
Geosci. Model Dev., 10, 3189–3206, 2017
https://doi.org/10.5194/gmd-10-3189-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

eddy4R 0.2.0: a DevOps model for community-extensible
processing and analysis of eddy-covariance data based
on R, Git, Docker, and HDF5
Stefan Metzger1,2, David Durden1, Cove Sturtevant1, Hongyan Luo1, Natchaya Pingintha-Durden1, Torsten Sachs3,
Andrei Serafimovich3, Jörg Hartmann4, Jiahong Li5, Ke Xu2, and Ankur R. Desai2
1National Ecological Observatory Network, Battelle, 1685 38th Street, Boulder, CO 80301, USA
2University of Wisconsin-Madison, Dept. of Atmospheric and Oceanic Sciences, 1225 West Dayton Street,
Madison, WI 53706, USA
3GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
4Alfred Wegener Institute – Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12,
27570 Bremerhaven, Germany
5LI-COR Biosciences, 4647 Superior Street, Lincoln, NE 68504, USA

Correspondence to: Stefan Metzger (smetzger@battelleecology.org)

Received: 27 December 2016 – Discussion started: 1 February 2017
Revised: 3 July 2017 – Accepted: 6 July 2017 – Published: 31 August 2017

Abstract. Large differences in instrumentation, site setup,
data format, and operating system stymie the adoption of
a universal computational environment for processing and
analyzing eddy-covariance (EC) data. This results in lim-
ited software applicability and extensibility in addition to of-
ten substantial inconsistencies in flux estimates. Addressing
these concerns, this paper presents the systematic develop-
ment of portable, reproducible, and extensible EC software
achieved by adopting a development and systems operation
(DevOps) approach. This software development model is
used for the creation of the eddy4R family of EC code pack-
ages in the open-source R language for statistical comput-
ing. These packages are community developed, iterated via
the Git distributed version control system, and wrapped into
a portable and reproducible Docker filesystem that is inde-
pendent of the underlying host operating system. The HDF5
hierarchical data format then provides a streamlined mecha-
nism for highly compressed and fully self-documented data
ingest and output.

The usefulness of the DevOps approach was evaluated
for three test applications. First, the resultant EC process-
ing software was used to analyze standard flux tower data
from the first EC instruments installed at a National Eco-
logical Observatory (NEON) field site. Second, through an
aircraft test application, we demonstrate the modular exten-

sibility of eddy4R to analyze EC data from other platforms.
Third, an intercomparison with commercial-grade software
showed excellent agreement (R2

= 1.0 for CO2 flux). In con-
junction with this study, a Docker image containing the first
two eddy4R packages and an executable example workflow,
as well as first NEON EC data products are released pub-
licly. We conclude by describing the work remaining to ar-
rive at the automated generation of science-grade EC fluxes
and benefits to the science community at large.

This software development model is applicable beyond EC
and more generally builds the capacity to deploy complex
algorithms developed by scientists in an efficient and scal-
able manner. In addition, modularity permits meeting project
milestones while retaining extensibility with time.

1 Introduction

Answering grand challenges in Earth system science and
ecology requires combining information from hierarchies of
environmental observations (tower, aircraft, satellite; Rau-
pach et al., 2005; Running et al., 1999; Turner et al., 2004).
Eddy-covariance (EC) measurements serve as crucial obser-
vations in this hierarchy to study landscape-scale surface–

Published by Copernicus Publications on behalf of the European Geosciences Union.



3190 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

atmosphere exchange processes that both inform and an-
chor Earth system models. Networks of EC towers such as
FLUXNET (Baldocchi et al., 2001), AmeriFlux (Law, 2007),
ICOS (Sulkava et al., 2011), and others are vital for provid-
ing the necessary distributed observations covering the cli-
mate space, with the longest running towers now reaching
two decades of observations.

A current challenge for EC tower networks in inform-
ing regional- and continental-scale processes is instrument
and computational compatibility. The computations involved
in EC processing are complex and developmentally dy-
namic, making code portability, extensibility, and documen-
tation paramount. Much progress has been made in devel-
oping community standards for processing algorithms and
workflows (Aubinet et al., 2012; Papale et al., 2006). Many
authors have included code in publication or have devel-
oped sharable tools (e.g., EddyPro and TK3 by Fratini and
Mauder, 2014; EddyUH by Mammarella et al., 2016; EdiRe
by Clement et al., 2009), despite the significant and often
unfunded effort required to adequately document and gen-
eralize code. Still, large differences in instrumentation, site
setup, data format, and operating systems stymie the adop-
tion of a universal EC processing environment: one that
is portable, reproducible, and extensible to allow tailored
workflows that incorporate additional data streams, to au-
tomate and scale processing across large compute facilities,
or to inject additional algorithms that address specific needs
or synergistic research questions. In 50 % of published sci-
entific code, one cannot even replicate the necessary soft-
ware dependencies (Collberg et al., 2014), and even widely
used and well-documented EC processing software pack-
ages have shown substantial inconsistencies in flux estimates
(e.g., Fratini and Mauder, 2014). A universal EC processing
environment that enables these capabilities would better al-
low research groups to tailor existing software to their needs
(and contribute new algorithms) instead of recreating code
or kludging together multiple software outputs to realize an
algorithmic chain for their data analytics.

The US-based National Ecological Observatory Net-
work (NEON), once fully operational, will represent the
largest single-provider EC tower network globally, with
a standardized measurement suite designed explicitly for
cross-site comparability and analysis of continental-scale
ecological change (Schimel et al., 2007). This capability is
accompanied by a strong need for a flexible and scalable pro-
cessing framework that can incorporate specific data streams,
take advantage of close alignment of hardware and soft-
ware for problem tracking and resolution, provide traceabil-
ity and reproducibility of outputs, and seamlessly integrate
distributed and dynamic community-developed code (written
by multiple people in multiple places) within existing cyber-
infrastructure (CI). In sum, NEON needs what the EC com-
munity is currently lacking.

The question we ask in this paper is how do we collabo-
ratively create portable, reproducible, open-source, scalable,

Figure 1. Stages of the general DevOps workflow (source: Khar-
nagy via Wikimedia Commons – CC BY-SA 4.0).

and extensible software that improves reliability and compa-
rability of EC data products. Here, we describe and demon-
strate a developmental model that enables these capabilities
by embracing a development and systems operation (De-
vOps) approach. DevOps is a philosophy arising from the
software development community that emphasizes collabo-
ration among developers and operators to continuously iter-
ate the development, building, testing, packaging, and release
of software (Erich et al., 2014; Loukides, 2012, Fig. 1). Tools
are adopted that control and automate these processes, allow-
ing distributed development and rapid iteration. Applied to
the scientific community, developers are the multitude of sci-
entists creating and improving the scientific algorithms that
form the developmentally dynamic community standard. Op-
erators are those deploying the algorithms to process and
analyze data and can be the same or different people as
those creating the algorithms. A key aspect of DevOps is
the recipe- or script-based generation and packaging of com-
putation environments rather than abstracted documentation,
which improves accessibility, extensibility, and reproducibil-
ity of scientific software (Boettiger, 2015; Clark et al., 2014).
The recipe automates the loading of the software including
all dependencies so that the most significant hurdle of repro-
ducing the computational environment is overcome. At the
same time, the recipe serves as explicit documentation, and
can be easily extended (added to or changed), shared, and
versioned. The entire computational environment including
any necessary data is packaged into Docker images that work
identically across different computers and operating systems,
can be deployed at scale, and archived for ultimate repro-
ducibility.

In the following, we present this framework and demon-
strate its success in producing EC data products via a fam-
ily of modular, open-source R packages wrapped in Docker
images. We emphasize that this paper is not a presentation
of EC processing software (although this is the ultimate ap-
plication). Rather, it is a presentation of the development
model that facilitates portability, reproducibility, and exten-
sibility of EC processing software. In the following, Sect. 2
describes the DevOps framework, and Sect. 3 provides three

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/



S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3191

Figure 2. NEON-specific DevOps workflow, with references to corresponding steps in Fig. 1. Please see text in Sect. 2 for a detailed
explanation.

core tests of the applicability of this framework: (1) process-
ing tower-based flux data, including NEON’s first set of EC
data, (2) processing and footprint modeling of aircraft-based
flux data, and (3) a software cross validation. Sect. 4 summa-
rizes the work remaining to operationally produce EC fluxes
from 47 NEON sites and provides an outlook on future capa-
bilities and science community benefits.

2 The development and operations (DevOps) model

DevOps promotes collaboration and tight integration be-
tween software development, testing, and operational de-
ployment by following a core workflow (e.g., Wurster et al.,
2015): Plan, Create, Verify, Package, Release, Configure, and
Monitor. The text below describes these stages and shows the
general sequence and overlap of these stages between soft-
ware developers (Dev) and operators (Ops).

The Plan stage involves focusing and prioritizing new soft-
ware features or capabilities based on their enhancement of
value. The Create stage is the activity of designing and writ-
ing the code that delivers a new feature. The Verify stage
tests the new software feature against established standards
for accuracy and performance (e.g., does it unexpectedly al-
ter the output of preexisting features? Does it produce the
expected result?). The Package stage involves the compila-
tion of the code once it is ready for deployment, including
all data and software dependencies, and gathers necessary
approvals. The Release stage deploys the software into pro-
duction. The Configure stage involves supplying and config-
uring the computational infrastructure required to operate the
code at scale, including storage, database operations, and net-
working. Finally, the Monitor stage observes and tracks the
use, performance, and end-user impact of the release. Vari-

ants of this workflow exist (e.g., Chen, 2015), but the general
components and sequence are retained. In addition, there is
no single set of tools accompanying the DevOps approach.
Rather, many tools exist that facilitate the execution of one
or more of these workflow steps, often through automation.

