0.03 0.001 0.001 0.001 0.005 0.005 0 0 0.005 
Carex williamsii 0 0 0.15 0.15 0.03 0.03 0.005 0 0.001 0.001 0 0 0 0 0 0 
Eriophorum angustifolium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eriophorum vaginatum 0.15 0.375 0.03 0.005 0.005 0.03 0.15 0.15 0.005 0.005 0.03 0.03 0.15 0.375 0.625 0.625 
Juncus biglumis 0 0 0 0 0.005 0 0 0 0 0 0 0 0 0 0 0 
Luzula confusa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Luzula wahlenbergii 0 0 0 0.005 0.001 0.001 0.005 0.005 0.001 0.005 0.005 0.001 0.005 0.005 0 0 
Hierochloë alpina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hierochloë pauciflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
cf. Dupontia fisheri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Poa arctica 0 0.005 0.005 0 0 0 0 0 0 0 0 0 0 0 0.001 0.001 
Betula glandulosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Salix arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Salix fuscescens 0 0 0.001 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.03 0.03 0 0 0 
Salix pulchra 0.15 0.03 0.03 0 0 0 0 0 0 0 0 0 0.001 0.03 0.15 0.03 
Salix reticulata 0.001 0.03 0.15 0.005 0 0 0 0 0 0 0 0.001 0 0 0 0 
Dryas integrifolia 0 0 0.001 0.005 0 0 0 0 0 0 0 0 0 0 0 0 
Rubus chamaemorus 0.005 0.001 0.005 0.005 0 0 0 0 0 0 0 0.001 0.15 0.15 0.15 0.15 
Cassiope tetragona 0 0.03 0 0.005 0 0 0 0 0 0 0 0 0 0 0.005 0.15 
Empetrum nigrum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ledum decumbens 0 0 0.03 0.005 0 0 0 0 0.005 0 0.005 0 0 0 0 0 
Pyrola grandiflora 0.001 0.15 0.001 0 0 0 0 0 0 0 0 0.005 0.03 0.03 0.03 0.03 
Vaccinium uliginosum 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 
Vaccinium vitis-idaea 0.03 0.15 0.03 0 0 0 0 0 0 0 0 0.001 0.03 0.15 0.03 0.15 
Polygonum bistorta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Polygonum viviparum 0.005 0 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0 0 0 0 
Pedicularis sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis capitata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis lapponica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis oederi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis sudetica 0 0.005 0.005 0.005 0.005 0.005 0 0.005 0.001 0.005 0 0 0 0 0 0 
Pedicularis lanata 0 0 0.001 0.005 0 0 0.005 0 0 0 0 0 0 0 0 0 
Saxifraga nelsoniana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Stellaria longipes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 Tofieldia sp.  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
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Supplementary Table S2.2. Continued. 

 
Komakuk Polygon Roland Polygon 

 KP00 KP01 KP02 KP03 KP04 KP05 KP06 KP07 KP08 KP09 RP01 RP02 RP03 RP04 RP05 RP06 RP07 RP08 
Cyperaceae sum 0.375 1.25 0.3 0.625 0.15 0.03 0 0.75 0.525 0.65 0.15 0.375 0.375 0.375 0.03 0.375 0.15 0.375 
Cyperaceae undifferenciated 0 0.625 0.15 0.625 0.15 0.03 0 0.75 0.375 0.5 0 0 0 0 0 0 0 0 
Carex aquatilis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex chordorrhiza 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex rariflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex williamsii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eriophorum angustifolium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eriophorum vaginatum 0.375 0.625 0.15 0 0 0 0 0 0.15 0.15 0.15 0.375 0.375 0.375 0.03 0.375 0.15 0.375 
Juncus biglumis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Luzula confusa 0 0 0 0 0 0 0 0 0 0 0.005 0 0.005 0.005 0.005 0 0 0 
Luzula wahlenbergii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hierochloë alpina 0 0 0 0 0 0 0 0 0 0 0.005 0 0 0 0.005 0.03 0 0 
Hierochloë pauciflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
cf. Dupontia fisheri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Poa arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Betula glandulosa 0.03 0.15 0.375 0.625 0.625 0.625 0.375 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.03 0.15 0.15 0.005 
Salix arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Salix fuscescens 0 0 0.15 0.03 0.03 0.03 0.03 0.15 0 0.005 0 0 0 0 0 0 0 0 
Salix pulchra 0.03 0.15 0 0.03 0 0 0 0 0.15 0.15 0.03 0 0.03 0.03 0 0 0.03 0 
Salix reticulata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Dryas integrifolia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Rubus chamaemorus 0.005 0.03 0.03 0.03 0.005 0 0 0.005 0.03 0.03 0.15 0.03 0.005 0.03 0.005 0 0.005 0.03 
Cassiope tetragona 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Empetrum nigrum 0.03 0.15 0.03 0.375 0.03 0 0.03 0.03 0 0 0 0 0 0 0 0 0 0 
Ledum decumbens 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.03 0.375 0.15 0.15 0.15 0.15 0.15 0.375 0.15 0.15 0.03 
Pyrola grandiflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vaccinium uliginosum 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vaccinium vitis-idaea 0.375 0.15 0.03 0.15 0.15 0.375 0.15 0.03 0.15 0.15 0.15 0.03 0.15 0.15 0.15 0.03 0.03 0 
Polygonum bistorta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0 
Polygonum viviparum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis sp. 0 0 0 0 0 0 0 0 0 0 0.005 0 0 0 0 0 0 0 
Pedicularis capitata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis lapponica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.005 
Pedicularis oederi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.005 0 0 
Pedicularis sudetica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis lanata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Saxifraga nelsoniana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Stellaria longipes  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
Tofieldia sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Supplementary Table S2.2. Continued. 

