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Abstract 

234
Th-derived carbon export fluxes were measured in the Atlantic Ocean under the GEOTRACES 

framework to evaluate basin-scale export variability. Here, we present the results from the northern 

half of the GA02 transect, spanning from the equator to 64°N. As a result of limited site-specific 

C/
234

Th ratio measurements, we further combined our data with previous work to develop a basin 

wide C/
234

Th ratio depth curve. While the magnitude of organic carbon fluxes varied depending on 

the C/
234

Th ratio used, latitudinal trends were similar, with sizeable and variable organic carbon 

export fluxes occurring at high latitudes and low to negligible fluxes occurring in oligotrophic 

waters. Our results agree with previous studies, except at the boundaries between domains, where 

fluxes were relatively enhanced.  



Three different models were used to obtain satellite-derived net primary production (NPP). In 

general, NPP estimates had similar trends along the transect, but there were significant differences 

in the absolute magnitude depending on the model used. Nevertheless, organic carbon export 

efficiencies were generally < 25%, with the exception of a few stations located in the transition area 

between the riverine and the oligotrophic domains and between the oligotrophic and the temperate 

domains. Satellite-derived organic carbon export models from Dunne et al. (2005) (D05), Laws et 

al. (2011) (L11) and Henson et al. (2011) (H11) were also compared to our 234Th-derived carbon 

exports fluxes. D05 and L11 provided estimates closest to values obtained with the 234Th approach 

(within a 3-fold difference), but with no clear trends. The H11 model, on the other hand, 

consistently provided lower export estimates. 

The large increase in export data in the Atlantic Ocean derived from the GEOTRACES Program, 

combined with satellite observations and modeling efforts continue to improve the estimates of 

carbon export in this ocean basin and therefore reduce uncertainty in the global carbon budget. 

However, our results also suggest that tuning export models and including biological parameters at 

a regional scale is necessary for improving satellite-modeling efforts and providing export estimates 

that are more representative of in situ observations. 

1. INTRODUCTION  

The biogeochemical cycling of carbon and major nutrients is strongly influenced by particle cycling 

and export (Honjo et al., 2008). Carbon dioxide fixation by phytoplankton and the subsequent 

downward particle flux of biogenic carbon, a process often referred to as the “biological pump” 

(Volk and Hoffert, 1985), is a key component in the global carbon cycle. Yet the understanding of 

the magnitude and variability of this flux over temporal and spatial scales remains limited (Britten 

and Primeau, 2016; Burd et al., 2010). As a consequence, global-scale models of ocean carbon 

export vary widely, ranging from ~ 5 to 13 Gt C y-1 (Henson et al., 2011; Laws et al., 2011; Siegel 

et al., 2014). This uncertainty highlights the need for continuing in situ carbon export field sampling 



over large geographical provinces and across seasonal timescales (Britten and Primeau, 2016; 

Siegel et al., 2016).  

Thorium-234 has been widely used as a tracer to estimate particle fluxes (e.g., Coale and Bruland, 

1985; Cochran and Masqué, 2003) and, to a lesser extent, remineralization in the upper ocean 

(Maiti et al., 2010; Savoye et al., 2004). The estimation of particulate organic carbon (POC) fluxes 

has been the most significant application of the 234Th:238U disequilibrium method, since the 234Th 

half-life (24.1 days) makes it a suitable tracer to examine seasonal changes in POC production and 

export (see review by Waples et al., 2006). However, POC export and remineralization processes 

also influence other elements, such as trace metals essential for phytoplankton growth and 

biological functioning (e.g., Fe, Cd or Co) or particle-reactive elements (e.g., Pb or Al) and 

compounds (e.g., polychlorinated biphenyls, PCBs) that are scavenged from the surface ocean and 

adsorbed onto settling particles (Dulaquais et al., 2014; Gustafsson et al., 1997a, 1997b; Weinstein 

and Moran, 2005). Thus, the use of 234Th as a particle tracer provides essential information for 

constraining processes such as particle dynamics and trace element cycling and their distribution in 

the ocean. 

GEOTRACES is an ideal platform to examine particle flux across large-scale latitudinal and 

longitudinal gradients. As part of the Dutch GEOTRACES program, the GA02 section was sampled 

in 2010-2011. This section covered more than 17,000 km at high spatial resolution (usually < 2º 

latitude, ~150 km) and spanned a diversity of biogeochemical regions, such as deep-water 

formation zones, subtropical gyres, oligotrophic seas, waters with significant dust inputs, and areas 

influenced by riverine outflows. Here, we discuss 234Th and 234Th-derived organic carbon export 

fluxes obtained in the northern half of that section, from the Irminger Sea, southeast of Greenland, 

to the equator (Figure 1). The southern half of the transect is presented in Owens et al. (2015). We 

describe regional export variability in the North Western Atlantic Ocean and the results are 

discussed with regards to various regional processes. We also present a compilation of POC export 

estimates (hereafter C export) from previous open ocean studies using 234Th:238U disequilibria in the 



North Atlantic Ocean, provide estimates of C export efficiencies, and compare our 234Th-derived C 

export fluxes with different satellite-based export models.  