NEON’s DevOps framework consists of a periodic se-
quence (Fig. 2) that incorporates these workflow steps. For
this purpose, we define NEON Science as personnel working
directly on the NEON project, and the science community,
regardless of whether they also work on the NEON project,
as anyone producing or using data, algorithms, or research
products related to the NEON data themes (atmosphere; bio-
geochemistry; ecohydrology; land cover and processes; or-
ganisms, populations, and communities): the science com-
munity contributes algorithms and best practices (1). Implic-
itly or explicitly, this embodies the DevOps Plan stage – the
algorithms most valued by the community are being incor-
porated. Together with NEON Science (2), these algorithms
are coded in the open-source R computational environment
(DevOps Create stage). DevOps Verify (testing) and Pack-
age (packaging) are performed as the code is compiled into
eddy4R packages via the GitHub distributed version control
system (3). NEON Science releases an eddy4R version from
GitHub, which automatically builds an eddy4R–Docker im-
age on DockerHub as specified in a “Dockerfile” (4; DevOps
Release stage). The eddy4R–Docker image is immediately
available for deployment by NEON CI (5; DevOps Configure
and Monitor stages), the science community (1) and NEON
Science (2) alike. Here, the DevOps Configure (computa-
tional resource allocation) and Monitor stages occur. Moni-
toring of end-user experience is also performed in GitHub (3)
via issue tracking. This DevOps cycle can be repeated for
continuous development and integration of requests and fu-

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017



3192 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

ture methodological improvements by the scientific commu-
nity, resulting in the next release. Two principal types of re-
leases are provided: stable versions are tagged with “0.2.0”,
“0.2.1”, etc., and the most recent development built is tagged
with “latest”. Thus, the DevOps model serves as the frame-
work within which the scientific community can efficiently
and robustly collaborate to produce, manage, and iterate soft-
ware. Through choosing appropriate tools to implement the
DevOps workflow steps, the reproducibility, scalability, and
extensibility needs of software development communities
(including EC) can be met.

In the following, we describe the key components and
tools of this NEON-specific DevOps model, namely the
eddy4R family of code packages (Sect. 2.1), Git-based dis-
tributed code development (Sect. 2.2), packaging of the com-
putational environment in Docker images (Sect. 2.3), hierar-
chical data formats (Sect. 2.4), integration with NEON’s CI
(Sect. 2.5), and installation and deployment (Sect. 2.6).

2.1 The eddy4R family of R packages (DevOps Plan
and Create)

eddy4R is a family of open-source packages for EC raw
data processing, analyses, and modeling in the R language
for statistical computing (R Core Team, 2016). Forming
the DevOps Plan and Create stages, it is being developed
by NEON scientists with wide input from the microme-
teorological community (e.g., De Roo et al., 2014; Kohn-
ert et al., 2015; Lee et al., 2015; Metzger et al., 2012,
2013, 2016; Sachs et al., 2014; Salmon et al., 2015; Ser-
afimovich et al., 2013; Starkenburg et al., 2016; Vaughan
et al., 2016; Xu et al., 2017). eddy4R currently consists
of four packages: eddy4R.base, eddy4R.qaqc, eddy4R.turb,
and eddy4R.erf. Of these, eddy4R.base and eddy4R.qaqc
are published here in conjunction with NEON’s release
of EC level 1 data products (https://w3id.org/smetzger/
Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0): descrip-
tive statistics of calibrated instrument output. In addition,
previews of eddy4R.turb and eddy4R.erf are provided, which
will be published along NEON’s upcoming release of EC
level 4 data products (derived quality-controlled fluxes and
related variables). The development of two additional R
packages has started (eddy4R.stor and eddy4R.ucrt, which
provide functionalities for storage flux computation and un-
certainty quantification, respectively). These packages are
not covered here, and will be published once available.

Each eddy4R package consists of a hierarchical set of
reusable definition functions, wrapper functions, and work-
flows. Following best practices, eddy4R is written in con-
trolled and strictly hierarchical terminology consisting of
base names and modifiers, which ensures modular extensibil-
ity over time. Interactive documentation is provided through
the use of Roxygen tags (http://roxygen.org/) during devel-
opment and follows the Comprehensive R Archive Network
(CRAN; https://cran.r-project.org/) guidelines for package

dissemination. In addition, expanded documentation is avail-
able in the form of Algorithm Theoretical Basis Documents
from the NEON data portal (https://w3id.org/smetzger/
Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0).

EC data processing consists of employing a sequence
of model algorithms. These often originate from scientific
subfields with corresponding publications, and eddy4R pro-
vides an integrative, yet modular and extensible, framework
for their concerted application and continued development:
eddy4R.base provides natural constants and basic functions
for usability, regularization, transformation, lag-correction,
aggregation, and unit conversion, ensuring consistency of in-
ternal units at any point in the workflow. Next, eddy4R.qaqc
provides the general quality assurance and quality con-
trol (QA/QC) tests of Taylor and Loescher (2013), along the
Smith et al. (2014) model for tracking quality information
in large datasets, and functions for de-spiking (Brock, 1986;
Fratini and Mauder, 2014; Mauder et al., 2013; Mauder and
Foken, 2015; Metzger et al., 2012; Vickers and Mahrt, 1997).
eddy4R.turb provides standard, Reynolds-decomposed tur-
bulent flux calculation (Foken, 2017), accompanied by mod-
els for planar fit transformation (Wilczak et al., 2001) and
spectral correction (Nordbo and Katul, 2012). Additional
functionalities include Fourier transform, the determination
of detection limit (Billesbach, 2011), integral length scales,
and statistical sampling errors (Lenschow et al., 1994), and
flux-specific QA/QC models (Foken and Wichura, 1996;
Vickers and Mahrt, 1997). Also, basic scaling variables, at-
mospheric stability and roughness length (Stull, 1988), as
well as the flux footprint (Kljun et al., 2015; Kormann and
Meixner, 2001; Metzger et al., 2012) can be determined.
Lastly, edd4R.erf provides time–frequency decomposed flux
processing and data-mining functionalities to determine an
environmental response function model and project the flux
fields underlying the EC observations (Metzger et al., 2013;
Xu et al., 2017).

eddy4R can be used with a fully adaptive single-pass
workflow (Sect. 3.1), which makes it computationally effi-
cient compared to the multiple passes required by other flux
processing schemes. In addition, eddy4R is fully parallelized
and memory efficient, leveraging R’s snowfall paralleliza-
tion (https://cran.r-project.org/package=snowfall) and ff file-
backed object (https://cran.r-project.org/package=ff) facili-
ties, respectively. This makes eddy4R seamlessly scalable
from local laptop development to deployment across mas-
sively parallel computing facilities. Lastly, its unique modu-
larity permits straightforward adjustments (extensibility) and
versioning as science and/or hardware progresses.

2.2 Git distributed version control (DevOps Verify and
Package)

The eddy4R source code resides on a version-controlled
Git repository on the hosting service GitHub (https://github.
com/). In general, a developer community uses a version con-

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/

https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
http://roxygen.org/
https://cran.r-project.org/
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://cran.r-project.org/package=snowfall
https://cran.r-project.org/package=ff
https://github.com/
https://github.com/


S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3193

trol system to manage and track different states of their works
over time. GitHub provides distributed version control and
has become widely used by scientific research groups be-
cause it is free, open-source, and provides several features
that make it useful for managing artifacts of scientific re-
search (Ram, 2013).

Git allows multiple users and developers to simultane-
ously access and collaborate on a remote repository by means
of independent “forks” or replicas of the entire repository
(Paarsch and Golyaev, 2016). Figure 3 shows NEON’s Git
workflow: at any given time (1) the official, stable eddy4R
source code resides on NEON’s GitHub repository. A user
can install the eddy4R packages directly from there, and
(2) a developer can “fork” or copy the repository and cre-
ate “branches” for modification. After (3) “committing” or
creating a new feature, the developer (4) can propose the fea-
ture for inclusion in the official eddy4R source code by is-
suing a pull request to (5) NEON’s change control board.
After (6) thorough review and all prior test cases reproduc-
ing benchmark results (DevOps Verify stage), the feature can
be “merged” or integrated into the next release of (1) the of-
ficial, stable eddy4R source code (DevOps Package stage).
This cycle can be repeated to accommodate requests and fu-
ture developments, resulting in subsequent releases. Includ-
ing a test case for new code is strongly encouraged to ensure
sustainability over time but is not mandatory. The developers
can periodically update their forks from the remote repos-
itory, ensuring that they always work on basis of the most
recent eddy4R source code.

The ultimate advantages of Git are provenance, repro-
ducibility, and extensibility: every copy of the code repos-
itory includes the complete history of all changes and au-
thorship that can be viewed and searched by anyone (Ram,
2013). This allows developers to build from any stage of the
versioned project and makes it easy to collaborate as an inte-
grated scientific community. We note that the DevOps work-
flow is robust to the business viability of the particular tools
used for implementation. Git is simply one instance of a ver-
sion control system which could be replaced with another
similar tool should Git fail at some point in the future.