 
Ptarmigan Polygon transect I 
PPI02  PPI03  PPI04  PPI05 PPI06  PPI07  PPI08 PPI09  PPI10 PPI11  PPI12  PPI13  PPI14  PPI15  PPI16  PPI17  PPI18  PPI19  PPI20  PPI21  PPI22  PPI23  PPI24 

Cyperaceae sum 0.881  0.6905 0.121   0.96 0.74 0.7 0 0.425  0.35 0.42 0.67 0.335  0.18 0.225   0.3 0.405  0.935  1.01 0.59 0.62 0.35 0.29 0.18 
Cyperaceae undifferenciated 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex aquatilis 0.09 0.16 0.12 0.575  0.74 0.625  0 0.15 0.225  0.28 0.65 0.16 0.06 0.125   0.105  0.31 0.75 0.25 0.275  0 0 0.095   0.05 
Carex chordorrhiza 0.79 0.0055 0.001   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 
Carex rariflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.05 0 0 
Carex williamsii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eriophorum angustifolium 0.001 0 0 0 0 0 0 0.275 0.125 0.14 0.02 0.08 0.12 0.1 0.17 0.095 0.125 0.65 0.15 0.5 0.3 0.185 0.13 
Eriophorum vaginatum 0 0.525 0 0.385 0 0.075 0 0 0 0 0 0.095 0 0 0.025 0 0.06 0.06 0.165 0.09 0 0.01 0 
Juncus biglumis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Luzula confusa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Luzula wahlenbergii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hierochloë alpina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hierochloë pauciflora 0 0 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0 
cf. Dupontia fisheri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 
Poa arctica 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Betula glandulosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Salix arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.285 0.05 0 
Salix fuscescens 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.045 0 0 0 
Salix pulchra 0.105 0.09 0.11 0 0 0.01 0.21 0.055 0.08 0.055 0.12 0.305 0.03 0.71 0.26 0.145 0.005 0.002 0.02 0.02 0 0.05 0.105 
Salix reticulata 0 0 0.0275 0 0 0.001 0.05 0.02 0.05 0.065 0.0175 0 0 0 0 0 0 0 0 0 0.015 0.07 0.075 
Dryas integrifolia 0 0 0.145   0 0 0.005 0.025 0.025 0.08 0.05 0.01 0 0 0 0 0 0 0 0 0 0.275 0.0125 0.03 
Rubus chamaemorus 0 0 0 0 0 0.045 0.085 0.04 0.03 0. 0325 0.04 0 0 0 0 0 0 0 0 0 0 0.11 0.12 
Cassiope tetragona 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Empetrum nigrum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ledum decumbens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pyrola grandiflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vaccinium uliginosum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vaccinium vitis-idaea 0 0 0 0 0 0 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Polygonum bistorta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Polygonum viviparum 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0. 0015 0 0.001 0 0 0 0 0 0 0.001 
Pedicularis sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis capitata 0 0 0 0 0 0 0 0 0.001 0 0 0 0 0. 0005 0 0 0 0 0 0 0 0 0 
Pedicularis lapponica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis oederi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis sudetica 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.005 0.003 0 0 0 
Pedicularis lanata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Saxifraga nelsoniana 0 0 0.001 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 
Stellaria longipes 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tofieldia sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Supplementary Table S2.2. Continued. 
 

