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production, with potential implications for carbon cycling, food-web structure and air-sea interactions as men-
tioned above. Yet, how ecological and biogeochemical processes in the Arctic Ocean and elsewhere will evolve in 
the future is difficult to predict. Simultaneous changes in an organism’s chemical and physical environment may 
either amplify or dampen the organism’s response to each individual change, and also induce complex ecological 
responses with potentially cascading effects38. Prevailing species may adapt physiologically to their changing 
environment or be replaced by more adapted ones.

During the last decades, immense scientific effort has been directed towards better understanding and pre-
dicting responses of marine organisms and communities to the consequences of global change. Sensitivities 
to short-term changes in temperature, sea-ice extent, pCO2 and pH, or nutrient loads have been observed for 
selected plankton species and communities in experimental simulations8, 9, 38, 39. Ocean acidification may increase 
extracellular release and TEP formation by up to 18–33%8, 39, respectively, which is rather small compared to 
84–500% higher TEP concentrations observed during years of P. pouchetii dominance in this study. Our results 
suggest that changes in phytoplankton community structure leave marked footprints on TEP abundance in the 
ocean.

Understanding how climate-induced changes in ocean circulation patterns will redistribute plankton species 
and alter plankton community composition may therefore be necessary to accurately predict future biogeochem-
ical cycling. In this respect, time series observations are an invaluable tool as they monitor the integrated response 
of an ecosystem together with changes in the physical and chemical environment.

Methods
Field sampling. A SEA-BIRD CTD system, equipped with a 24 Niskin bottle (12 L) rosette sampler, was used 
to determine depth profiles of temperature and salinity, and to collect seawater. At each station, water was col-
lected at several depths between 5 and 150 m. All samples were processed on board immediately after sampling. 

Figure 4. Concentration of TEP [(A); µg Xeq. L−1] and abundance of P. pouchetii as determined by 454 
sequencing [(B); sequence abundance in this analysis] and q-PCR analyses [(C); ml−1] at four time series 
stations from 2009 to 2014. Association of polysaccharide gels (TEP) with P. pouchetii (D) and within sinking 
particle aggregates (E) as determined by confocal laser scanning microscopy (CLSM) using a conjugate of 
Concanavalin A and Alexa Fluor 633 to stain polysaccharide gels (blue), SYTO 9 to stain bacteria (green) and 
Chl a autofluorescence (red). Pictures by Jan Michels (D) and Kathrin Busch (E).



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 4129  | DOI:10.1038/s41598-017-04106-9

Hydrographic data for this period including seawater temperature and salinity were retrieved at PANGAEA 
(doi:10.1594/PANGAEA.753658, 754250, 78140, 800427, 837425).

Molecular analyses. Samples were taken during the upcasts at the vertical maximum of Chl a fluorescence 
determined during the downcasts. Stations investigated include the HAUSGARTEN stations HG1 (79.14°N, 
6.09°W), HG4 (79.07°N, 4.18°W), N4 (79.76°N, 4.28°W), and S3 (78.61°N, 5.97°W). The depth of the Chl a max-
imun varied between 10–50 m among the different stations.  Two liter subsamples were taken in PVC bottles from 
the Niskins. Particulate organic matter for molecular analyses was collected by sequential filtration of one water 
sample through three different mesh sizes (10 µm, 3 µm, 0.4 µm) on 45 mm diameter Isopore Membrane Filters 
at 200 mbar using a Millipore Sterifil filtration system (Millipore, USA). Phytoplankton community structure in 
samples was characterized using 454 sequencing and RT-PCR analyses.

Chlorophyll a (Chl a). The concentration of chlorophyll a (Chl a) was determined from 0.5 – 2 L of seawater 
filtered onto glass fibre filters (Whatman GF/F) under low vacuum (<200 mbar); the filters were stored at −20 °C 
before analysis. Pigments were extracted with 10 ml of 90% acetone. The filters were treated with an ultrasonic 
device in an ice bath for less than a minute, and then further extracted in the refrigerator for 2 h. Subsequently 
they were centrifuged for 10 minutes at 5000 rpm at 4 °C prior to measurement. Chl a concentration was deter-
mined fluorimetrically (Turner Designs), together with total phaeophytin concentration after acidification (HCl, 
0.1 N) slightly modified to the methods described in Edler (1979)40 and Evans et al. (1980)41, respectively. The 
standard deviation of replicate test samples was <10%.

