Aquatic macrophyte-derived biomarkers as palaeolimnological proxies on the Tibetan Plateau

Diedrich.Fritzsche [ at ]


The Tibetan Plateau is the largest elevated landmass in the world and profoundly influences atmospheric circulation patterns such as the Asian monsoon system. Therefore this area has been increasingly in focus of palaeoenvironmental studies. This thesis evaluates the applicability of organic biomarkers for palaeolimnological purposes on the Tibetan Plateau with a focus on aquatic macrophyte-derived biomarkers. Submerged aquatic macrophytes have to be considered to significantly influence the sediment organic matter due to their high abundance in many Tibetan lakes. They can show highly 13C-enriched biomass because of their carbon metabolism and it is therefore crucial for the interpretation of δ13C values in sediment cores to understand to which extent aquatic macrophytes contribute to the isotopic signal of the sediments in Tibetan lakes and in which way variations can be explained in a palaeolimnological context. Additionally, the high abundance of macrophytes makes them interesting as potential recorders of lake water δD. Hydrogen isotope analysis of biomarkers is a rapidly evolving field to reconstruct past hydrological conditions and therefore of special relevance on the Tibetan Plateau due to the direct linkage between variations of monsoon intensity and changes in regional precipitation / evaporation balances. A set of surface sediment and aquatic macrophyte samples from the central and eastern Tibetan Plateau was analysed for composition as well as carbon and hydrogen isotopes of n-alkanes. It was shown how variable δ13C values of bulk organic matter and leaf lipids can be in submerged macrophytes even of a single species and how strongly these parameters are affected by them in corresponding sediments. The estimated contribution of the macrophytes by means of a binary isotopic model was calculated to be up to 60% (mean: 40%) to total organic carbon and up to 100% (mean: 66%) to mid-chain n-alkanes. Hydrogen isotopes of n-alkanes turned out to record δD of meteoric water of the summer precipitation. The apparent enrichment factor between water and n-alkanes was in range of previously reported ones (≈-130‰) at the most humid sites, but smaller (average: -86‰) at sites with a negative moisture budget. This indicates an influence of evaporation and evapotranspiration on δD of source water for aquatic and terrestrial plants. The offset between δD of mid- and long-chain n-alkanes was close to zero in most of the samples, suggesting that lake water as well as soil and leaf water are affected to a similar extent by those effects. To apply biomarkers in a palaeolimnological context, the aliphatic biomarker fraction of a sediment core from Lake Koucha (34.0° N; 97.2° E; eastern Tibetan Plateau) was analysed for concentrations, δ13C and δD values of compounds. Before ca. 8 cal ka BP, the lake was dominated by aquatic macrophyte-derived mid-chain n-alkanes, while after 6 cal ka BP high concentrations of a C20 highly branched isoprenoid compound indicate a predominance of phytoplankton. Those two principally different states of the lake were linked by a transition period with high abundances of microbial biomarkers. δ13C values were relatively constant for long-chain n-alkanes, while mid-chain n-alkanes showed variations between -23.5 to -12.6‰. Highest values were observed for the assumed period of maximum macrophyte growth during the late glacial and for the phytoplankton maximum during the middle and late Holocene. Therefore, the enriched values were interpreted to be caused by carbon limitation which in turn was induced by high macrophyte and primary productivity, respectively. Hydrogen isotope signatures of mid-chain n-alkanes have been shown to be able to track a previously deduced episode of reduced moisture availability between ca. 10 and 7 cal ka BP, indicated by a 20‰ shift towards higher δD values. Indications for cooler episodes at 6.0, 3.1 and 1.8 cal ka BP were gained from drops of biomarker concentrations, especially microbial-derived hopanoids, and from coincidental shifts towards lower δ13C values. Those episodes correspond well with cool events reported from other locations on the Tibetan Plateau as well as in the Northern Hemisphere. To conclude, the study of recent sediments and plants improved the understanding of factors affecting the composition and isotopic signatures of aliphatic biomarkers in sediments. Concentrations and isotopic signatures of the biomarkers in Lake Koucha could be interpreted in a palaeolimnological context and contribute to the knowledge about the history of the lake. Aquatic macrophyte-derived mid-chain n-alkanes were especially useful, due to their high abundance in many Tibetan Lakes and their ability to record major changes of lake productivity and palaeo-hydrological conditions. Therefore, they have the potential to contribute to a fuller understanding of past climate variability in this key region for atmospheric circulation systems.

Item Type
Thesis (PhD)
Primary Division
Primary Topic
Peer revision
Not peer-reviewed
Publication Status
Eprint ID
Cite as
Aichner, B. (2010): Aquatic macrophyte-derived biomarkers as palaeolimnological proxies on the Tibetan Plateau , PhD thesis, Universität Potsdam.


Download (22MB) | Preview
Cite this document as:


Research Platforms


Edit Item Edit Item