Ptarmigan Polygon transect 17 
 A17 B17 C17 D17 E17 F17 G17 H17 I17 J17 K17 L17 M17 N17 O17 P17 Q17 R17 

Cyperaceae sum 0.38 0.4 0.55 0.38 0.62 0.28 0.63 0.5 0.405 0.7 0.74 0.46 0.83 0.6 0.22 0.55 0.9 0.91 
Cyperaceae undifferenciated 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex aquatilis 0.2 0.25 0.35 0.3 0.5 0.2 0.5 0.2 0.31 0.6 0.6 0.4 0.7 0.45 0.1 0.4 0.6 0.7 
Carex chordorrhiza 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 
Carex rariflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Carex williamsii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Eriophorum angustifolium 0.15 0.13 0.2 0.08 0.07 0 0.1 0.2 0.095 0.05 0.08 0.03 0.08 0.15 0.12 0.15 0.3 0.2 
Eriophorum vaginatum 0.03 0.02 0 0 0.05 0.08 0.03 0.1 0 0.05 0.04 0.03 0.05 0 0 0 0 0.01 
Juncus biglumis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Luzula confusa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Luzula wahlenbergii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hierochloë alpina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hierochloë pauciflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
cf. Dupontia fisheri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Poa arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.005 0 0 0 
Betula glandulosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Salix arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Salix fuscescens 0.05 0 0 0 0.13 0.05 0 0 0 0 0 0 0 0 0 0 0 0 
Salix pulchra 0.13 0.22 0.16 0.25 0.05 0.35 0.25 0.14 0.145 0.18 0.22 0.35 0.17 0.2 0.08 0.2 0.09 0.08 
Salix reticulata 0 0.03 0.005 0.1 0.03 0.02 0 0 0 0 0 0 0 0.05 0.3 0.12 0 0 
Dryas integrifolia 0.001 0.003 0.0005 0.08 0.07 0.01 0 0 0 0 0 0.05 0.01 0.15 0.08 0.04 0 0 
Rubus chamaemorus 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0.03 0.25 0.15 0 0 
Cassiope tetragona 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Empetrum nigrum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ledum decumbens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pyrola grandiflora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vaccinium uliginosum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vaccinium vitis-idaea 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0.03 0 0 
Polygonum bistorta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Polygonum viviparum 0.002 0.001 0.001 0.001 0.002 0 0 0.001 0.001 0 0 0.01 0.005 0 0 0 0 0 
Pedicularis sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis capitata 0.002 0 0 0.001 0 0.01 0 0 0 0 0 0 0 0 0.05 0.04 0 0 
Pedicularis lapponica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pedicularis oederi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Pedicularis sudetica  0.005  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   
Pedicularis lanata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Saxifraga nelsoniana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 
Stellaria longipes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Tofieldia sp.  0  0  0  0  0.005  0  0  0  0  0  0  0  0  0  0  0  0  0   
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Supplementary Table S2.2. Results of univariate tree analysis. Relation between shrub species cover and surface height on the left and between shrub sp ecies 

 

cover and active layer depths on the right. The numbers indicate relative surface height (cm) below (or above) which the given species is found. 
 

Surface height (cm below reference) 
1st split 

Active layer depth (cm) 
1st split 

Herschel 
Polygon 

Ptarmigan 
Polygon 

Komakuk 
Polygon 

Roland 
Polygon 

All 
polygons 

Herschel 
Polygon 

Ptarmigan 
Polygon 

Komakuk 
Polygon 

Roland 
Polygon 

All 
polygons 

Betula glandulosa - - ≥ -9.5 ≥ -10.5 ≥ -9.5 - - ≥ 28.5 ≥ 24.5 ≥ 28.5 
Salix fuscescens < -14 < -25 < -17 - <-14 ≥ 30.5 < 26.5 ≥ 29.5 - ≥ 33.5 
Salix pulchra ≥ -6.5 ≥ -23.5 < -9.5 ≥ -5 < -17.5 < 25.5 < 21.5 < 28.5 ≥ 26.5 < 21.25 
Salix reticulata ≥ -12.5 ≥ -17 - - ≥ -16.5 < 32.5 < 22.5 - - < 32.5 
Dryas integrifolia ≥ -16 ≥ -17 - - ≥ -16.5 ≥ 34.5 ≥ 30.5 - - < 31.5 
Rubus chamaemorus ≥ -6.5 ≥ -2.5 ≥ -13 < -10.5 ≥ -3.5 < 28 < 21.5 < 32 ≥ 30.5 < 26.5 
Empetrum nigrum - - ≥ -9.5 - ≥ -9.5 - - ≥ 29.5 - ≥ 29.5 
Ledum decumbens ≥ -12.5 - ≥ -17 ≥ -2.5 ≥ -11 ≥ 30.5 - < 28.5 < 24.5 ≥ 21.75 
Vaccinium vitis-idaea ≥ -11 ≥ -2.5 ≥ -4.5 ≥ -3.5 ≥ -11 < 30.5 ≥ 30.5 < 29.5 < 24.5 ≥ 28.5 