Transparent exopolymer particles (TEP). TEP were determined after Passow and Alldredge (1995)42. 
Briefly, 5- 500-mL samples were filtered onto 0.4 µm Nuclepore filters, stained with 1 mL of an aqueous solution 
of Alcian Blue (0.02% w/w at pH 2.5) and rinsed with distilled water. Filters were kept frozen until analysis, 
which was performed within 4 months of collection. Each filter was soaked for at least two hours with 6 mL of 
80% H2SO4 in order to dissolve the particulate matter, and absorption of the solution was measured at 787 nm in 
a 1-cm cuvette. The acidic polysaccharide Gum Xanthan was used as a standard to relate Alcian Blue adsorption 
to TEP. The calibration factor (f) was determined for every sampling campaign, yielding a factor of f = 41 for all 
samples from 2009 to 2012 and f = 140 for samples from 2014 (ARK28). Triplicates, occasionally duplicates, were 
analysed for each sample. The detection limit of the measurements was 5 µg Gum Xanthan equivalents (Xeq.) L−1 
and the standard deviation of triplicate samples was <10% in most cases.

Microscopy. In order to study the species composition of unicellular plankton organisms present at the sam-
pling sites, water samples were collected from the chlorophyll a maximum layer and cell abundances counted. 
Samples were stored cool in dark brown glass bottles and preserved with hexamine-neutralized formaldehyde 
(0.5–1% final concentration) until further analyses. In the laboratory, quantitative microscopic analysis of phy-
toplankton was conducted using 50 mL aliquots. Cells were allowed to settle for at least 48 h before being iden-
tified and counted with an inverted microscope at 100 × , 200 × and 400 × magnification. Some species, such 
as very small flagellates, were identified only to genera. Phytoplankton species were grouped into the follow-
ing functional groups: diatoms, nanoflagellates, autotrophic dinoflagellates, coccolithophores and P. pouchetii. 
Phytoplankton carbon (PPC) was calculated by measuring the linear dimensions of cells in order to estimate cell 
volume. Conversion to carbon assumed a carbon to plasma volume ratio of 0.13 pg Cµm−3 for thecate dinoflag-
ellates and 0.11 pg Cµm−3 for all other taxonomic groups40. Phaeocystis pouchetii carbon was calculated only for 
the cells; no correction was made for the gelatinous membrane. Therefore PPC values given here for P. pouchetii 
are slightly underestimated.

For confocal laser scanning microscopy (CLSM) samples were filtered under low vacuum (<200 mbar) onto 
25 mm black polycarbonate filters with a pore size of 0.2 μm and stored at −20 °C until further analysis. For 
analyses, filters were stained for 20 min in the dark at room temperature with sodium bicarbonate buffer (concen-
tration: 0.1 mol L−1) containing SYTO 9 (concentration: 5 µmol L−1) and a conjugate of the lectin Concanavalin 
A (Con A) and the fluorescent dye Alexa Fluor 633 (concentration: 0.1 mg mL−1). Fluorescence of particles was 
examined with a Leica TCS SP5 II CLSM system with a Leica HC PL APO 20×/0.75 IMM CS2 objective. The 
following wavelengths were used to excite and detect the different fluorescence: SYTO 9: 488 nm excitation, 
495–555 nm emission; Alexa Fluor 633: 633 nm excitation, 640–680 nm emission; chlorophyll autofluorescence: 
488 nm excitation, 640–740 nm emission.

DNA isolation. Genomic DNA was extracted from cells collected from all filters after sequential filtration. 
DNA extraction was carried out using the Nucleospin Plant II kit (Machery-Nagel, Düren, Germany) following 
the manufacturer’s protocol. Genomic DNA was eluted in 60 µL elution buffer provided by the manufacturer. The 
extracts were stored at −20 °C until analysis.

PCR-amplification of 18S rDNA. For 454-pyrosequencing, a ~670 bp fragment of the 18 S rDNA con-
taining the hypervariable V4 region was amplified separately from each filter fraction with the primer set 528 F 
(GCG GTA ATT CCA GCT CCA A) and 1055 R (ACG GCC ATG CAC CAC CAC CCA T)43. The 18 S rDNA 
was amplified separately from the different fractions to minimize the PCR-bias related to variability in amplifi-
cation efficiency of differently sized taxa. All PCRs had a final volume of 50 µL and contained: 0.02 U HotMaster 
Taq polymerase (5′Prime); the 10-fold polymerase buffer according to manufacturer’s specification; 0.4 mg/
mL BSA; 0.8 mM (each) dNTP (Eppendorf, Germany); 0.2 µM each primer and 1 µL of template DNA. PCR 
amplification was performed in a thermal cycler (Eppendorf, Germany) with an initial denaturation (94 °C, 
5 min) followed by 35 cycles of denaturation (94 °C, 1 min), annealing (58 °C, 2 min), and extension (72 °C, 
2 min) with a single final extension (72 °C, 10 min). The PCR products were purified with a Mini Elute PCR 
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Purification kit (Qiagen, Germany). Subsequently, equal volumes of PCR-products were pooled and subjected to 
454-pyrosequencing. Finally, the sequencing of the amplicon was performed by GATC Biotech (Germany), using 
a 454 GS FLX Titanium sequencer (Roche, Germany) for the following samples: (ARKXXIV/2) (HG1, HG4, S3, 
N4), (ARKXXV/2) (HG1, HG4, S3), (ARKXXVI/2) (HG1, HG4, S3, N4), (ARKXXVII/2) (HG1, HG4, S3, N4). 
ARKXXV/2 (N4) was sequenced by LGC Genomics GmbH (Berlin, Germany). Sequences generated in this study 
have been deposited at the European Nucleotide Archive (ENA) under Accession PRJEB21238.