2.3 Docker image build and deployment (DevOps
Release)

Facilitating the DevOps Release stage, Docker images (https:
//www.docker.com/what-docker) wrap a piece of software in
a complete filesystem that contains only the minimal con-
text an application needs to run: code, runtime, system li-
braries, and tools. This guarantees that it always performs the
same, regardless of the compute environment it is deployed
in (i.e., ultimate reproducibility). Compared to the similar but
more cumbersome virtual machine approach, a Docker im-
age is an order or magnitude smaller (eddy4R–Docker: 2 GB
without example data). Also, by running as native processes,
it bypasses the virtual machine overhead. Docker is used by

Figure 3. NEON’s Git workflow. Please see text in Sect. 2.2 for a
detailed explanation.

many organizations (e.g., National Center for Atmospheric
Research, National Snow and Ice Data Center, NSF Agave
API) and widely supported across large-scale cloud compute
environments (e.g., Amazon EC2 Container Service, Google
Container Engine, NSF Xsede). It is particularly well suited
to NEON’s DevOps strategy: combining development, oper-
ation, and quality assurance to enable creating, testing, de-
ploying, and updating scientific software rapidly and reliably
(Fig. 2).

Docker can build images automatically by reading the in-
structions from a Dockerfile. A Dockerfile is a text document
that contains all the instructions a user would call on the com-
mand line to assemble an image. Using, e.g., a cloud host-
ing platform like DockerHub (https://hub.docker.com/), the
image build, versioning, and distribution can be automated.
This is realized through executing the series of command-
line instructions defined in the Dockerfile whenever a new
eddy4R source code version is available on GitHub. A key
feature of eddy4R–Docker is that it builds upon “Rocker”
prebuilt Docker images, maintained by the rOpenSci group
(https://ropensci.org/). This ensures access to stable, up-to-
date base images containing R and a variety of packages
commonly used. The eddy4R–Docker image (0.2.0) released
in this study was built based on the rocker/ropensci/latest
image containing R (3.4.0; https://hub.docker.com/r/rocker/
ropensci/builds/). As specified in the eddy4R Dockerfile, our
R packages eddy4R.base (0.2.0) and eddy4R.qaqc (0.2.0)
and their dependencies were automatically built on top of
this base image. To complete the eddy4R–Docker process-
ing, analysis, and modeling environment, the NEON data
portal API Client nneo (0.1.0), the environmental data loca-
tor metScanR (1.0.0), as well as the REddyProc (1.0.0) high-
level utilities for aggregated EC data were also included. In
addition, the user can install any desired R packages to cus-
tomize the environment.

Docker’s benefits to scientific software development are
described in detail in Boettiger (2015). For NEON’s pur-
poses, several Docker properties are particularly important:

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017

https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://hub.docker.com/
https://ropensci.org/
https://hub.docker.com/r/rocker/ropensci/builds/
https://hub.docker.com/r/rocker/ropensci/builds/


3194 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

– Docker images are portable and independent of the un-
derlying operating system. This enables scientists to de-
velop code on local computers or virtual machines with-
out worrying about the deployment architecture.

– In terms of reproducibility, the DevOps principles are
ingrained into the Docker build process, thus ensuring a
fully traceable and documented Docker image.

– There is a streamlined interface between NEON Science
and CI, where defined inputs, outputs, and instructions
provide an ideal framework to isolate and package algo-
rithmic services for operational deployment.

– For continuous development and integration, Docker
provides a modular and extensible framework, permit-
ting NEON’s data processing to remain up to date
with the latest algorithmic developments. As shown by
the nneo and REddyProc examples, it enables directly
leveraging community-developed code. In this way,
eddy4R–Docker is functionally extensible, while mak-
ing it easy for the community to incorporate NEON-
developed code into their own data processing.

2.4 Hierarchical Data Format version 5 (DevOps
Configure)

The capability to process large datasets is reliant upon effi-
cient input and output of data, data compressibility to reduce
compute resource loads, and the ability to easily package and
access metadata. The Hierarchical Data Format (HDF5) is a
file format that can meet these needs and is a key tool aiding
the DevOps Configure (computational resource allocation)
stage. A NEON standard HDF5 file structure and metadata
attributes allow users to explore larger datasets in an intu-
itive “directory-like” structure that is based upon the NEON
data product naming convention (see Fig. 4). Group level 1
separates data by site, and site-level metadata are attributed
at that level. Group level 2 separates data by data product
level (DPL), and DPL metadata are attributed at that level,
where DPLs correspond to the amount of processing per-
formed. DPL1 are calibrated descriptive statistics, DPL2 are
temporally interpolated, DPL3 are spatially interpolated, and
DPL4 are further-derived quantities. Group level 3 includes
the individual data products – for instance, CO2 concentra-
tion. Lastly, replicates in the horizontal and vertical are sep-
arated as individual data tables.

This provides a streamlined data-delivery mechanism for
the eddy4R–Docker processing framework. For the tower
datasets analyzed in this study, including sonic anemometer,
infrared gas analyzer, and mass flow controller data, file sizes
ranged from 1 GB for the uncompressed data in comma-
delimited ASCII files to 0.1–0.2 GB in HDF5 format, de-
pending on the amount of missing data. The HDF5 files can
be written in a simple format where data are stored as single
one-dimensional arrays to maximize compression and effi-

Figure 4. The NEON HDF5 file structure based on the NEON data
product naming convention.

ciency, or the data can be stored as compound data tables that
allow multiple data types to be written together in columnar
format for ease of navigation when data size is not an issue.

Another important function of the HDF5 file format is the
ability to attach metadata as attributes, further promoting re-
producibility. The data in this study have the units and vari-
able names as metadata attached to the data tables in the
HDF5 file. Additional metadata are attributed to various hi-
erarchical groups throughout the file, including environmen-
tal parameters, sensor metadata, and processing parameters.
As a result, HDF5 and similar self-documenting hierarchi-
cal data formats are gaining traction in a community that
has traditionally relied on ASCII text column or comma-
delimited files, especially as tools for viewing, manipulating,
and extracting data from HDF5 become more commonplace.
The utility of HDF5 file format is demonstrated in the exe-
cutable example workflow that accompanies this paper (see
Sect. 2.6).

2.5 Modular compatibility with existing compute
infrastructure (DevOps Configure and Monitor)

To perform a defined series of processing steps, a Docker
image is called with a workflow file, resulting in a run-
ning instance called a Docker container (Fig. 5). Through
this mechanism, an arbitrary number of Docker containers
can be run simultaneously, performing identical or differ-
ent services depending on the workflow file. This provides
an ideal framework for scaled deployment using, e.g., high-
throughput compute architectures or cloud-based services.

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/



S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3195

Figure 5. NEON’s eddy4R–Docker EC processing framework. The red box visualizes the scope of the present study, and individual compo-
nents are described in the text.

Embodying the DevOps Configure stage, NEON’s
eddy4R–Docker EC processing framework begins with in-
gesting information from various data sources on a site-by-
site basis (Fig. 5, top left panels). This includes EC raw
data (level 0, or L0 data) alongside contextual information
on measurement site (ParaSite), environment (ParaEnv), sen-
sor (ParaSens), calibration (ParaCal), as well as process-
ing parameters (ParaProc). Next, the raw data are precon-
ditioned and all information is hierarchically combined into
a compact and easily transferable HDF5 file (Fig. 5, panel
“CI workflow”). Each file contains the calibrated raw data
(L0 prime, or L0p) and metadata for one site and 1 day, ei-
ther for EC turbulent exchange or storage exchange. In this
paper, we focus on demonstrating the turbulence data pro-
cess and analysis in the red box of Fig. 5. Together with the
“turbulence” workflow file, the HDF5 L0p data file is passed
to the eddy4R–Docker image, where a running Docker con-
tainer is spawned that scales the computation over a spec-
ified number of compute nodes (Fig. 5, top right panels).
The resulting higher-level data products (level 1–level 4,
or L1–L4) are collected from the compute nodes and, to-
gether with all contextual information, are combined into a
daily L1–L4 HDF5 data file that is served on the data por-
tal (Fig. 5, bottom left panel). In addition to the daily output
files, monthly concatenated files are also available for down-
load from the NEON data portal (https://w3id.org/smetzger/
Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0). This se-

quence is performed analogously for different combinations
of workflows and data, and it is possible for the workflow
instruction sets to interact with each other. For example, the
“turbulence” and “storage” containers are processing in par-
allel, and starting the “derived” container once all intermedi-
ary results are available (Fig. 5, bottom right panel). It should
be noted that the “turbulence”, “storage” and “combined”
Docker containers (Fig. 5, right panels) are all spawned
from the same eddy4R–Docker image (Fig. 5, center panel):
each container includes the same underlying functionality
(eddy4R packages), but serves a different purpose by be-
ing fed the “turbulence”, “storage” or “combined” workflow
files.

This eddy4R–Docker EC processing framework modu-
larly integrates into preexisting data-processing pipelines,
such as NEON’s CI (Fig. 6): in NEON’s preexisting frame-
work, the CI group encoded simple algorithms (e.g., tempo-
ral means) in Java, based on algorithm documentation pro-
vided by NEON Science staff. The key difference of the
eddy4R–Docker EC processing framework is that instead
of algorithm documentation, NEON Science staff now pro-
vide documented algorithms that perform a complex series
of processing steps, which can be directly deployed by CI.
Not only does this adoption of the NEON–DevOps work-
flow (Fig. 2) streamline end-to-end operational implementa-
tion and efficiency, it empowers the science community at

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017

https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0


3196 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

large by putting the key to the scientific algorithms into the
hands of scientists.