This work contributes to the growing database of 234Th-derived export measurements by providing 

data across a wide variety of biogeochemical regions that can be used to not only constrain C export 

estimates at an oceanic scale, but also to answer questions regarding particle cycling, export, and 

remineralization rates of trace elements in the North Atlantic Ocean. 

2. MATERIALS AND METHODS 

2.1 Total 
234

Th  

A total of 33 stations were sampled (n = 344 samples) for total 234Th activities (dpm L-1) from 64ºN 

to the equator. Samples were collected during two consecutive cruises: 64PE319 (28 April to 25 

May) and 64PE321 (11 June to 8 July), on board the R/V Pelagia in 2010 (Figure 1, Table S1). 

Total 234Th activities were measured from 4 L of seawater collected at a minimum of 12 depths over 

the upper 1000 m. Samples were processed following the MnO2 co-precipitation technique 

(Buesseler et al., 2001) and counted on board using a gas flow proportional low-level RISØ beta 

counter (uncertainty from counting statistics < 3%). Samples were recounted > 6 months later to 

determine background activities before processing for chemical recoveries using ICP-MS. Relative 

efficiency calibration of the RISØ detectors was carried out at the beginning and at the end of the 

cruise using 238U standards to ensure stability of the measurements. Five replicates of deep samples 

(³ 1750 m) were collected at selected stations of each cruise for calibration purposes, obtaining a 

234Th:238U ratio of 1.02 ± 0.03. The efficiency calibration of the RISO counters for both water and 

particulate samples was also confirmed through the GEOTRACES intercalibration program (Maiti 

et al., 2012).  

The determination of the Th recovery was conducted using the method described in Pike et al. 

(2005), modified to remove the column purification step (see Puigcorbé et al., 2017 for details). The 



average recovery of 230Th was 88 ± 13% (n = 335). Uranium-238 activities were calculated from 

salinity using the relationship established by Owens et al. (2011). The U-salinity relationship was 

further confirmed by direct measurement of 238U concentrations (Casacuberta et al., 2014) in 

samples collected during the same expeditions (n = 15). 234Th activities were corrected for ingrowth 

and decay to the date and time of sample collection. Uncertainties for 234Th activities were obtained 

by propagating errors associated with counting, detector calibration, 238U activities, and background 

corrections. Combined, they averaged 5 ± 1% (n = 344) and were always ≤ 10%. 234Th and 238U 

activities along the GA02 transect are available online (British Oceanographic Data Centre, 

http://www.bodc.ac.uk/geotraces/data/idp2014/) and are part of the GEOTRACES Intermediate 

Data Product 2014 (Mawji et al., 2015). 

2.2 Particulate 
234

Th and particulate organic carbon 

Samples for particulate 234Th and organic C were collected at 11 stations using in situ McLane and 

Challenger filtration pumps (ISP) deployed at 100 m (see Figure 1). Pumping times lasted about 

2.5 h and the volume filtered ranged from 1800 to 2200 L. Particles were collected using a 53 μm 

mesh Nitex screen. The material was washed off the screen with 0.2 μm-filtered seawater and an 

aliquot equivalent to 100 - 900 L was filtered with positive pressure (< 0.3 bar) onto a 0.45 μm 

pore-size silver filter (Millipore). Particulate 234Th was measured on board and recounted for 

background activities > 6 months after collection, similar to the water samples. POC concentrations 

were determined back in the laboratory with an Eurovector C/N Element analyzer according to the 

JGOFS protocols (Knap et al., 1996), after being treated with 0.1 M HCl solution to remove 

carbonate. 

2.3 Satellite data  

Primary productivity 



Carbon export rates are commonly compared to the productivity of the regional biological regime. 

Three commonly applied approaches have been used to obtain net primary productivity rates (NPP) 

from satellite data (Table S1). These models differ in how they address the physiological 

complexity of phytoplankton productivity. As such, each have their own strengths and weaknesses, 

which become most apparent when comparing them across different temporal and spatial scales, 

particularly at high latitudes (Palevsky et al., 2016). The lack of consensus as to which model is the 

most accurate in representing in situ NPP at a basin-wide scale remains an ongoing research effort 

(Kahru, 2017). 

In the first approach, NPP rates in g C m-2 day-1 were taken from the GlobColour OSS2015 

demonstration products as monthly mean values collocated to the sampled stations with 25-km 

resolution (the product is not available for the timing of the sampled stations at higher temporal or 

spatial resolution). As described in the GlobColour product user guide (GlobColour, 2015), NPP 

was calculated from the GlobColour level-3 chlorophyll-a (Chl-a) concentration, photosynthetic 

available radiation  (PAR) and sea surface temperature (SST) following the method of Antoine and 

Morel (1996) (A&M96). This model assesses the primary production from the Chl-a concentration 

in a conceptually similar way to an absorption-based model. The A&M96 a model, based on Morel, 

(1991), is formulated using chlorophyll specific wavelength-resolved absorption and quantum yield. 

