Microbial communities and their response to Pleistocene and Holocene climate variabilities in the Russian Arctic

Diedrich.Fritzsche [ at ] awi.de


The Arctic is considered as a focal region in the ongoing climate change debate. The currently observed and predicted climate warming is particularly pronounced in the high northern latitudes. Rising temperatures in the Arctic cause progressive deepening and duration of permafrost thawing during the arctic summer, creating an ‘active layer’ with high bioavailability of nutrients and labile carbon for microbial consumption. The microbial mineralization of permafrost carbon creates large amounts of greenhouse gases, including carbon dioxide and methane, which can be released to the atmosphere, creating a positive feedback to global warming. However, to date, the microbial communities that drive the overall carbon cycle and specifically methane production in the Arctic are poorly constrained. To assess how these microbial communities will respond to the predicted climate changes, such as an increase in atmospheric and soil temperatures causing increased bioavailability of organic carbon, it is necessary to investigate the current status of this environment, but also how these microbial communities reacted to climate changes in the past. This PhD thesis investigated three records from two different study sites in the Russian Arctic, including permafrost, lake shore and lake deposits from Siberia and Chukotka. A combined stratigraphic approach of microbial and molecular organic geochemical techniques were used to identify and quantify characteristic microbial gene and lipid biomarkers. Based on this data it was possible to characterize and identify the climate response of microbial communities involved in past carbon cycling during the Middle Pleistocene and the Late Pleistocene to Holocene. It is shown that previous warmer periods were associated with an expansion of bacterial and archaeal communities throughout the Russian Arctic, similar to present day conditions. Different from this situation, past glacial and stadial periods experienced a substantial decrease in the abundance of Bacteria and Archaea. This trend can also be confirmed for the community of methanogenic archaea that were highly abundant and diverse during warm and particularly wet conditions. For the terrestrial permafrost, a direct effect of the temperature on the microbial communities is likely. In contrast, it is suggested that the temperature rise in scope of the glacial-interglacial climate variations led to an increase of the primary production in the Arctic lake setting, as can be seen in the corresponding biogenic silica distribution. The availability of this algae-derived carbon is suggested to be a driver for the observed pattern in the microbial abundance. This work demonstrates the effect of climate changes on the community composition of methanogenic archae. Methanosarcina-related species were abundant throughout the Russian Arctic and were able to adapt to changing environmental conditions. In contrast, members of Methanocellales and Methanomicrobiales were not able to adapt to past climate changes. This PhD thesis provides first evidence that past climatic warming led to an increased abundance of microbial communities in the Arctic, closely linked to the cycling of carbon and methane production. With the predicted climate warming, it may, therefore, be anticipated that extensive amounts of microbial communities will develop. Increasing temperatures in the Arctic will affect the temperature sensitive parts of the current microbiological communities, possibly leading to a suppression of cold adapted species and the prevalence of methanogenic archaea that tolerate or adapt to increasing temperatures. These changes in the composition of methanogenic archaea will likely increase the methane production potential of high latitude terrestrial regions, changing the Arctic from a carbon sink to a source.

Item Type
Thesis (PhD)
Primary Division
Primary Topic
Peer revision
Not peer-reviewed
Publication Status
Eprint ID
Cite as
Bischoff, J. (2013): Microbial communities and their response to Pleistocene and Holocene climate variabilities in the Russian Arctic , PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften.

[thumbnail of bischoff_diss.pdf]

Download (5MB) | Preview
Cite this document as:


Geographical region

Research Platforms


Edit Item Edit Item