To address the DevOps Monitor stage, the computa-
tional resource load and performance statistics of operating
eddy4R–Docker can easily be monitored with standard pro-
filing procedures within NEON’s CI or other compute in-
frastructures. eddy4R–Docker further utilizes the R logging
package (0.7–103) to provide hierarchical logging, multiple
handlers, and formattable log records. Finally, end-user expe-
rience is monitored via the issues feature in GitHub, where
users can report code bugs, deployment problems, etc.

2.6 Installation and operation

One source of resistance to reproducible research is the ini-
tial burden of learning a new workflow. The eddy4R–Docker
image aims to reduce the initial setup effort and learning re-
quirements. This is achieved by providing a computational
environment that contains all the necessary software de-
pendencies, the RStudio graphical development environment
(https://www.rstudio.com/), and a code base consisting of ex-
ample workflows and easily accessible functions. Combined
with a simple and thoroughly documented installation proce-
dure, it provides a similar feel to working locally.

To work with the eddy4R–Docker image, one first needs
to sign up at DockerHub (https://hub.docker.com/) and in-
stall the Docker host software following the Docker installa-
tion instructions (https://docs.docker.com/engine/getstarted/
step_one/). Next, the download of the eddy4R–Docker im-
age and subsequent creation of a container can be performed
by two simple commands in an open shell (Linux/Mac) or
the Docker Quickstart Terminal (Windows):

docker login

docker run -d -p 8787:8787 stefanmet/eddy4r:0.2.0.

The first command will prompt for the user’s DockerHub
ID and password. The second command will download the
latest eddy4R–Docker image and start a Docker container
that utilizes port 8787 for establishing a graphical interface
via web browser. The release version of the Docker image
can be specified, or alternatively the specifier latest pro-
vides the most up-to-date development image. In addition,
it is possible to download and run a specific digest using
the docker run stefanmet/eddy4r@sha256 com-
mand. If data are not directed from/to cloud hosting, a physi-
cal file system location on the host computer (local/dir)
can be mounted to a file system location inside the Docker
container (docker/dir). This is achieved with the Docker
run option -v local/dir:docker/dir.

The interactive RStudio server session running inside the
Docker container can then be accessed via a web browser
at http://host-ip-address:8787, using the IP address of the
Docker host machine. The IP address of the Docker host
can be determined by typing localhost in a shell ses-
sion (Linux/Mac) or by typing docker-machine ip

default in cmd.exe (Windows). Lastly, in the web browser
the user can log into the RStudio session with username and
password rstudio (see Fig. 7).

Figure 7 also shows the RStudio integrated develop-
ment environment and interactive help for the eddy4R.base
package in Fig. 7a and c, respectively. Additional in-
formation about the use of RStudio and eddy4R pack-
ages in Docker containers can be found on the rocker-
org/rocker website (https://github.com/rocker-org/rocker/
wiki/Using-the-RStudio-image) and the eddy4R Wiki pages.

To demonstrate the ease of “Docker-assisted” data anal-
ysis and provide a template for potential eddy4R–Docker
users, an executable example workflow and data are in-
cluded in the eddy4R–Docker image. Once the eddy4R
container is started, the example workflow, input data
(NEON dp0p HDF5 file), and output data (NEON dp01
HDF5 file) are available from the Docker internal directory
/home/eddy/. The example workflow is located at
/home/eddy/flowExmp/flow.turb.tow.neon.
exmp.dp01.R and provides a selection of the processing
steps that yield the EC dp01 data on the NEON data
portal (https://w3id.org/smetzger/Metzger-et-al_2017_
eddy4R-Docker/portal/0.2.0). The example workflow is
fully documented to guide readers through the various
processing steps and employs key functionalities of the
eddy4R.base and eddy4R.qaqc packages. These include
data and metadata imports from the input HDF5 file, data
assignment to file-backed objects, processing of 1 and
30 min data statistics and data quality, and writing the output
HDF5 file. In addition, outputs from the quality flag and
quality metric model are visualized.

As described above, the eddy4R–Docker image can be
used for code development (DevOps Create stage) through
accessing a running eddy4R–Docker container via a web
browser. Alternatively, the eddy4R–Docker image can be
used from the command line to perform scaled batch
processing (DevOps Configure and Monitor stages). De-
ployment from the command line consists of passing the
R workflow file to the Docker image. This is achieved
by using the docker run command with the addi-
tional argument Rscript docker/dir/filename.R,
with filename.R being the desired workflow. Thus, the
eddy4R–Docker image can be used to simultaneously deploy
multiple Docker containers to process data for multiple days
or sites to the capacity of the computational platform.

3 Test applications

In the following, we present three test applications of
eddy4R–Docker to evaluate whether the NEON DevOps
model can indeed produce collaborative, portable, repro-
ducible, and extensible EC software. Code development,
packaging, release, and operation followed the NEON
DevOps model presented in this paper. Code modules have

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/

https://www.rstudio.com/
https://hub.docker.com/
https://docs.docker.com/engine/getstarted/step_one/
https://docs.docker.com/engine/getstarted/step_one/
http://host-ip-address:8787
https://github.com/rocker-org/rocker/wiki/Using-the-RStudio-image
https://github.com/rocker-org/rocker/wiki/Using-the-RStudio-image
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0


S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3197

Figure 6. NEON’s CI for streaming data processing. The red box visualizes the eddy4R–Docker EC processing framework within the
overall CI.

been contributed by order 10 individuals, distributed across
multiple institutions and utilizing various computer systems.
Nevertheless, each contributor achieved identical results per
validation scripts during the DevOps Verify and Package
stages (Sect. 2.2), emphasizing the achieved portability and
reproducibility. The majority of the calculations presented
here were performed on 12 Intel Xeon X5550 2.67 GHz
CPUs, with 32 GB memory and 10 Mbit interconnects and
10 Mbit access to 8 TB storage on an Oracle Zettabyte
File System. The software specifications were CentOS 7
(3.10.0–327.el7.x86_64) with the Docker engine (1.11.0). In
Sect. 3.1, results of processing 12 days of EC data from a
fixed tower at a NEON field site are shown. Next, in Sect. 3.2,
we present the processing of EC fluxes from a 1 h recording
of a moving platform: airborne observations in a convectively
mixed boundary layer. Lastly, a validation via software inter-
comparison is provided in Sect. 3.3.

3.1 Tower eddy-covariance measurements

Here, we use tower EC measurements to test a typical
implementation of the eddy4R processing framework. The

Smithsonian Environmental Research Center (SERC) in
Edgewater, MD, USA, is located on the Rhode and West
rivers, and hosts the NEON SERC tower (38◦53′24.29′′ N,
76◦33′36.04′′W; 30 m a.s.l.). The ecosystem at SERC is
a closed-canopy hardwood deciduous forest dominated by
tulip poplar, oak, and ash, with a mean canopy height of
approximately 38 m (Fig. 8). EC turbulent flux sensors are
mounted at the tower top at 62 m above ground or 24 m above
the forest canopy.

An enclosed infrared gas analyzer (IRGA, LI-COR Bio-
sciences, Lincoln, NE, USA; model: LI-7200, firmware ver-
sion 7.3.1) was used to measure the turbulent fluctuations
of H2O and CO2. A mass flow controller (Alicat Sci-
entific, Burlington, VT, USA; model: MCRW-20 SLPM-
DS-NEON) was used to maintain a constant flow rate of
12 SLPM (standard liters per minute) through the IRGA cell.
A sonic anemometer (Campbell Scientific, Logan, UT, USA;
model: CSAT3, firmware version 3) was used to measure the
three-dimensional turbulent wind components. Data from the
IRGA and the sonic anemometer were synchronized using

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017



3198 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

Figure 7. Docker-based RStudio server session via web browser. (a) Sign-in screen with highlighted areas showing information to input by
the user. (b) Interactive help for the eddy4R.base package. (c) Integrated development environment with workflow template, R console, Git
staging area, and eddy4R packages.

triggering and network timing protocol, and collected simul-
taneously at a 20 Hz sampling rate.

Here, data from 22 April to 3 May 2016 were used. The
mean temperature during this time period was 15 ◦C, with a
maximum temperature of 29 ◦C and a minimum of 8 ◦C. A
total of 15 mm of precipitation was observed at the nearby
Annapolis Naval Academy.

3.1.1 Algorithm settings and profiling

The eddy4R workflow file was configured to ingest on the or-
der of 50 data streams at 20 Hz, including 3-D wind compo-
nents, sonic temperature, and H2O and CO2 concentrations.
The data were processed to half-hourly L1 data products and
turbulent fluxes. The L1 data products are essentially state
variables (wind, temperature, concentrations) with basic sta-
tistical products derived, i.e., mean, minimum, maximum,
standard error of the mean, and variance. The algorithmic
processing for the L4 flux calculations requires additional
scientific and procedural complexity to test assumptions of

the EC theory. The resultant fluxes represent half-hourly ver-
tical turbulent exchanges between the Earth’s surface and the
atmosphere corresponding to these state variables.

