ITS 2017 Bali-Flores

Extending the database of pre-computed tsunami simulations for the Indonesian tsunami early warning system (InaTEWS)

Tri Handayani, M. Riyadi, S. Harig, A. Immerz, N. Rakowsky and J. Griffin

21st August **2017**

Project: May 2015 - March 2017

Funded by the Australian Government through the DMInnovation project

Conducted by Tsunami Modeling Group of the Alfred Wegener Institute

BMKG-Participants: operators/modelers, system administrators

Supported by gempa GmbH

8 workshops at BMKG (Badan Meteorologi, Klimatologi, dan Geofisika)

Project - Outline

General idea of the project:

Extending the currently existing scenario database with TsunAWI simulations for North-East Indonesia

Investigating the status quo of decision support and modeling approaches

Enabling BMKG to independently extend the database in the future

Current Tsunami Early Warning Systems @ 1

DSS - Installed and maintained in GITEWS (German-Indonesian Tsunami Early Warning System) and subsequent PROTECTS projects (2005 - 2013)

- TsunAWI for Sunda Arc
- easyWave outside Sunda Arc

TOAST - provided by gempa GmbH

Magnitudes 7.2 - 9.0 (step of 0.2)

TS 2017 -International Tsunami Symposium, Bali - Flores, 21-25 August 2017

Decision Support Approaches

Methodology and work

Discussing Decision Support approaches

Tsunami Models: TsunAWI & easyWave

Discussion on different modeling approaches

TsunAWI (AWI)

- Non-linear shallow water equations
- Unstructured triangular mesh
- Source model RuptGen (Andrey Babeyko, GFZ)
- Pre-computed scenario database

easyWave (Andrey Babeyko, GFZ)

- Coarser regular grid
- On-the-fly modeling

Theoretical and practical comparison of easyWave and TsunAWI tsunami models for use in DSS and TOAST

Extending the Scenario Database

Approach to extending the scenario database with TsunAWI

Source modeling tools and access to HPC provided by GA/DMInnovation

Pre-processing for tsunami simulation calculation - decision about model domain - introduction to HPC facilities

Data Products

Post-processing of tsunami scenarios:

- Raster Images
 - Maximum Wave Height
 - Sea Surface Heights
 - Estimated Arrival Times
- Isochrones

Generating data products for early warning

Points of Interest provided by DLR

Integration of Data Products

Integration of data products into warning

system

includes test interface to request scenarios in specified area

Center - lon, lat: 106 🗘 , -5 🗘

Ellipse

Rectangle

Enter Center of Rectangle/Ellipse:

Enter Dimensions of Rectangle/Ellipse:

Validation and Optimisation

redundant scenarios:

links in database

Evaluation of interface and validation of integration into TOAST

Reducing size of data products and calculation time

Sensitivity Studies

Sensitivity assessment of the scenario database with respect to epicenter and magnitude density regarding

Comparison of Data Products

GEMEINSCHAFT

Comparison of TsunAWI and easyWave results in TOAST

Web application to facilitate comparison of model results on warning level

State of Database at Project Completion @ \\