  All shrub species  ≥  -14  ≥  -19.5  ≥  -13  ≥  -3.5  ≥  -11  < 28  < 21.5  < 30.5  < 24.5  ≥  28.5   
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Relative height 
of permafrost table 

(cm below reference) 

Soil 
temperature 

(°C) 

Active layer 
depth 
(cm) 

 
pH 

Electrical 
conductivity 

(µS/cm) 
NA 5 25 4.49 210.5 
-40 5 30 4.27 NA 
-44 8 32 5.64 168.6 
-51 9 36 5.58 279.8 
-54 8 35 5.21 193.6 
-52 8 34 5.57 316 
-53 7 33 5.27 332 
-58 4 33 6.19 271.5 
-52 7 35 5.64 623 
-60 8 35 5.07 352 
-56 6 31 5.65 470 
-53 6 33 5.15 443 

-37.5 4 24.5 4.63 280.1 
-26 9 26 4.16 328 
-28 3 25 4.08 299 
NA 4 21.5 4.62 231.6 
-42 6.5 35 4.65 75.1 
-31 6.7 31 4.56 164.6 
-36 5.1 30 4.18 190.1 
-39 4.8 30 4.4 111.1 
-38 5.4 33 4.25 173.8 
-33 5.1 29 3.88 212.7 
-47 4.7 31 4.1 174 
-51 4.1 33 4.8 135.1 
-36 4 26 4.24 171.7 
-57 5.1 28 5.73 106.1 
-48 6 33 3.63 464 
-39 NA 33 3.71 255.1 
-35 4.8 33 3.96 221.4 
-25 3.6 22 NA NA 
-24 6.2 24 4.55 90.3 
-31 3.3 25 4.04 412 
-32 4.5 28 3.71 240.1 
-53 3.9 33 4.2 95.6 
-51 NA 24 6.281 534 
-44 5.3 23 6.63 462 
-36 4.3 24 6.604 212 
-52 4.7 25 7.08 461 

 

 
TOC 

(wt.%) 

 
TN 

(wt %) 

42.97 0.70 
41.14 0.52 
26.93 1.82 
37.80 2.12 
28.63 1.82 
38.15 1.61 
30.58 1.80 
40.33 1.40 
34.67 1.83 
31.10 2.00 
36.37 1.90 
28.86 1.74 
40.80 1.47 
41.53 0.70 
43.58 0.62 
41.98 0.67 
38.29 1.89 
42.41 1.41 
44.01 1.27 
39.77 2.17 
41.39 2.15 
39.77 1.74 
40.82 1.76 
41.63 1.87 
42.96 1.29 
41.29 2.02 
43.40 1.04 
44.20 1.25 
41.50 1.23 
42.39 0.67 
35.92 1.59 
42.76 1.58 
44.63 1.06 
39.18 0.76 
35.93 2.12 
33.35 2.03 
33.35 2.09 
38.91 2.21 

 

 
 

Supplementary Table S2.4. Measured environmental parameters for all studied ice-wedge polygons. 
 
 

 
 

Herschel 
Polygon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Komakuk 
Polygon 

 
 
 
 
 
 
 
 

Roland 
Polygon 

 
 
 
 
 
 

Ptarmigan 
Polygon 
transect 
E-W 

Relative surface height 
(cm below reference) 

 

HP00  NA 
HP01 -10 
HP02 -12 
HP03 -15 
HP04 -19 
HP05 -18 
HP06 -20 
HP07 -25 
HP08 -17 
HP09 -25 
HP10 -25 
HP11 -20 
HP12 -13 
HP13 0 
HP14 -3 
HP15 NA 
KP00  -7 
KP01 0 
KP02 -6 
KP03 -9 
KP04 -5 
KP05 -4 
KP06 -16 
KP07 -18 
KP08 -10 
KP09 -29 
RP01 -15 
RP02 -6 
RP03 -2 
RP04 -3 
RP05 0 
RP06 -6 
RP07 -4 
RP08 -20 
PPI02 -27 
PPI03 -21 
PPI04 -12 
PPI05 -27 

 
TOC/TN 
 

61.16 
78.65 
14.77 
17.81 
15.77 
23.68 
16.97 
28.72 
18.94 
15.57 
19.15 
16.61 
27.75 
59.62 
70.36 
62.31 
20.28 
30.14 
34.63 
18.36 
19.29 
22.80 
23.14 
22.31 
33.25 
20.43 
41.89 
35.44 
33.83 
62.86 
22.63 
26.99 
42.10 
51.79 
16.96 
16.41 
15.94 
17.59 
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Supplementary Table S2.4. Continued. 