Temperature dependence is given by the parameterization of the maximum photosynthetic yield, 

which follows Eppley (1972). Mean photo-physiological parameters are from Morel et al. (1996). 

The model is run in its “satellite” version (Antoine et al., 1996), where NPP is the product of 

integral biomass (chlorophyll), the daily irradiance, and the cross section of algae for 

photosynthesis per unit of areal chlorophyll biomass. 

NPP was also obtained from the Ocean Productivity website at Oregon State University 

(http://www.science.oregonstate.edu/ocean.productivity/) with a 9-km spatial resolution and 8 day 

temporal resolution data from MODIS and SeaWiFS satellites. We used both the Vertically 

Generalized Production Model (VGMP; Behrenfeld and Falkowski, 1997a) and the Carbon-based 



Production Model (CbPM; Behrenfeld et al., 2005; Westberry et al., 2008). VGPM is a 

"chlorophyll-based" model: it estimates NPP from satellite Chl-a, available light and photosynthetic 

efficiency, and the empirically-determined relationship between carbon assimilation and SST. The 

VGPM model is simpler than the A&M96 model since, in general, the A&M06 model accounts for 

the difference of the phytoplankton distribution in the vertical profile and its spectral absorption 

properties, while these are assumed constant in the VGPM approach (Behrenfeld and Falkowski, 

1997b). 

CbPM is a carbon-based model where NPP is the product of carbon biomass and growth rate. This 

model uses remote sensing retrievals of particulate scattering coefficients to estimate phytoplankton 

carbon concentration, thus replacing chlorophyll as the metric of biomass (Behrenfeld et al., 2005). 

It further accounts for nutrient- and light-dependent changes in phytoplankton physiology with 

depth (Westberry et al., 2008). Nine km resolution SST and satellite-derived Chl-a were obtained 

from the OceanColor Data website (http://oceandata.sci.gsfc.nasa.gov). The depth of the euphotic 

zone (Zeu) was calculated from Chl-a following Morel and Berthon (1989) (Table S1). Weekly 

NPP, SST and Zeu at 9-km resolution were calculated for all the sampling stations by integrating ~ 4 

weeks (32 days) prior the sampling in order to compare with the integration time of 234Th (mean life 

~ 35 days). Satellite-derived Chl-a values integrated over the 8 days prior to sampling as well as 

monthly averages were comparable to the in situ fluorescence values (expressed in mg Chl-a m-2) 

measured during the expeditions (p = 0.15 and p = 0.055, respectively). 

Satellite-derived organic carbon export models 

Organic carbon export was estimated from three widely-used global models, using satellite-derived 

SST, NPP and Zeu from above: i) Dunne et al. (2005) (D05); ii) Laws et al. (2011) (L11); and iii) 

Henson et al. (2011) (H11). The D05 model, which is an empirical model based on a compilation of 

export data obtained through a variety of methodologies, provides export estimates using SST and 

NPP as predictor variables, and is computed as: 



Export (D05) = NPP x [ -0.0101°C-1 x SST + 0.0582 x ln(NPP/Zeu) + 0.419] 

The L11 model is a steady-state food web model with a negative relationship between export and 

temperature and a curvilinear correlation between export and NPP:  

Export (L11) = NPP x 0.04756 (0.78 – 0.43 SST / 30) NPP0.307 

The H11 model is based on an exponential relationship between 234Th-derived export below 100 m 

and SST and is computed as: 

Export (H11) = NPP x 0.23 x EXP(-0.08 x SST) 

2.4 Complementary data 

Oceanographic data (temperature, salinity, attenuation coefficient, fluorescence and dissolved 

oxygen) were obtained from sensors attached to sampling rosette, which included a Seabird SBE9+ 

Underwater Unit with a SBE4 conductivity sensor (± 0.3 mS m-1), a SBE3+ thermometer (± 

0.001°C), a Chelsea Aquatracka MKIII fluorometer (± 0.2 µg L-1), a Wetlabs C-Star 

transmissometer (± 0.02%FS °C-1) and a SBE43 dissolved oxygen sensor (± 2%). Nutrient 

concentrations were determined colorimetrically according to the methods described by Grasshoff 

et al. (1983). Analyses were performed on board using a Seal Analytical QuAAtro Autoanalyser as 

detailed in the cruise reports (64PE319: Gerringa, 2010; 64PE321: Rijkenberg, 2010). 