For the datasets analyzed in this study, the L0p input file
sizes ranged from 0.1 to 0.2 GB in HDF5 format depending
on the amount of missing data, with metadata attached as at-
tributes. We used the simple data format for our HDF5 files,
as opposed to compound data type; this resulted in reduced
read in time from 60 to 3 s for 20 Hz IRGA data. Elemen-
tary testing indicates that in this framework a 6 min CPU
time was required to process 1 day of 20 Hz L0 data, and
a 1.2 min CPU time per 1 day of L0p data (100 000 000 ob-
servations). This difference arises mainly from application of
plausibility tests per Taylor and Loescher (2013) in the tran-
sition from L0 to L0p. No reduction in efficiency was ob-
served between direct software deployment and its Docker
implementation. Once flux QA/QC and uncertainty budget
are implemented, the computational expense will likely in-
crease by a factor of 2–3. This suggests that eddy4R performs
comparably to other flux processors. Memory usage is kept

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/



S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3199

Figure 8. (a) Ecosystem at the NEON SERC tower (credit: Stephen Voss Photography; http://www.stephenvoss.com/). (b, c) EC instru-
mentation on top of the NEON SERC tower. (b) Campbell Scientific CSAT-3 three-dimensional sonic anemometer (front) and LI-COR
Biosciences LI-7200 infrared gas analyzer (back) on the retracted tower-top boom. (c) Same instrumentation but with the tower-top boom
extended at 230◦ from true north.

below 2 GB through the use of fast access file-backed ob-
jects, enabling more sophisticated scientific analyses through
access to multiple days of data without overloading random
access memory (RAM) resources. Additionally, the snowfall
R package allows for logical parallelization frameworks to be
implemented in the processing framework, even at low-level
analysis steps.

3.1.2 Results and discussion

The time series ranging from 22 April to 3 May 2016 was
processed to deliver both state (L1) and flux (L4) quantities;
however, the initial eddy4R package release will only con-
tain functions necessary to report state variables or L1 data
products in the NEON data product description. During the
processing of the proof-of-concept results, averaging periods
with > 10 % missing data (including bad sensor diagnostic
flags) were removed, and dedicated flux QA/QC and uncer-
tainty quantification were disabled.

Figure 9 shows the resultant time series of shear stress
(friction velocity), sensible heat, latent heat, and CO2 flux.
The derived values fall into typical ranges for midlatitude
hardwood forests in spring. As expected, fluxes follow the
general trends in the scalar quantities. Good data coverage
can be seen for the LI-7200 measurements even during the
rainy period at the end of the analysis. A footprint analy-
sis revealed that 90 % of the flux measurement signals were
sourced within 800 m from the tower, and 80 % were within
500 m from the tower at our site. Data coverage was reduced

after day of year (DOY) 120 due to inclement weather con-
ditions.

The spiky results preceding and following periods with
> 10 % invalid data highlight the need for enabling the full
flux QA/QC and uncertainty budget to subset science-grade
fluxes. This implementation of eddy4R in a Docker image,
as it will interact with NEON CI, clearly demonstrates the
applicability of the DevOps model for generating EC L1–L4
data products.

3.2 Aircraft eddy-covariance measurements

Here, we use aircraft EC measurements to test more
advanced scientific capabilities of the eddy4R process-
ing framework. Airborne turbulent flux observations
were performed along more than 3100 km of low-level
(i.e., 50 m a.g.l. – above ground level) flights across the
North Slope Borough, Alaska, USA, in July 2012, using
the research aircraft Polar 5. The example data used in this
paper were recorded during a SSW–NNE flight line near
the village of Atqasuk, Alaska, above tundra dominated
by sedges and emerging herbaceous wetland vegetation.
Large, often oriented lakes and the meandering Meade River
characterize the surrounding landscape.

The aircraft was equipped with a 3 m nose boom holding a
five-hole probe for wind measurements, an open wire Pt100
in an unheated Rosemount housing for air temperature mea-
surements, and an HMT-330 (Vaisala, Helsinki, Finland) in
a Rosemount housing for relative humidity. Sample air was

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017

http://www.stephenvoss.com/


3200 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

Figure 9. Time series of turbulent fluxes derived from EC measurements atop the NEON SERC tower. Panels (a)–(d) indicate vertical
turbulent exchange of shear (friction velocity) and wind speed, sensible heat and temperature, latent heat and H2O dry mole fraction, and
CO2 flux and CO2 dry mole fraction.

drawn from an inlet above the cabin at about 9.7 L s−1, an-
alyzed in an RMT-200 cavity ring-down trace gas sensor
(Los Gatos Research Inc., Mountain View, CA, USA) and
recorded at 20 Hz. Aircraft position, velocity, and attitude
were provided by several global positioning systems (No-
vAtel Inc., Calgary, Alberta, Canada) and an inertial naviga-
tion system (Laseref V, Honeywell International Inc., Mor-
ristown, NJ, USA). Height above ground was determined by
a radar altimeter (KRA 405B/Honeywell International Inc.,
Morristown, NJ, USA) and a laser altimeter (LD90/RIEGL
Laser Measurements Systems GmbH, Horn, Austria). The
input data used in this study included the prederived 3-D
wind vector from five-hole probe and aircraft position, veloc-
ity, and attitude. After spike removal, the sampling frequency
of the original data was reduced from 100 to 20 Hz resolu-
tion using block averaging. These steps were performed prior
to import into eddy4R but could equally well be performed
therein.

3.2.1 Algorithm settings and profiling

Here, aircraft-measured vertical wind speed and CH4 dry
mole fraction were analyzed to determine CH4 emissions
by means of a time–frequency-resolved version of the EC
method (Metzger et al., 2013). For this purpose, a combina-
tion of settings were chosen in the eddy4R workflow file that
differ from Sect. 3.1: initially, the small (< 1 MB) EC raw
data file consisting of 17 variables and 12 800 data points (or
42 km flight data) was read in ASCII Gzip format – stan-
dard R capabilities for data ingest can be used to read data
in various formats, frequencies, and units. Aircraft-measured
vertical wind speed and CH4 dry mole fraction were then
correlated using a wavelet transform (Metzger et al., 2013).
This process includes ranging and de-spiking of unphysical
raw data values (Mauder et al., 2013; Metzger et al., 2012),
fast dry mole fraction derivation (e.g., Burba et al., 2012)
and spectroscopic correction (Tuzson et al., 2010) of CH4

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/



S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3201

Figure 10. Wavelet cross scalogram of the CH4 flux equivalent to a time (x-axis) frequency (y-axis) resolved version of EC. For each
combination of aircraft position and eddy size, blue and red areas indicate transport toward and away from the surface, respectively.

trace gas observations, and high-frequency spectral correc-
tion (Ammann et al., 2006) by means of applying a sig-
moidal transfer function (Eugster and Senn, 1995) directly in
wavelet space. This permits estimating turbulent fluxes with
improved spatial discretization and determining ∼ 100 bio-
physically relevant surface properties in the flux footprint.
The analysis took 56 min with 8-fold parallelization and con-
sumed < 3 GB RAM thanks to the use of fast access file-
backed objects.

3.2.2 Results and discussion

The resulting wavelet cross scalogram (Fig. 10) is integrated
in frequency over transport scales up to 20 km and along
the flight path over a 1000 m moving window with 100 m
step size, similar to the resolution of the land surface data.
The result is an in situ observed space series of the CH4
surface–atmosphere exchange at 100 m spatial resolution.
Analogously, turbulence statistics characterizing shear stress
and buoyancy are determined for characterizing the atmo-
spheric transport between the emitting land surface and the
aircraft position.

Corresponding systematic and random statistical errors
are calculated following Lenschow and Stankov (1986) and
Lenschow et al. (1994), and the flux detection limit is calcu-
lated after Billesbach (2011).

The relationship between the aircraft-observed CH4
surface–atmosphere exchange and land surface properties is
established through an atmospheric transport operator, the
so-called flux footprint function (e.g., Schmid, 1994). Here,
we use a computationally efficient one-dimensional parame-
terization of a Lagrangian particle model for the along-wind
footprint extent (Kljun et al., 2002, 2004), combined with an
analytical approach to determine cross-wind surface contri-
butions to each 100 m aircraft measurement, depending on
aircraft position (Fig. 11; Metzger et al., 2012).

For each 100 m observation of the CH4 surface–
atmosphere exchange, an individual footprint weight ma-
trix derived from the footprint parameterization is convolved
with the land surface drivers. The results are space series of
land surface contributions accompanying the CH4 measured
surface–atmosphere exchange (Fig. 12).

Figure 11. The composite flux footprint along the flight line (30,
60, and 90 % contour lines) superimposed over the National Land
Cover Database. The white dashed line represents the aircraft flight
track.

The successful application of eddy4R–Docker to both ba-
sic tower and advanced aircraft EC data analyses highlights
how the DevOps model promotes modular extensibility.

3.3 Validation and verification

eddy4R includes a verification script which automatically
processes subsets of the tower and aircraft data introduced in
Sect. 3.1 and 3.2, and verifies the results against a reference,
e.g., generated with a different software.

Here, we demonstrate such approach at the Park Falls,
Wisconsin, very tall tower Ameriflux site (US-PFa). The
447 m tall television tower (45.946◦ N, 90.272◦W) has been
instrumented for EC measurements in 1996, and is part of
the AmeriFlux network. Flux measurements at 30, 122, and
396 m sample a mixed landscape of forests and wetlands
(Desai et al., 2015). The surrounding forest canopy has ap-
proximately 70 % deciduous and 30 % coniferous trees, and
a mean canopy height of 20 m. The site has an interior
continental climate. Instrumentation at each level consists
of fast response wind speed and temperature from a sonic
anemometer (Applied Technologies, Inc., Seattle, WA, USA;

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017



3202 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

Figure 12. Space series of 399 observations of CH4 concentra-
tion (purple line) and flux (black line), each 100 m, averaged over
1000 m windows. The random sampling errors are indicated by the
shaded areas enveloping each line, and the flux detection limit is
shown as a salmon-colored envelope around the abscissa. Circles in-
dicate the dominating land cover in the footprint of each observation
(Fig. 11) with full circles corresponding to “pure” fluxes (> 80 %
surface contribution).