 
 

 
Relative surface 

height 
(cm below reference) 

Relative height 
of permafrost table 
(cm below reference) 

Soil 
temperature 

(°C) 

Active layer 
depth 
(cm) 

pH 
Electrical 

conductivity 
(µS/cm) 

TOC 
(wt.%) 

TN 
(wt %) TOC/TN 

 PPI06 -33 -61 6.1 28 6.425 681 43.29 1.68 25.80 
 PPI07 -33 -61 9.1 28 6.555 204 41.47 1.87 22.22 
 PPI08 -1 -32 6.5 31 4.068 428 41.98 0.94 44.70 
 PPI09 -4 -31 3.1 27 6.489 423 32.35 1.98 16.32 
 PPI10 -16 -44 4.2 28 6.515 320 34.19 2.07 16.51 
 PPI11 -12 -34 4.4 22 7.232 518 30.19 2.11 14.33 
 PPI12 -13 -32 3.8 19 5.727 419 40.81 2.30 17.78 
 PPI13 -23 -47 3.6 24 5.768 335 38.92 2.42 16.10 
 PPI14 -23 -50 5.6 27 5.455 533 31.62 2.08 15.21 
 PPI15 -18 -39 3.3 21 6.535 379 35.50 1.81 19.58 
 PPI16 -18 -42 5.2 24 5.129 644 36.26 2.04 17.82 
 PPI17 -27 -54 4.4 27 5.993 198.4 37.25 2.15 17.31 
 PPI18 -27 -54 5.1 27 NA NA 38.83 2.27 17.11 
 PPI19 -28 -58 5.4 30 6.802 542 33.98 2.18 15.56 
 PPI20 -24 -52 4.3 28 6.463 366 37.09 2.34 15.85 
 PPI21 -26 -52 8.8 26 6.901 563 35.18 2.30 15.26 
 PPI22 -8 -39 4.3 31 7.329 292 35.23 2.33 15.13 
 PPI23 -23 -44 4.1 21 7.222 479 36.54 2.22 16.44 
 PPI24 0 -25 3.4 25 4.981 323 43.06 1.00 43.22 
Ptarmigan 
Polygon 
transect 
S-N 

A17 -30 -45 4.3 15 NA NA NA NA NA 
B17 -18 -46 4.5 28 NA NA NA NA NA 
C17 -9 -37 4.6 28 NA NA NA NA NA 
D17 -15 -38 4 23 NA NA NA NA NA 
E17 -10 -40 5.1 30 NA NA NA NA NA 
F17 -22 -44 5.6 22 NA NA NA NA NA 
G17 -30 -53 4.3 23 NA NA NA NA NA 
H17 -19 -44 4.2 25 NA NA NA NA NA 
I17 -26 -53 5.1 27 NA NA NA NA NA 
J17 -23 -50 5.1 27 NA NA NA NA NA 
K17 -21 -48 3.4 27 NA NA NA NA NA 
L17 -21 -49 2.9 28 NA NA NA NA NA 
M17 -19 -43 4.6 24 NA NA NA NA NA 
N17 -20 -43 2.3 23 NA NA NA NA NA 
O17 0 -25 2.4 25 NA NA NA NA NA 
P17 -17 -41 NA 24 NA NA NA NA NA 
Q17 -24 -50 NA 26 NA NA NA NA NA 
R17 -26 -55 NA 29 NA NA NA NA NA 
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Supplementary material for Chapter 3: 

 
 

Supplementary Table S3.1. 210Pb/137Cs dating results for the studied short core PG2108. 

Values in italics have very large uncertainties due to very low concentrations of 210Pb close to the 

limit of detection 

(Appleby and Piliposian, 2013). 
 

Depth level 
(cm) 

Age 
(yrs AD) 

Sedimentation rate 
(cm yr-1) 

0.00 2012 ± 0 
0.25 2011 ± 1 0.21 ± 15% 
1.25 2006 ± 2 0.19 ± 15% 
2.25 2000 ± 2 0.17 ± 20% 
3.25 1994 ± 2 0.14 ± 17% 
4.25 1986 ± 3 0.12 ± 17% 
5.25 1977 ± 4 0.12 ± 20% 
6.25 1969 ± 5 0.14 ± 33% 
7.25 1963 ±5 0.17 ± 32% 
8.25 1957 ± 7 0.20 ± 36% 
9.25 1953 0.24 
10.25 1949 0.24 
11.25 1944 0.24 
12.25 1940 0.24 
13.25 1936 0.24 

 
 
 

Supplementary Table S3.2. Results of Accelerator Mass Spectrometry (AMS) radiocarbon dating. 