3. RESULTS 

3.1 Hydrography 

The northern GA-02 section covered the Atlantic Ocean from the Irminger Sea to the equator along 

the deep basins of the western Atlantic Ocean (Figure 1). A detailed hydrographical description of 

the complete GA-02 section can be found in van Aken (2011). Briefly, the subarctic gyre, with cold 

water temperatures (< 10ºC) and low salinities (< 35), was separated from the warm and saltier 

subtropical gyre by a front located at ~ 50ºN. Labrador Sea Water (LSW) was found in the upper 

1000 m between 50ºN and 64ºN, where high oxygen concentrations (> 300 mmol kg-3) were 



measured down to 1000 m. Surface waters were characterized by high nitrate and phosphate 

concentrations (> 10 mM NO3
-, > 0.8 mM PO4

3-), indicating a weak or absent seasonal thermocline. 

Across the subtropical gyre, temperature and salinity increased towards the south, with a clearly 

stratified water column, nutrients became increasingly depleted in surface waters (~ 25 m) and 

1 mM NO3
- and 0.1 mM PO4

3- isoclines deepened, reaching depths of ~ 250 m at ~ 25ºN. Within this 

oligotrophic area, the influence of the Amazon River plume was noticeable in the upper layer (~ 30 

m) between 11ºN and 18ºN, as reflected by low salinity (< 34) and higher silicate concentrations, as 

high as 8 mM at 10 m. Fluorescence and beam attenuation also reflected the intrusion of the river 

plume, as well as high Chl-a concentrations derived from satellite data (Figure 1). Between the 

equator and 10ºN the water column remained strongly stratified, with the nutricline being slightly 

shallower (75 - 100 m). The influence of the Amazon River plume was also observed at ~ 4ºN, with 

low salinity (< 34.5) and high silicate concentrations (~ 8.0 mM), although the signal was weaker 

compared to the one observed further north. The high nutrient concentrations at depth, between 600 

and 1200 m, were coincident with the oxygen minimum zone and Antarctic Intermediate Water 

(AAIW). These main hydrographic parameters are presented in Figure S1 to illustrate the different 

oceanic regimes encountered along the transect and is the basis for dividing the study area into 5 

regions/domains: Subpolar (> 50ºN), temperate (35ºN-50ºN), oligotrophic (20ºN-35ºN), riverine 

(10ºN-20ºN) and equatorial (0º-10ºN) (Figure 1, Table S1).  

3.2 
234

Th:
238

U disequilibrium and 
234

Th fluxes 

In general, 234Th deficits were most apparent in the upper 100 m (Figure 2). Subpolar and temperate 

latitude stations (> 35ºN; PE2-PE16) however, tended to have deeper deficits and in some cases 

reached depths of 250 m. 234Th activities in surface waters were typically < 1.5 dpm L-1, although 

profiles from stations PE2, PE8 and PE11 showed equilibrium/slight deficits throughout the upper 

100 m. Stations sampled to the south had reduced 234Th deficits, such as PE22 and PE26 located in 

the subtropical gyre between 20ºN and 30ºN. 234Th excesses were observable below ~200 m within 



these subtropical latitudes, particularly at station PE24 (~26ºN), where 234Th excess was observed 

throughout most of the upper water column.  

In the riverine domain, moving towards the equator, 234Th depletion became increasingly 

identifiable in the surface layers (< 100 m), although it was less intense than in the northern 

latitudes (234Th activities were > 2 dpm L-1, except at stations PE31, PE32 and PE33, which were 

characterized by 234Th activities of ~ 1.5 dpm L-1 in the upper 25 m). These stations also had lower 

238U activities in the upper 30 m relative to the other profiles (2.2-2.3 dpm L-1 compared to 2.5-2.6 

dpm L-1) due to low salinity in the surface layers. This suggests a significant riverine influence. In 

the equatorial domain, the deficit of 234Th was smaller and shallower (at 100 m or above) than the 

deficits observed in the temperate latitudes. Station PE38 had 234Th excesses between 100 and 200 

m that extended to depths below 550 m, although the vertical resolution below 200 m was poor. 

Th-234 fluxes were calculated at three depths (Figure S2): i) at 100 m, since that is the depth where 

in situ pumps were deployed, following historical sampling protocols; ii) to the base of the primary 

production zone (PPZ; defined as the depth where fluorescence is reduced to 10% of its maximum 

value, thus including the deep chlorophyll maximum layer; Owens et al., 2015), following a similar 

approach as the one proposed by Buesseler and Boyd (2009); and iii) to the shallowest depth where 

234Th and 238U are equilibrium (deficit depth). Unfortunately, a PAR sensor was not deployed 

during the cruises; therefore we were unable to obtain an in situ estimate of the depth of the Zeu 

during the cruise. However, the satellite-derived Zeu show less depth variation than the depth 

horizons of the PPZ and the deficit depth, and is relatively close to the standardized depth horizon 

chosen of 100 m (Zeu average depth 84 ± 14 m) (Table S1).  

