

Deformation and recrystallisation at the firn-ice transition - Microstructural simulations -

Florian Steinbach^{1,2}, Ilka Weikusat^{1,2}, Paul Bons¹, Albert Griera³, Maria-Gema Llorens^{1,2}, Daniela Jansen²

Introduction

- Necessity to understand the **dynamic processes** that control the flow of ice when investigating the past and future climate
- The mechanical behaviour of ice: Result of properties of individual ice crystals and the distribution of second phases (e.g. air bubbles) • At firn-ice transition: **Air bubbles are sealed off** and become a valuable paleo-atmosphere archive • Elle / VPFFT simulations by Llorens et al. (2016) gave insight in deformation and recrystallisation of **pure ice** (free of impurities and bubbles)

- Updating the numerical approach to fully incoporate air as a second phase in simulations
- Systematic simulations to **investigate effects of** air bubbles on deformation and recrystallisation to support microstructural observations:

Firn microstructure images (Kipfstuhl et al, 2009) EDML ice core:

Microstructure discretization:

Periodic cell of contiguous polygons overlain by an unconnected regular grid storing intracrystalline properties.

Updated multi-process model with Elle / VPFFT:

Full-field theory (VPFFT) crystal plasticity code coupled with modelling platform Elle (elle.ws): Successively running different codes in short numerical timesteps effectively enables multi-process modelling of deformation and recrystallisation.

Goals achieved: Systematic simulations

Initial microstructures and setup:

Pure shear conditions up to 53% vertical shortening \approx 1x2 box \rightarrow 2x1 box **Initially 20x10 cm 2D box**, mean ice grain

Evidences for static recrystallisation

Evidences for dynamic recrystallisation

Research conclusions

- Bubbles control strain localisation and induce more hetereogenuous microstructures in their vicinity
- This localisation leads to a more localised dynamic **recrystallisation** as proposoed by Faria et al. (2014) using EDML firn data
- Dynamic recrystallisation occurs in firn as observed by Kipfstuhl et al. (2009), it is related to stress bridging and strain localisation between bubbles

Remaining challenges

Possibility to take into account

area $\approx 6 \text{ mm}^2$ using a grid of 256x256 unodes

Basal slip set 20x easier than non-basal, air is set 5000x softer (incompressible and isotropic)

Results:

Comparison with natural microstructures

Author affiliations:

(1) Department of Geosciences, Eberhard Karls University of Tübingen, Germany

- (2) Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
- (3) Departament de Geologia, Universitat Autònoma de Barcelona, Spain.

Publications associated with the project

Bons, P.D., et al. (2016) Nature Communications, 7, doi: 10.1038/ncomms11427 Jansen, D., et al. (2016) The Cryosphere, 10, 359-370, doi: 10.5194/tc-10-359-2016 Steinbach, F., et al. (2016) The Cryosphere, doi: 10.5194/tc-10-3071-2016 Llorens M.G., et al. (2017) Philosophical Transactions of the Royal Society A, doi: 10.1098/rsta.2015.0346

Scan for simulation movies