ATI type K). The 10 Hz dry mole fractions of CO2 and H2O
at the 122 m level used here were measured by a closed-path
infrared gas analyzer (LI-COR, Inc., Lincoln, NE, USA; LI-
6262) located on the tower.

A dataset from 27 July to 19 August 2011 was used in the
intercomparison between eddy4R and the reference software
EddyPro (LI-COR, Inc., Lincoln, NE, USA; version 6.2.0).
EddyPro was released in April 2011 and is widely used in the
EC community.

3.3.1 Algorithm settings

Several preprocessing steps were applied, and the result-
ing data and settings were used in both eddy4R and Ed-
dyPro: (i) the raw data were precleaned in eddy4R using
the Brock (1986) de-spiking algorithm with a filter width of
nine data points for all variables. (ii) EddyPro was used to
calculate the planar-fit rotation parameters (Wilczak et al.,
2001) over the entire dataset (offset of −0.06 m s−1, pitch of
−5.27◦, roll of−1.81◦). (iii) Time lags for dry mole fractions
of CO2 (0.8 s behind vertical wind) and H2O (0.1 s behind
vertical wind) were calculated in eddy4R using maximum
correlation (median lag time over entire dataset).

Because CO2 and H2O fluxes were calculated from dry
mole fractions, the Webb et al. (1980) density correction was
not necessary and therefore was not applied (Burba et al.,
2012). Frequency response correction was not considered in
this validation and therefore was not applied. Means, vari-
ances, and fluxes were calculated on the basis of 1 h block
averages. Based on Schotanus et al. (1983), sensible heat flux
was calculated from point-by-point conversion of sonic tem-
perature in eddy4R, with the half-hourly statistical correction
in EddyPro.

3.3.2 Results and discussion

eddy4R and EddyPro produce nearly identical results
(Fig. 13), and the gain error is within 0.04 % for most out-
puts. Sensible heat flux values produced by eddy4R have
slightly larger magnitude compared to EddyPro (by 0.49 %).
This is likely a result of the different methods applied when
converting sonic temperature to air temperature. This in-
tercomparison confirms that applying the DevOps model
to scientific EC software achieved results comparable to
commercial-grade software. A detailed end-to-end intercom-
parison considering additional processing steps and EC soft-
ware is planned for a separate paper accompanying NEON’s
release of flux data products.

4 Summary and conclusions

Adopting a DevOps philosophy has facilitated the creation of
a universal processing environment for producing NEON’s
EC data products. Portable, reproducible, and extensible soft-
ware is reliably and efficiently created by incorporating the
DevOps workflow steps of Plan, Create, Verify, Package, Re-
lease, Configure, and Monitor into a NEON-specific DevOps
model based on the tools R, Git, HDF5, and Docker. Git
distributed version control facilitates simultaneous internal–
external collaboration on scientific algorithms, the outcome
being a modular family of open-source R packages. The
use of Hierarchical Data Format allows for efficient, self-
describing data input and output. Docker images package
the entire processing environment for robust, scalable, and
portable deployment. The capability of this framework was
demonstrated with cross-validated tower and aircraft fluxes.

The results presented here are from a file-based imple-
mentation of the eddy4R–Docker workflow, with EC instru-
ment data accessed directly, e.g., from the NEON site and
manually processed into the HDF5 ingest format (Sect. 2.5).
The subsequent focus is the operational implementation of
the eddy4R–Docker workflow for reporting means and vari-
ances. This includes (i) automated ingest of streaming raw
data into the NEON database; (ii) processing of raw data into
the standard, defined inputs required by the eddy4R–Docker
in HDF5 format; and (iii) developing the software and hard-
ware infrastructure to pass data and instructions back and
forth to the eddy4R–Docker workflow and control program
execution in a distributed computing framework.

The remaining scientific algorithms are being integrated
into eddy4R–Docker for producing turbulent exchange data
products. These algorithms include lag correction, planar-fit
and spectral correction, flux QA/QC, and uncertainty bud-
get estimation. Finally, eddy4R–Docker is being expanded to
include “storage” and “derived” workflows (Fig. 6) for gen-
erating reproducible net ecosystem exchange data products
in 2018. Lessons learned here will profit the community at
large, e.g., through enabling streaming processing directly at

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/



S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3203

Figure 13. Scatterplot of means (vertical wind speed, w; sonic temperature, Tv ; H2O dry mole fraction, q; and CO2 dry mole fraction),
variances and fluxes (friction velocity, ustar; sensible heat flux, H ; latent heat, LE; CO2 flux). Data are generated from July to August 2011
US-PFa data in EddyPro and eddy4R. Each point represents a 1 h averaging period. Black lines are 1 : 1 lines, and dashed lines are robust
regressions (Salibian-Barrera and Yohai, 2006).

an EC site or over cellular modems with the same eddy4R–
Docker open-source software as used for sophisticated anal-
yses (Sect. 3.2). Already, the executable example workflow
and data included in eddy4R–Docker image invite the reader
to realize their own end-to-end data analysis and apply it to
their data (Sect. 2.6).

While our sole focus in developing and implementing this
model has been to generate EC data products within the
unique capabilities and constraints of NEON, it has become

clear that the NEON DevOps model enables the implemen-
tation of a suite of complex processing algorithms, such as
temporal gap filling of sensor time series data or modeling re-
aeration rates. There exist many potential synergies between
NEON, other tower networks, and the user community for
producing high-level EC data products. We hope this frame-
work can serve as a model for implementing community-
sourced, distributed-development scientific code while com-

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017



3204 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

batting the deficiencies of current computational frameworks
that limit accessibility, reproducibility, and extensibility.

Code and data availability. The source code packages
eddy4R.base (0.2.0) and eddy4R.qaqc (0.2.0) used in this
study are archived at https://w3id.org/smetzger/Metzger-et-al_
2017_eddy4R-Docker/code/0.2.0, under the GNU Affero general
public license (GNU AGPLv3). Similarly, the corresponding
eddy4R–Docker image (0.2.0), including an executable example
workflow and data, is available at https://w3id.org/smetzger/
Metzger-et-al_2017_eddy4R-Docker/docker/0.2.0. In addition,
a data supplement is provided at https://w3id.org/smetzger/
Metzger-et-al_2017_eddy4R-Docker/data/0.2.0, including an
extended abstract and all NEON SERC raw data used in this
study, accompanied by variable documentation. Lastly, NEON
EC data products generated with eddy4R–Docker are available at
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/
portal/0.2.0.

Competing interests. Jiahong Li works for LI-COR Biosciences,
which produces instruments relevant for this type of measurement.

Acknowledgements. Many colleagues at Battelle Ecology sup-
ported this study. In particular, Santiago Bonarrigo provided
preparsed high-frequency data from the SERC site, and An-
drew Fox (now at the National Center for Atmospheric Research),
Mike SanClements, and David Hulslander commented on an earlier
version of the paper. Henry Loescher and Leslie Goldman designed
Fig. 6, and Andrea Thorpe (now at the Washington Natural
Heritage Program), Thomas Gulbransen, and Michael Kuhlman
helped shepherding this study and its publication through required
administrative procedures. Special thanks goes to Timothy Brown
at the National Oceanic and Atmospheric Administration for
numerous discussions and invaluable advice on scientific comput-
ing. The National Ecological Observatory Network is a project
sponsored by the National Science Foundation and managed under
cooperative agreement by Battelle Ecology, Inc. This material is
based upon work supported by the National Science Foundation
under the grant DBI-0752017. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
National Science Foundation. Ankur Desai acknowledges support
from NSF DBI-1457897 and DOE Office of Science Ameriflux
Network Management Project core site support to the ChEAS
cluster. Torsten Sachs and Andrei Serafimovich are supported by
the Helmholtz Association of German Research Centres through
a Helmholtz Young Investigators Group grant to Torsten Sachs
(grant VH-NG-821).

Edited by: Chiel van Heerwaarden
Reviewed by: three anonymous referees

References

Ammann, C., Brunner, A., Spirig, C., and Neftel, A.: Tech-
nical note: Water vapour concentration and flux measure-
ments with PTR-MS, Atmos. Chem. Phys., 6, 4643–4651,
https://doi.org/10.5194/acp-6-4643-2006, 2006.

Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy covariance:
A practical guide to measurement and data analysis, Springer,
Dordrecht, Heidelberg, London, New York, 438 pp., 2012.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Run-
ning, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R.,
Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi,
Y., Meyers, T., Munger, W., Oechel, W. U. K., Pilegaard,
K., Schmid, H., Valentini, R., Verma, S., Vesala, T., Wil-
son, K., and Wofsy, S.: FLUXNET: A new tool to study
the temporal and spatial variability of ecosystem-scale car-
bon dioxide, water vapor, and energy flux densities, B. Am.
Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-
0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.

Billesbach, D. P.: Estimating uncertainties in individual eddy co-
variance flux measurements: A comparison of methods and a
proposed new method, Agr. Forest. Meteorol., 151, 394–405,
https://doi.org/10.1016/j.agrformet.2010.12.001, 2011.

Boettiger, C.: An introduction to Docker for reproducible research,
with examples from the R environment, Operat. Syst. Rev., 49,
71–79, https://doi.org/10.1145/2723872.2723882, 2015.