The three approaches were applied assuming a 1-dimensional steady-state model. Advection and 

diffusion processes are generally considered to be negligible relative to the downward flux of 234Th, 

as assumed in the open ocean (see review by Savoye et al., 2006) and confirmed in previous studies 

in the North Atlantic (Buesseler et al., 2008; Resplandy et al., 2012; Thomalla et al., 2006). 



However this assumption may fail in some of the more dynamic domains. For example, in the 

subpolar region the absence of stratification suggests strong vertical mixing (Figure S1). In the 

equatorial domain, upwelling may result in an underestimate of the 234Th-derived carbon export 

estimates by as much as 25-35% (Buesseler et al., 1995). Thus the 1-dimensional steady-state 

model used here should be considered a lower limit.  

Fluxes at 100 m were significantly different from those at the PPZ and the deficit depths (p = 0.047 

and p = 0.036, respectively). Fluxes at the PPZ and the deficit depths were greater (by at least 10%) 

than those calculated at 100 m for the majority of the stations (18 stations, when using the PPZ, and 

20 stations when estimating the flux at the deficit depth). 234Th fluxes at the PPZ and the deficit 

depths were lower (> 10%) than those measured at 100 m at 9 and 2 stations, respectively, due to 

shallow 234Th excess (Figure S2). Note that 3 stations did not have any shallow 234Th deficits 

(PE22, PE24 and PE26, located between 23ºN and 30ºN). In the following discussion, we focus on 

the 234Th fluxes at 100 m for easier comparison with prior studies. However, it is important to note 

that recent studies (Buesseler and Boyd, 2009) question the use of a fixed depth and highlight the 

importance of using a biologically meaningful depth to estimate 234Th (and consequently C-derived) 

fluxes. Therefore, we also report the 234Th fluxes at the PPZ and the deficit depths in Table S2. 

Th-234 fluxes at 100 m ranged from -620 ± 180 dpm m-2 d-1 to 2740 ± 130 dpm m-2 d-1 (Table 1, 

Figure S2). The magnitude of the fluxes can be grouped by their latitudinal distributions: higher 

fluxes were found in the southern half of the temperate domain, and at a single station, PE6, in 

subpolar waters. Lower fluxes were measured in the subtropical gyre, particularly between ~20ºN 

and 30ºN, with negligible or even negative fluxes occurred at several stations (PE22, PE23, PE24, 

PE26 and PE27). The stations most influenced by the Amazon River plume (PE32 and PE33) had 

higher fluxes (> 1000 dpm m-2 d-1) compared to those in the same region with no evidence of 

riverine influence, similarly to the fluxes observed in the southern part of the temperate domain 

Finally, the equatorial domain was the region where fluxes were less variable between stations, 

averaging 660 ± 170 dpm m-2 d-1  (Table 1, Figure S2). 



3.3 C/
234

Th ratios and derived C export fluxes 

In situ pump deployments along the transect were limited due to time constraints. Measured C/234Th 

ratios in large particles (> 53 μm) ranged from 2.3 to 16 μmol C dpm-1 (7.9 ± 5.0 μmol C dpm-1; n = 

11; Table 1). We used three different estimates of the C/234Th ratio (Figure 3) in order to calculate C 

export fluxes for the entire section (Figure 4): i) using the average C/234Th ratio obtained for each 

domain considering only the ratios from this study (ratios from Table 1; Figure 4 black circles), ii) 

following the approach of Owens et al. (2015), where C/234Th ratios were derived from a power law 

regression (see Figure 8 from Owens et al., 2015) using the ratios from this study together with 

those from Owens et al., 2015 (see supplemental information for details; Figure 3A; Figure 4 white 

squares) and iii) using a compilation of the C/234Th ratios found in the literature (including also the 

ratios from this study; ratios shown in Figure 3B; Figure 4 gray triangles).  

Average C fluxes varied depending on the C/234Th ratio used, ranging from 2.7 to 13 mmol C m-2 d-

1 when applying the ratios from this study, from 1.2 to 12 mmol C m-2 d-1 when using the average 

ratios from the compilation of studies, and from 0.9 to 3.0 mmol C m-2 d-1 when using the power-

law fit (Table 2). C fluxes obtained using the ratios from this study are not significantly different 

from those estimated using the compilation of C/234Th ratios from the literature (p = 0.65), but they 

are significantly different from those obtained using the fitting curve (p = 0.0019). The C/234Th 

ratios at 100 m measured in this study are considerably more variable than those measured by 

Owens et al. (2015) (Figure 3A). This is likely due in part to the timing of the cruises. Owens et al. 

(2015) obtained their samples in autumn/winter (October, November and December) and only south 

of 40ºN, whereas our cruises were conducted in spring/summer (May, June and July) when higher 

and more variable NPP occurs (Antoine et al., 1996). Given the biogeochemical variability along 

the transect, it would perhaps be more appropriate to obtain a power-law fit for each domain. 