 
 
 
 
 
 
 
 
 
 
 

Sample ID 

Radiocarbon 
age 
(yrs. BP) 
 

Calibrated age  
(yrs. BP) 
2 σ range 
 

Age range 
corrected  
(cal yrs AD) 
reservoir age 
(1062 years) 
subtracted 

Dated material 

PG 2108 13-13.5 cm 1158 ± 28 983-1175 1837-2012  
Moss remains  
(Drepanocladus sp. water form) 
 

PG 2108 25-25.5 cm 1305 ± 27 1182-1291 1721-1830 
PG 2108 34-34.5 cm 1205 ± 32 1012-1256 1756-2000 
PG 2108 41-41.5 cm 1409 ± 27 1287-1351 1661-1725 
PG 2108 47-49 cm 1350 ± 27 1187-1310 1702-1825 
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Supplementary Table S3.3.          Pollen and spore abundances, TOC/TN ratio and stable carbon isotopes 

(δ13C) from the studied short lake sediment core PG2108 used in statistical analyses of lake system 
response to climatic change. Reconstructed temperature data have been smoothed with an 11-year moving 

average
. 

 
 
Depth 
level (cm) 

Cyperaceae 
(pollen 
abundance) 

 

Ranunculus 
(pollen 
abundance) 

 

Equisetum 
(spore 
abundance) 

13 δ  C 
(‰ vs. 
VPDB) 

 
TOC/TN 
(atomic) 

Reconstructed temperature 
RCS tree-ring composite 
Yukon, D’Arrigo et al., 2006 
(normalized index, smoothed) 

0 14.21 1.35 0.00 -29.34 8.76 NA 
1.25 13.38 0.44 0.44 -29.04 9.14 NA 
2.25 12.64 0.00 0.00 -28.32 9.02 NA 
3.25 12.64 0.00 0.00 -28.71 9.65 1.21 
4.25 18.71 0.00 0.48 -28.83 10.98 1.27 
5.25 26.09 0.00 1.24 -28.78 9.39 1.31 
6.25 21.22 0.00 0.41 -28.25 8.89 1.41 
7.75 22.27 0.39 0.39 -27.84 8.93 1.52 
9.75 20.51 0.00 0.30 -27.85 8.32 1.51 
11.25 27.80 0.00 0.64 -28.53 9.86 1.50 
12.75 28.20 0.38 0.38 -28.29 9.21 1.54 
14.75 24.02 0.83 1.24 -28.13 10.94 1.48 
16.25 35.86 0.34 1.03 -28.44 11.86 1.34 
18.25 30.34 2.40 1.60 -29.32 14.69 1.18 
20.25 21.94 12.24 0.42 -29.67 13.58 1.18 
22.25 28.04 5.23 1.50 -28.75 12.45 1.06 
24.25 23.85 1.47 0.37 -27.72 10.92 0.98 
25.25 17.46 0.55 0.27 -28.94 11.20 0.96 
26.25 16.38 0.49 2.44 -28.88 12.88 0.95 
27.75 26.29 2.59 0.86 -28.84 10.87 0.82 
28.25 34.07 3.95 0.49 -28.85 11.95 0.79 
30.25 23.57 5.89 0.65 -29.56 14.25 0.85 
31.25 24.37 12.66 0.00 -28.92 12.82 0.92 
32.25 22.03 5.62 0.86 -28.85 13.46 0.88 
34.25 20.07 3.94 0.72 -29.05 12.76 0.96 
36.25 21.73 3.30 1.38 -29.04 12.71 1.09 
37.75 16.36 2.23 0.00 -27.46 10.30 1.06 
39.25 20.83 1.71 0.57 -27.54 9.79 1.01 
41.25 14.57 1.51 0.00 -28.86 12.54 1.15 
42.25 25.38 4.55 1.89 -29.36 12.45 1.08 
43.75 17.05 4.62 0.00 -28.68 10.12 0.99 
45.25 11.07 0.55 0.28 -28.37 10.85 0.97 
46.25 17.73 1.24 0.00 -28.30 10.89 0.88 
48 21.89 1.61 0.46 -29.59 12.19 NA 
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Supplementary Figure S3.4.        Elemental and carbon isotopic composition of organic matter in the 

studied core. Sedimentary organic matter from samples of Zone 1 (AD 1730-1910, black cross symbols) 

derives largely from terrestrial sources, while in samples from Zone 2 (AD 1910-2012, blue diamond 

symbols), lacustrine algae contribute increasingly to organic matter composition (classification of organic 

matter sources follows Meyers (1994) and Meyers & Lallier-Vergés (1999). 
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Supplementary Table S3.5. Pollen abundances data used in statistical analyses of regional vegetation taxa response to climatic change. 
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Reconstructed temperature 
RCS tree-ring composite 
Yukon, D’Arrigo et al., 2006 
(normalized index, smoothed) 