Data analysis. Raw sequence reads were processed using the analysis pipeline Quantitative Insights Into 
Microbial Ecology Version 1.8.0 (QIIME)1. The primer set used in this study amplifies a PCR product of ~500 bp 
including the V4-region of the 18 S rRNA gene. The forward primer 528 F, used for the sequencing, attaches 
approximately 25 bp upstream of the V4 region, which has an approximate length of 230 bp44. Thus, sequence 
reads with a length under 250 bp were excluded from further analysis to ensure including the complete V4 region 
in the analysis and to omit short reads. The quality score was set to 25 and eight homopolymers and two primer 
mismatches were allowed. Chimeric sequences in the remaining data set were eliminated from further analyses 
based on an assessment using the software UCHIME45 within QIIME46. The resulting high quality reads were 
subsampled to allow comparison of sequence abundance in the different samples. Subsequently these high quality 
sequences were grouped into operational taxonomic units (OTUs) at the 97% similarity level using UCLUST47. 
The 97% similarity level has shown to be the most suitable to reproduce original eukaryotic diversity48 and also 
has the effect of bracing most sequencing errors49. Furthermore, known intragenomic SSU polymorphism levels 
can vary by 2.9% in dinoflagellate species50. OTUs composed of less than 4 sequence reads were removed from the 
analysis. The remaining sequences were aligned using the SILVA reference database (SSU Ref 119). Unassigned 
OTUs and those assigned to Ophistakonta were excluded from further analysis in a final cleaning step.

Quantitative PCR-assay. Quantitative PCR was carried out in a nested 2-step approach. In the first step total 
eukaryotic 18 S rDNA was amplified using the universal primer-set 1F-(AACTGGTTGATCCTGCCAGT)/1528R-
(TGATCCTTCTGCAGGTTCA-CCTAC) modified after a primer set published previously51.

PCR-amplifications were performed in a 20 µL volume in a thermal cycler (Eppendorf, Germany) using 
1x HotMasterTaq buffer containing Mg2+, 2.5 mM (5′Prime); 0.5 U HotMaster Taq polymerase (5′Prime, 
Germany); 0.4 mg/mL BSA; 0.8 mM (each) dNTP (Eppendorf, Germany); 0.2 µM of each primer (10 pmol/µL) 
and 1 µL of template DNA (genomic DNA field samples). The amplification was based on 35 cycles, consisting of 
94 °C for 1 min, 54 °C for 2 min and 72 °C for 2 min, followed by 1 min denaturation at 94 °C and finished by a final 
extension of 10 min at 72 °C. Subsequently PCR products were purified using a QIAquick PCR purification kit 
(Qiagen, Hilden, Germany). In the second step a qPCR-assay was carried out using a species specific primer-set 
82 F (GTGAAACTGCGAATGGCTCAT)/P1np (CGGGCGGACCCGA-GATGGTT) for Phaeocystis pouchetii. 
The quantitative PCR-assays were performed on a 20 µL sample using a 7500 Fast Real-Time PCR-System (Life 
Technologies Corporation; Applied Biosystems, USA) thermal cycler (Eppendorf, Germany) using 1x SYBR 
Select Mastermix (Life Technologies, USA); 0.2 µM of each primer (10 pmol/µL) and 2.5 µL of the purified 
18 S rDNA PCR-fragment. The amplification was based on 40 cycles, consisting of 95 °C for 10 min, 95 °C for 
15 sec, 66 °C for 1 min. The quantitative PCR assay was calibrated with a dilution series of a laboratory culture of 
Phaeocystis pouchetii. Based on this calibration, CT values were transformed into cell numbers using the following 
equation: CT = −2.123 ln (cell numbers) +38.788.
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