Brock, F. V.: A nonlinear filter to remove im-
pulse noise from meteorological data, J. Atmos.
Ocean. Tech., 3, 51–58, https://doi.org/10.1175/1520-
0426(1986)003<0051:anftri>2.0.co;2, 1986.

Burba, G., Schmidt, A., Scott, R. L., Nakai, T., Kathilankal, J.,
Fratini, G., Hanson, C., Law, B., McDermitt, D. K., Eckles,
R., Furtaw, M., and Velgersdyk, M.: Calculating CO2 and H2O
eddy covariance fluxes from an enclosed gas analyzer using an
instantaneous mixing ratio, Global Change Biol., 18, 385–399,
https://doi.org/10.1111/j.1365-2486.2011.02536.x, 2012.

Chen, L.: Continuous delivery: Huge benefits, but challenges too,
IEEE Softw., 32, 50–54, https://doi.org/10.1109/ms.2015.27,
2015.

Clark, D., Culich, A., Hamlin, B., and Lovett, R.: BCE: Berkeley’s
common scientific compute environment for research and edu-
cation, in: Proceedings of the 13th Python in Science Confer-
ence (SCIPY 2014), Austin, USA, 2014.

Clement, R. J., Burba, G. G., Grelle, A., Anderson, D. J., and Mon-
crieff, J. B.: Improved trace gas flux estimation through IRGA
sampling optimization, Agr. Forest Meteorol., 149, 623–638,
https://doi.org/10.1016/j.agrformet.2008.10.008, 2009.

Collberg, C., Proebsting, T., Moraila, G., Shankaran, A., Shi, Z.,
and Warren, A. M.: Measuring reproducibility in computer sys-
tems research, University of Arizona, Department of Computer
Science, Tucson, USA, 37 pp., 2014.

De Roo, F., Abdul Huq, S. U., Metzger, S., Desai, A. R., Xu, K.,
and Mauder, M.: On the benefit of driving large-eddy simulation
with spatially resolved surface fluxes derived from environmen-
tal response functions, in: TERENO International Conference,
29 September–2 October 2014, Bonn, Germany, 2014.

Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Bau-
mann, D., Andrews, A. E., Cook, B. D., King, J. Y., and
Kolka, R.: Landscape-level terrestrial methane flux observed

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/

https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/code/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/code/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/docker/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/docker/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/data/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/data/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/portal/0.2.0
https://doi.org/10.5194/acp-6-4643-2006
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
https://doi.org/10.1016/j.agrformet.2010.12.001
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1175/1520-0426(1986)003<0051:anftri>2.0.co;2
https://doi.org/10.1175/1520-0426(1986)003<0051:anftri>2.0.co;2
https://doi.org/10.1111/j.1365-2486.2011.02536.x
https://doi.org/10.1109/ms.2015.27
https://doi.org/10.1016/j.agrformet.2008.10.008


S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing 3205

from a very tall tower, Agr. Forest Meteorol., 201, 61–75,
https://doi.org/10.1016/j.agrformet.2014.10.017, 2015.

Erich, F., Amrit, C., and Daneva, M.: A mapping study on cooper-
ation between information system development and operations,
in: 15th International Conference on Product-Focused Software
Process Improvement, PROFES 2014, Helsinki, Finland, 2014.

Eugster, W. and Senn, W.: A cospectral correction model for mea-
surement of turbulent NO2 flux, Bound.-Lay. Meteorol., 74, 321–
340, https://doi.org/10.1007/bf00712375, 1995.

Foken, T.: Micrometeorology, 2nd Edn., Springer, Berlin, Heidel-
berg, 362 pp., 2017.

Foken, T. and Wichura, B.: Tools for quality assessment of surface-
based flux measurements, Agr. Forest Meteorol., 78, 83–105,
https://doi.org/10.1016/0168-1923(95)02248-1, 1996.

Fratini, G. and Mauder, M.: Towards a consistent eddy-covariance
processing: An intercomparison of EddyPro and TK3, Atmos.
Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-
2014, 2014.

Kljun, N., Rotach, M. W., and Schmid, H. P.: A three-dimensional
backward lagrangian footprint model for a wide range of
boundary-layer stratifications, Bound.-Lay. Meteorol., 103, 205–
226, https://doi.org/10.1023/A:1014556300021, 2002.

Kljun, N., Calanca, P., Rotach, M. W., and Schmid,
H. P.: A simple parameterisation for flux footprint
predictions, Bound.-Lay. Meteorol., 112, 503–523,
https://doi.org/10.1023/B:BOUN.0000030653.71031.96, 2004.

Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.:
A simple two-dimensional parameterisation for Flux Foot-
print Prediction (FFP), Geosci. Model Dev., 8, 3695–3713,
https://doi.org/10.5194/gmd-8-3695-2015, 2015.

Kohnert, K., Serafimovich, A., Metzger, S., Hartman, J., and Sachs,
T.: Geogenic sources strongly contribute to the Mackenzie River
Delta’s methane emissions derived from airborne flux data, in:
48th AGU annual Fall Meeting, 14–18 December 2015, San
Francisco, USA, 2015.

Kormann, R. and Meixner, F. X.: An analytical footprint model for
non-neutral stratification, Bound.-Lay. Meteorol., 99, 207–224,
https://doi.org/10.1023/A:1018991015119, 2001.

Law, B.: AmeriFlux network aids global synthesis, Eos Trans. Am.
Geophys. Un., 88, 286, https://doi.org/10.1029/2007eo280003,
2007.

Lee, J., Vaughan, A., Lewis, A., Shaw, M., Purvis, R., Carlslaw, D.,
Hewitt, C., Misztal, P., Metzger, S., Beevers, S., Goldstein, A.,
Karl, T., and Davison, D.: Spatially resolved emissions of NOx

and VOCs and comparison to inventories, in: 48th AGU annual
Fall Meeting, 14–18 December 2015, San Francisco, USA, 2015.

Lenschow, D. H. and Stankov, B. B.: Length scales
in the convective boundary layer, J. Atmos.
Sci., 43, 1198–1209, https://doi.org/10.1175/1520-
0469(1986)043<1198:LSITCB>2.0.CO;2, 1986.

Lenschow, D. H., Mann, J., and Kristensen, L.:
How long is long enough when measuring fluxes
and other turbulence statistics?, J. Atmos. Ocean.
Tech., 11, 661–673, https://doi.org/10.1175/1520-
0426(1994)011<0661:HLILEW>2.0.CO;2, 1994.

Loukides, M.: What is DevOps? Infrastructure as Code, O’Reilly
Media, Ebook, Safari Books Online, 15 pp., 2012.

Mammarella, I., Peltola, O., Nordbo, A., Järvi, L., and Rannik, Ü.:
Quantifying the uncertainty of eddy covariance fluxes due to the

use of different software packages and combinations of process-
ing steps in two contrasting ecosystems, Atmos. Meas. Tech., 9,
4915–4933, https://doi.org/10.5194/amt-9-4915-2016, 2016.

Mauder, M.,and Foken, T.: Eddy-covariance software TK3
[Data set], Documentation and instruction manual
of the eddy-covariance software package TK3 (up-
date), University of Bayreuth, Bayreuth, Germany,
https://doi.org/10.5281/zenodo.20349, 2015.

Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C.,
Schmid, H. P., Schmidt, M., and Steinbrecher, R.: A strat-
egy for quality and uncertainty assessment of long-term eddy-
covariance measurements, Agr. Forest Meteorol., 169, 122–135,
https://doi.org/10.1016/j.agrformet.2012.09.006, 2013.

Metzger, S., Junkermann, W., Mauder, M., Beyrich, F., Butterbach-
Bahl, K., Schmid, H. P., and Foken, T.: Eddy-covariance flux
measurements with a weight-shift microlight aircraft, Atmos.
Meas. Tech., 5, 1699–1717, https://doi.org/10.5194/amt-5-1699-
2012, 2012.

Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K.,
Trancón y Widemann, B., Neidl, F., Schäfer, K., Wieneke, S.,
Zheng, X. H., Schmid, H. P., and Foken, T.: Spatially ex-
plicit regionalization of airborne flux measurements using envi-
ronmental response functions, Biogeosciences, 10, 2193–2217,
https://doi.org/10.5194/bg-10-2193-2013, 2013.

Metzger, S., Burba, G., Burns, S. P., Blanken, P. D., Li, J.,
Luo, H., and Zulueta, R. C.: Optimization of an enclosed
gas analyzer sampling system for measuring eddy covariance
fluxes of H2O and CO2, Atmos. Meas. Tech., 9, 1341–1359,
https://doi.org/10.5194/amt-9-1341-2016, 2016.

Nordbo, A. and Katul, G.: A wavelet-based correction method
for eddy-covariance high-frequency losses in scalar concen-
tration measurements, Bound.-Lay. Meteorol., 146, 81–102,
https://doi.org/10.1007/s10546-012-9759-9, 2012.

Paarsch, H. J. and Golyaev, K.: A gentle introduction to effective
computing in quantitative research: What every research assistant
should know, MIT Press, Cambridge, USA, 776 pp., 2016.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C.,
Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T.,
and Yakir, D.: Towards a standardized processing of Net Ecosys-
tem Exchange measured with eddy covariance technique: algo-
rithms and uncertainty estimation, Biogeosciences, 3, 571–583,
https://doi.org/10.5194/bg-3-571-2006, 2006.