0.00 34.52 34.52 5.25 1.35 2.71 9.48 7.45 1.02 0.00 0.00 0.00 0.34 0.34 0.34 0.00 0.34 NA 
0.75 36.72 29.51 3.93 1.31 4.59 12.46 5.57 1.97 0.00 0.00 1.31 0.33 0.66 0.00 0.00 0.33 NA 
1.25 33.77 30.70 4.17 0.44 2.41 12.50 10.09 1.10 0.22 0.44 0.44 0.66 0.66 0.22 0.44 0.00 NA 
1.75 31.69 27.82 5.81 0.00 2.82 11.97 10.56 1.41 0.35 0.35 0.70 1.41 1.41 0.00 0.00 0.00 NA 
2.25 26.71 25.99 7.04 1.99 1.44 13.36 12.64 5.42 0.00 0.00 1.44 1.44 0.00 0.00 0.36 0.00 NA 
2.75 37.38 23.47 5.18 0.27 3.82 12.28 9.82 1.91 0.27 0.00 0.00 1.91 0.27 0.27 0.00 0.27 1.31 
3.25 33.99 21.79 5.01 1.31 3.05 16.99 9.59 0.87 0.44 0.00 0.44 0.87 0.44 0.44 0.87 0.44 1.21 
3.75 33.51 28.88 3.03 1.25 2.14 10.70 10.70 2.14 0.00 0.36 0.36 0.36 1.43 0.36 0.00 0.71 1.17 
4.25 35.97 28.30 3.12 1.44 3.84 8.15 9.11 1.44 0.00 0.00 0.48 0.48 2.40 0.00 0.48 0.48 1.27 
4.75 27.70 33.24 7.06 0.54 1.79 10.55 12.69 1.07 0.18 0.00 1.25 0.18 0.00 0.54 0.71 0.00 1.32 
5.25 36.65 29.81 1.55 0.00 1.86 16.77 8.07 0.62 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.00 1.31 
5.75 31.63 30.03 3.51 0.96 2.24 8.95 11.50 1.92 0.00 0.00 0.64 1.92 0.96 0.00 0.32 0.00 1.30 
6.25 40.82 24.49 2.45 0.00 2.04 9.80 10.20 2.86 0.41 0.00 1.63 0.41 0.00 0.00 0.41 0.00 1.41 
7.75 33.20 23.44 4.69 0.00 3.91 10.94 11.33 4.69 0.39 0.00 0.78 2.73 0.39 0.78 0.39 0.39 1.52 
9.75 37.15 30.31 6.39 0.00 3.86 7.13 9.21 2.38 0.30 0.00 0.59 0.89 0.89 0.00 0.00 0.00 1.51 
11.25   35.46 27.16 4.63 0.48 2.56 9.58 11.18 1.28 1.60 0.32 1.28 0.00 0.64 0.00 0.00 0.64 1.50 
12.75   33.46 25.94 6.39 0.75 1.13 13.53 12.78 1.50 0.00 0.00 0.38 1.50 1.13 0.75 0.00 0.00 1.54 
14.75   33.54 24.02 4.35 0.21 2.90 8.70 17.81 2.07 0.00 0.83 0.83 0.83 0.00 0.00 0.00 0.41 1.48 
16.25   45.86 18.28 5.17 0.34 4.48 7.93 4.14 3.10 0.00 0.00 1.03 0.69 1.72 1.03 0.34 0.69 1.34 
18.25   41.52 20.36 4.39 0.20 3.99 8.78 12.77 1.60 0.00 1.20 0.80 0.40 1.60 0.00 0.00 0.00 1.18 
20.25   39.66 23.63 2.74 0.00 5.06 9.70 10.55 1.69 0.00 0.00 0.42 0.42 1.27 0.84 0.00 0.00 1.18 

 
 



 

 

B
et

ul
a 

A
ln

us
 

P
ic

ea
 

P
in

us
 

S
al

ix
 

E
ric

al
es

 

P
oa

ce
ae

 

B
ra

ss
ic

ac
ea

e 

C
ar

yo
ph

yl
la

ce
ae

 

P
ot

en
til

la
 

S
au

ss
ur

ea
 

S
en

ec
io

 

A
rte

m
is

ia
 

Fa
ba

ce
ae

 

R
um

ex
 

P
ol

yg
on

um
 b

is
to

rta
 

Annex 
 
 

Supplementary Table S3.5 continued. 
 