Unfortunately, this is not possible due to the lack of measured C/234Th ratio profiles. Therefore, this 

curve fit should be considered with caution since the differences between the ratios from both 



studies and the larger amount of data from Owens et al. (2015) (with C/234Th ratios generally lower 

than the ratios from this study) may bias the curve (underestimate the C/234Th ratios).  

Trends across latitudes within a given set of C/234Th ratios were observed, with lowest C fluxes 

found in the oligotrophic and equatorial domains (0.9 – 5.7 mmol C m-2 d-1), followed by the 

temperate (3.0 – 7.3 mmol C m-2 d-1), and riverine domains (2.4 – 12.2 mmol C m-2 d-1) (Table 2). 

In the subpolar latitudes, there was large variability in C export (with deviations from the mean 

>100%), reflecting the high variability observed in 234Th fluxes rather than C/234Th ratios per se.   

3.4 Satellite-derived data: Particle Size Distribution and Net Primary Production 

Particle size distribution derived from ocean color remote sensing data revealed spatial patterns that 

are consistent with the current understanding of oceanographic provinces (Figure S3), with the 

oligotrophic region characterized by lower particle abundances (indicated by high light transmission 

and low fluorescence and satellite-derived Chl-a data, Figure S1 and Figure 1) and larger quantities 

of picoplankton-sized particles. In contrast, microplankton-sized particles were more abundant in 

the temperate and subpolar areas, as well as in the riverine domain.   

Satellite-derived NPP ranged from 0 to 70, from 13 to 260 and from 25 to 330 mmol C m-2 d-1 for 

the CbPM, VGPM and A&M96 models, respectively (Table S1). Highest values along the transect 

were obtained in the riverine and temperate domains for all the models, although the increase was 

much more apparent using the A&M96 model in the riverine and equatorial areas, while the VGPM 

model produced the highest NPP values in the temperate domain. If we do not consider the subpolar 

domain, for which the CbPM model provides a NPP of ~0 in three out of four stations, the lowest 

estimated NPP occurred in the oligotrophic domain, where the three models agree best. In the 

subpolar domain the A&M96 and VGPM models produce a similar amplitude of NPP values. The 

A&M96 and VGPM models were not significantly different (p = 0.15), whereas the CbPM was 

significantly different to the A&M96 (p = 5.2·10-6) and to the VGPM (p = 0.0059) models, agreeing 



with the intercomparison results reported by Carr et al. (2006). In general, the A&M96 and VGPM 

models generate 2-4 times higher NPP than CbPM, except in the equatorial domain.  

4. DISCUSSION 

Particle fluxes in the open ocean are strongly linked to surface productivity, plankton community 

structure and food web dynamics, which are in turn shaped by environmental conditions such as 

ocean physics and nutrient composition and supply (Ducklow et al., 2001). Given the observed 

regional differences in physical and ecological characteristics within the North Atlantic (Longhurst 

1995, 2010) and the impact that distinct biome-specific scaling has on global organic carbon export 

predictions (Britten and Primeau, 2016), high spatial and temporal resolution has become essential 

for providing robust estimates of carbon export and to assess links and sensitivity to large scale 

ecosystem variability and global change (Galbraith et al., 2015; Honjo et al., 2014; Siegel et al., 

2014). Here, we discuss estimates of 234Th and C export fluxes considering the biogeochemical 

characteristics of the sampled areas and present C export efficiencies along the entire transect. 

Regional results are then placed in context of the entire North Atlantic and compared with previous 

studies (see Table S3 for references of the studies included in the compilation) and satellite-derived 

C export estimates. 

4.1 
234

Th fluxes in the North Atlantic 

There are a number of studies that have provided 234Th fluxes (usually at 100 m) in the North 

Atlantic Ocean between 10°S and 64°N (see Figure 5 and Table S3 for locations and further 

details). Here we discuss our results in comparison with those prior studies (Figure S4). This 

compilation of studies is also used to compare the C export rates in each one of the domains (see 

section 4.2). 

Subpolar (>50ºN)  

Spring blooms may lead to substantial and efficient particle export in subpolar waters when 



irradiance periods are longer and mixed layer depths are shallower (e.g., Martin et al., 2011). The 

sampling of this domain took place at the beginning of May, when the water column began to 

stratify, as indicated by shallow mixed layer depths (< 25 m; Table S1), favoring the beginning of 

the spring bloom. Satellite images showed an increase in surface Chl-a concentrations by the middle 

of April that continued during sampling (Figure S5). Silicate concentrations in the upper 50 m 

(Figure S1) were depleted, particularly at stations PE5 and PE6, suggesting that the bloom may 

have been dominated by siliceous phytoplankton, e.g., diatoms, consistent with the major 

phytoplankton group found in the region during the spring (Henson et al., 2006).  