Ram, K.: Git can facilitate greater reproducibility and increased
transparency in science, Source Code Biol. Med., 8, 1–8,
https://doi.org/10.1186/1751-0473-8-7, 2013.

Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S.,
Heimann, M., Ojima, D. S., Quegan, S., and Schmullius, C. C.:
Model-data synthesis in terrestrial carbon observation: Methods,
data requirements and data uncertainty specifications, Global
Change Biol., 11, 378–397, https://doi.org/10.1111/j.1365-
2486.2005.00917.x, 2005.

R Core Team: R: A language and environment for statistical com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
2016.

Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T.,
Bakwin, P. S., and Hibbard, K. A.: A global terrestrial moni-
toring network integrating tower fluxes, flask sampling, ecosys-
tem modeling and EOS satellite data, Remote Sens. Environ.,

www.geosci-model-dev.net/10/3189/2017/ Geosci. Model Dev., 10, 3189–3206, 2017

https://doi.org/10.1016/j.agrformet.2014.10.017
https://doi.org/10.1007/bf00712375
https://doi.org/10.1016/0168-1923(95)02248-1
https://doi.org/10.5194/amt-7-2273-2014
https://doi.org/10.5194/amt-7-2273-2014
https://doi.org/10.1023/A:1014556300021
https://doi.org/10.1023/B:BOUN.0000030653.71031.96
https://doi.org/10.5194/gmd-8-3695-2015
https://doi.org/10.1023/A:1018991015119
https://doi.org/10.1029/2007eo280003
https://doi.org/10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2
https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2
https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2
https://doi.org/10.5194/amt-9-4915-2016
https://doi.org/10.5281/zenodo.20349
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.5194/amt-5-1699-2012
https://doi.org/10.5194/amt-5-1699-2012
https://doi.org/10.5194/bg-10-2193-2013
https://doi.org/10.5194/amt-9-1341-2016
https://doi.org/10.1007/s10546-012-9759-9
https://doi.org/10.5194/bg-3-571-2006
https://doi.org/10.1186/1751-0473-8-7
https://doi.org/10.1111/j.1365-2486.2005.00917.x
https://doi.org/10.1111/j.1365-2486.2005.00917.x


3206 S. Metzger et al.: eddy4R 0.2.0: a DevOps model for community-extensible eddy-covariance data processing

70, 108–127, https://doi.org/10.1016/S0034-4257(99)00061-9,
1999.

Sachs, T., Serafimovich, A., Metzger, S., Kohnert, K., and Hart-
mann, J.: Low permafrost methane emissions from arctic air-
borne flux measurements, in: 47th AGU annual Fall Meeting,
15–19 December 2014, San Francisco, USA, 2014.

Salibian-Barrera, M. and Yohai, V. J.: A fast algorithm for S-
regression estimates, J. Comput. Graph. Stat., 15, 414–427, 2006.

Salmon, O., Caulton, D., Shepson, P., Brian, S., Metzger, S., and
Musinsky, J.: Attributing airborne measurements of forest CO2
exchange to finer spatial scales, in: 5th NACP Principal Inves-
tigators Meeting, 26–29 January 2015, Washington, D.C., USA,
2015.

Schimel, D., Hargrove, W., Hoffman, F., and MacMahon, J.:
NEON: a hierarchically designed national ecological net-
work, Front. Ecol. Environ., 5, 59, https://doi.org/10.1890/1540-
9295(2007)5[59:nahdne]2.0.co;2, 2007.

Schmid, H. P.: Source areas for scalars and scalar
fluxes, Bound.-Lay. Meteorol., 67, 293–318,
https://doi.org/10.1007/bf00713146, 1994.

Schotanus, P., Nieuwstadt, F. T. M., and Bruin, H. A. R.: Temper-
ature measurement with a sonic anemometer and its application
to heat and moisture fluxes, Bound.-Lay. Meteorol., 26, 81–93,
https://doi.org/10.1007/BF00164332, 1983.

Serafimovich, A., Metzger, S., Kohnert, K., Hartmann, J.,
and Sachs, T.: The airborne measurements of methane
fluxes (AIRMETH) arctic campaign, in: 46th AGU annual Fall
Meeting, 9–13 December 2013, San Francisco, USA, 2013.

Smith, D. E., Metzger, S., and Taylor, J. R.: A transpar-
ent and transferable framework for tracking quality in-
formation in large datasets, PLoS One, 9, e112249,
https://doi.org/10.1371/journal.pone.0112249, 2014.

Starkenburg, D., Metzger, S., Fochesatto, G. J., Alfieri, J. G., Gens,
R., Prakash, A., and Cristóbal, J.: Assessment of de-spiking
methods for turbulence data in micrometeorology, J. Atmos.
Ocean. Tech., 33, 2001–2013, https://doi.org/10.1175/jtech-d-
15-0154.1, 2016.

Stull, R. B.: An Introduction to Boundary Layer Meteorol-
ogy, Kluwer Academic Publishers, Dordrecht, the Netherlands,
670 pp., 1988.

Sulkava, M., Luyssaert, S., Zaehle, S., and Papale, D.: Assessing
and improving the representativeness of monitoring networks:
The European flux tower network example, J. Geophys. Res.,
116, G00J04, https://doi.org/10.1029/2010jg001562, 2011.

Taylor, J. R. and Loescher, H. L.: Automated quality control meth-
ods for sensor data: A novel observatory approach, Biogeo-
sciences, 10, 4957–4971, https://doi.org/10.5194/bg-10-4957-
2013, 2013.

Turner, D. P., Ollinger, S. V., and Kimball, J. S.: Inte-
grating remote sensing and ecosystem process models for
landscape- to regional-scale analysis of the carbon cy-
cle, BioScience, 54, 573–584, https://doi.org/10.1641/0006-
3568(2004)054[0573:irsaep]2.0.co;2, 2004.

Tuzson, B., Hiller, R. V., Zeyer, K., Eugster, W., Neftel, A., Am-
mann, C., and Emmenegger, L.: Field intercomparison of two
optical analyzers for CH4 eddy covariance flux measurements,
Atmos. Meas. Tech., 3, 1519–1531, https://doi.org/10.5194/amt-
3-1519-2010, 2010.

Vaughan, A. R., Lee, J., Misztal, P., Metzger, S., Shaw, M. D.,
Lewis, A. C., Purvis, R., Carslaw, D., Goldstein, A., Hewitt, C.
N., Davison, B., Beevers, S. D., and Karl, T.: Spatially resolved
flux measurements of NOx from London suggest significantly
higher emissions than predicted by inventories, Faraday Discuss.,
189, 455–472, https://doi.org/10.1039/c5fd00170f, 2016.

Vickers, D. and Mahrt, L.: Quality control and flux sam-
pling problems for tower and aircraft data, J. Atmos.
Ocean. Tech., 14, 512–526, https://doi.org/10.1175/1520-
0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.

Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of
flux measurements for density effects due to heat and wa-
ter vapour transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100,
https://doi.org/10.1002/qj.49710644707, 1980.

Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer
tilt correction algorithms, Bound.-Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465, 2001.

Wurster, L. F., Colville, R. J., and Duggan, J.: Market Trends: De-
vOps – not a market, but a tool-centric philosophy that supports
a continuous delivery value chain, Gartner, Inc., Stamford, USA,
14 pp., 2015.

Xu, K., Metzger, S., and Desai, A. R.: Upscaling tower-observed
turbulent exchange at fine spatio-temporal resolution using envi-
ronmental response functions, Agr. Forest Meteorol., 232, 10–22,
https://doi.org/10.1016/j.agrformet.2016.07.019, 2017.

Geosci. Model Dev., 10, 3189–3206, 2017 www.geosci-model-dev.net/10/3189/2017/

https://doi.org/10.1016/S0034-4257(99)00061-9
https://doi.org/10.1890/1540-9295(2007)5[59:nahdne]2.0.co;2
https://doi.org/10.1890/1540-9295(2007)5[59:nahdne]2.0.co;2
https://doi.org/10.1007/bf00713146
https://doi.org/10.1007/BF00164332
https://doi.org/10.1371/journal.pone.0112249
https://doi.org/10.1175/jtech-d-15-0154.1
https://doi.org/10.1175/jtech-d-15-0154.1
https://doi.org/10.1029/2010jg001562
https://doi.org/10.5194/bg-10-4957-2013
https://doi.org/10.5194/bg-10-4957-2013
https://doi.org/10.1641/0006-3568(2004)054[0573:irsaep]2.0.co;2
https://doi.org/10.1641/0006-3568(2004)054[0573:irsaep]2.0.co;2
https://doi.org/10.5194/amt-3-1519-2010
https://doi.org/10.5194/amt-3-1519-2010
https://doi.org/10.1039/c5fd00170f
https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1023/A:1018966204465
https://doi.org/10.1016/j.agrformet.2016.07.019

	Abstract
	Introduction
	The development and operations (DevOps) model
	The eddy4R family of R packages (DevOps Plan and Create)
	Git distributed version control (DevOps Verify and Package)
	Docker image build and deployment (DevOps Release)
	Hierarchical Data Format version 5 (DevOps Configure)
	Modular compatibility with existing compute infrastructure (DevOps Configure and Monitor)
	Installation and operation

	Test applications
	Tower eddy-covariance measurements
	Algorithm settings and profiling
	Results and discussion

	Aircraft eddy-covariance measurements
	Algorithm settings and profiling
	Results and discussion

	Validation and verification
	Algorithm settings
	Results and discussion


	Summary and conclusions
	Code and data availability
	Competing interests
	Acknowledgements
	References