 
 
 
 

Depth 
level 
(cm) 

Reconstructed temperature 
RCS tree-ring composite 
Yukon, D’Arrigo et al., 2006 
(normalized index, smoothed) 

 
 
 
 

22.25 41.12 23.55 5.42 0.00 4.11 10.09 6.73 2.99 0.37 0.75 0.75 0.75 0.75 0.75 0.37 0.00 1.06 
24.25 35.96 25.69 6.42 0.37 3.67 11.74 9.17 1.10 1.10 0.00 0.73 0.73 0.00 0.00 0.00 0.00 0.98 
25.25 42.29 21.28 3.82 0.27 3.55 8.73 10.10 3.82 0.00 0.27 0.00 0.27 1.09 0.82 0.27 0.00 0.96 
26.25 38.14 22.49 4.89 0.61 0.98 13.69 11.25 3.18 0.24 0.24 0.73 0.24 0.73 0.49 0.24 0.24 0.95 
27.75 36.64 25.86 3.45 1.08 3.88 9.48 12.50 1.29 0.00 0.00 1.29 0.86 0.86 0.00 0.00 0.43 0.82 
28.25 44.94 27.65 4.69 0.25 3.46 7.90 4.94 0.99 0.00 0.49 0.00 0.49 0.49 0.00 0.99 0.99 0.79 
30.25 33.39 25.20 4.75 0.33 5.24 11.13 10.15 2.62 0.65 0.33 0.33 0.00 2.62 0.33 0.00 0.33 0.85 
31.25 45.25 22.15 3.16 0.79 3.16 7.28 10.13 2.22 0.32 0.32 0.00 0.63 1.90 0.00 0.32 0.00 0.92 
32.25 38.01 21.60 4.97 0.86 3.89 9.94 12.96 0.86 0.00 1.73 1.30 0.86 0.86 0.43 0.43 0.00 0.88 
34.25 31.18 25.81 3.58 1.08 5.02 7.17 12.54 2.51 0.72 0.36 0.00 0.72 2.15 0.36 0.00 0.00 0.96 
36.25 35.76 25.03 6.46 0.28 1.65 11.83 12.10 1.38 0.28 0.00 0.55 0.55 3.58 0.00 0.00 0.00 1.09 
37.75 36.06 23.79 5.58 0.93 3.72 11.90 12.64 0.37 0.00 0.37 0.37 1.49 0.00 0.37 0.00 0.00 1.06 
39.25 41.08 24.54 6.99 0.57 2.00 9.42 7.42 1.43 1.14 0.29 0.29 1.43 2.00 0.00 0.00 0.29 1.01 
41.25 35.68 20.60 7.29 0.50 1.51 12.56 10.55 2.01 1.01 0.00 1.51 1.01 0.50 0.50 0.50 0.00 1.15 
42.25 40.15 25.38 4.17 0.38 0.76 10.23 9.47 2.65 0.00 0.00 0.38 0.76 1.52 0.38 0.76 0.00 1.08 
43.75 37.66 27.35 1.24 0.71 5.68 7.46 11.72 0.71 0.00 0.00 0.71 0.00 3.20 0.00 0.00 0.36 0.99 
45.25 40.66 22.41 5.12 0.28 4.15 8.30 7.75 1.66 0.00 0.00 0.83 0.55 3.32 0.28 0.83 0.28 0.97 
46.25 37.94 29.28 1.44 1.03 1.24 13.61 11.13 0.41 0.41 0.00 0.41 0.41 0.41 0.82 0.00 0.00 0.88 
46.75 37.43 19.49 4.09 0.00 1.95 13.26 12.87 0.78 0.78 0.00 0.78 0.39 2.34 0.78 0.39 0.00 0.87 
48.00 38.25 22.35 4.84 0.58 1.61 12.90 12.21 1.15 0.69 0.00 0.00 0.46 1.84 1.15 0.00 0.46 NA 
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Supplementary material for Chapter 4: 
 
(a) 

 
 
 

 
 

Figure S4.1.        Setting  and  active  layer  profile of the studied polygon. (a) The  polygon  on 24 July  2013, 

after  monitoring instruments had  been installed. Note the tussocky tops of ridges  and  low-lying or  partly 

submerged center and  troughs. The  photograph faces northwest, roughly in the direction of Figure 3c. (b) 

A pit was dug  on 3 August 2012, to remove  the  active  layer, which  consists  of massive  peat.  (c) A 32 em 

long  block  (monolith) of  peat  was  removed   from   the  pit  in  the  active  layer  for  palaeoenvironmental 

analyses. 
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Figure S4.2.       C/N-δ13C biplot. Combination of atomic C/N ratios and organic δ13C values enable to 

differentiate distinctive organic carbon sources of marine algae, lacustrine algae, C3 land plants and C4 

land plants (according to Meyers, 1994). Samples of different sedi ment units indicate the transition from 

lacustrine to terrestrial carbon sources; the change from in-lake primary productivity versus the 

contribution of C3 land plants. Other sedimentological characteristics of different sediment units can be 

found in the text. 
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