The subpolar region is an area with high seasonality, where production occurs in local spring 

blooms and where weather conditions (i.e., North Atlantic storm track) influence water column 

mixing. In such a dynamic region, phytoplankton blooms are patchy and the resulting variability in 

the magnitude of 234Th export fluxes is expected. Indeed, we measured the largest 234Th flux at 100 

m at station PE6 (2740 ± 130 dpm m-2 d-1), whereas the 234Th flux at station PE8 was about an order 

of magnitude smaller (280 ± 180 dpm m-2 d-1). Station PE8 was also characterized by 234Th excess 

below 150 m, that was particularly marked at 250 m, which could indicate episodic export events 

prior to sampling that were subsequently remineralized.  

Our estimates of 234Th fluxes at PE5 and PE6 agree well with those reported by previous work in 

the same area during the same time frame (late spring) (Le Moigne et al., 2012; Moran et al., 2003; 

Sanders et al., 2010), although Le Moigne et al. (2012) measured two very high flux estimates 

(3950 and 4450 dpm m-2 d-1). Larger variability in 234Th fluxes was also observed in both our study 

and in Le Moigne et al. (2012) compared to Sanders et al. (2010) and Moran et al. (2003). This 

could be related to the strong negative phase of the North Atlantic Oscillation (NAO) in the winter 

of 2009-2010: Henson et al. (2013) showed that the extreme NAO influenced the wind conditions, 

favoring an unusually large phytoplankton bloom in the Irminger Sea at that time. In addition, the 

eruption of the Eyjafjallajökull Volcano in Iceland could have also enhanced the biological activity 

in the area by providing mineral enriched ash to this iron limited region, although the biological 



response to  ash-derived iron was shown to be relatively weak (Rogan et al., 2016).  

Temperate (35ºN-50ºN) 

Large phytoplankton blooms occur in the North Atlantic in spring, triggered by the increase in light 

and stratification of the water column (Henson et al., 2009; Sverdrup, 1953). As in the higher 

latitudes of this transect (> 50ºN), predominance of large phytoplankton, especially diatoms, is 

observed during blooms (e.g., Taylor et al., 1993). Indeed, diatom blooms in these high latitudes of 

the Atlantic Ocean can lead to significant particle export (Michaels and Silver, 1988), providing 

more than 50% of the annual biogenic particle mass flux in this region (Honjo and Manganini, 

1993). Satellite images showed high Chl-a concentrations (> 7 mg m-3) in those latitudes during the 

sampling period (Figure 1), where particle size distributions derived from satellite data also indicate 

the highest contribution of microplankton-sized particles (Figure S3). High fluorescence and beam 

attenuation coefficient values between 40ºN and 55ºN were also measured, with the highest values 

found at ~45ºN where stations PE12 and PE13 were sampled (Figure 2 and Figure S1). However, 

234Th fluxes at those stations were relatively low (~710 dpm m-2 d-1), only ~ 20% of the 234Th fluxes 

measured previously during blooms in this area (e.g., Buesseler et al., 1992), although they were 

within the range of fluxes measured previously (610 - 1330 dpm m-2 d-1; Estapa et al., 2015; Le 

Moigne et al., 2013b; Owens et al., 2015; Thomalla et al., 2006). This might indicate that we 

sampled the northern zone at an early stage of the bloom, when significant nutrient drawdown had 

yet to occur. Indeed, satellite images showed low Chl-a concentrations (< 0.7 mg m-3) at the 

beginning of May that subsequently reached a maximum (~10 mg m-3) between 11th and 15th of 

May (Figure S5), when stations PE11, PE12 and PE13 were sampled and characterized by higher 

fluorescence concentrations relative to the rest of the stations of this domain (~2 mg m-3 vs < 0.5 mg 

m-3; Figure 2). 234Th fluxes at the southern stations (PE14, PE15 and PE16) were significantly 

higher (1350 - 1740 dpm m-2 d-1), and we hypothesize that the bloom had already occurred by the 

time of sampling.  



Oligotrophic (20ºN–35ºN) 

Phytoplankton are nutrient-limited in the oligotrophic North Atlantic (Graziano et al., 1996; Mills et 

al., 2004) and blooms occur when the mixed layer reaches depths deep enough to supply nutrients 

to surface waters (January-March) (Steinberg et al., 2001). At low nutrient concentrations 

picophytoplankton groups, such as Synechococcus and Prochlorococcus, dominate (Lomas and 

Moran, 2011; Sarmiento and Gruber, 2006, and references therein; Steinberg et al., 2001), as also 

confirmed by the particle size distribution data (Figure S3).  

The sampling of this region took place during the end of May and the middle/end of June. The 

mixed layers at the majority of the stations were < 20 m (Table S1), isolating the surface waters 

from the nutrient-rich deeper waters, and thus potentially limiting phytoplankton blooms. This is 

confirmed by the low satellite-derived Chl-a concentrations (Figure 1) and by the smaller (< 0.5 mg 

m-3) and deeper (down to 135 m) fluorescence maxima compared to other regions (Table S1). 

Fluxes of 234Th were low or negative from station PE21 (BATS; Bermuda Atlantic Time Series) to 

PE27, due to minor/negligible deficits of 234Th or because remineralization in the upper 100 m 

compensated small 234Th deficits. Previous works by Thomalla et al. (2006) and Owens et al., 

(2015) found similar results.  

High surface concentrations of trace elements, Fe, Mn and Al (Middag et al., 2015; Rijkenberg et 

al., 2014) suggested that a dust event from the Sahara Desert may have occurred between 20ºN and 

30ºN. Although phytoplankton can respond to such events (e.g. Cassar et al., 2007, Southern 

Ocean; Izquierdo et al., 2012, Mediterranean Sea; Mills et al., 2004 and Moore et al., 2006, North 

Atlantic Ocean), no phytoplankton bloom was observed during our study based on low beam 

attenuation, low fluorescence, and minimal 234Th deficits (Figure S1 and Figure 2). 

The 234Th excess at depth at some stations, especially at station PE24, could be indicative of 

remineralization, suggesting that there might have been a phytoplankton response or particle export 

event in the past. Similar features were also reported by Sweeney et al. (2003) and Owens et al. 



(2015). However, satellite images of Chl-a concentration (Figure S5) do not indicate the existence 

of a phytoplankton bloom prior to sampling nor do iron concentrations support remineralization 

(Rijkenberg et al., 2014). It is possible that 234Th excess at depth is be due to the advection of 234Th-

rich adjacent waters (i.e. Kim et al., 2003), although there is no supporting evidence that this 

occurred. 

Riverine (10ºN-20ºN) 

Within the 10ºN - 20ºN domain the influence of the Amazon River plume in the surface waters was 

observed. Although the Amazon River estuary is located further south, within the equatorial 

domain, the riverine outflow was encountered between 11ºN and 18ºN, as evidenced by low salinity 

(< 34) in the upper 30 - 40 m and silicate concentrations reaching as high as 8 mM at 10 m (Figure 

S1) (Reul et al., 2014; Rijkenberg et al., 2014). Fluorescence and beam attenuation also reflect the 

intrusion of the river plume as well as high satellite-derived Chl-a concentrations (Figure 1). 

Indeed, a significant change in color (greenish) and transparency of the waters was also visually 

evident from onboard. Riverine outflows enhance new primary production by providing nutrient 

inputs and by favoring the stratification of surface waters due to significant salinity gradients 

(Eppley and Peterson, 1979). DeMaster et al. (1986) showed that the high particle concentration 

within the Amazon River plume also scavenges particle-reactive species from open ocean waters. 

Stations in the core of the riverine input (i.e., PE32 and PE33) had larger 234Th deficits, resulting in 

about two times higher 234Th fluxes at 100 m than stations sampled outside the plume (average 

1250 ± 320 vs 690 ± 220 dpm m-2 d-1), and were comparable to 234Th fluxes reported by Charette 

and Moran (1999) (1460 ± 80 dpm m-2 d-1) and to those observed in the southern part of the 

temperate latitudes and in the northern limit of the oligotrophic region. 

Equatorial region (0º-10ºN)      

The influence of the Amazon River plume was also observed in the Equatorial region in the upper 

25 m, especially at ~4ºN, with low salinities (< 34.5) and high silicate concentrations (~3.5 mM), 



although the signal was weaker compared to the riverine domain and was not as evident in either 

fluorescence or beam attenuation values. The high nutrient concentrations were coincident with 

minimum oxygen concentrations and the entrance of the Antarctic Intermediate Water (AAIW) 

between 600 and 1200 m depth (van Aken, 2011). 

Stations sampled within these latitudes had an average 234Th flux at 100 m of 660 ± 170 dpm m-2 d-

1, similar to stations from the riverine domain, with the exception of those influenced by the 

Amazon River outflow. Previous studies in this region reported similar 234Th flux estimates (Figure 

S4).  

4.2 C export fluxes in the North Atlantic 

There is a significant amount of data available regarding 234Th-derived C fluxes in the North 

Atlantic. However, previous works have usually focused on the study of specific hydrographic or 

biological features (e.g., mesoscale eddies, phytoplankton blooms, etc.) that occur in relatively 

limited areas, or along transects with low spatial coverage (Figure 5 and Table S3). The 

GEOTRACES Program sections (this study and Owens et al., 2015) contribute significantly to the 

existing data set, providing greater spatial coverage for constraining C export. Indeed, combining 

our work with that of Owens et al. (2015) accounts for more than a 50% increase in the number of 

estimates presented in the global database of Le Moigne et al. (2013) from this area. These sections 

provide information that can be applied to not only develop better biogeochemical models of C 

export, but also the export and cycling of other trace elements, such as cobalt (Dulaquais et al., 

2014). We also compiled ten previous studies that, when coupled with our work, amounts to a total 

of about 200 estimates of C export fluxes at 100-150 m (see Table S3) using the 234Th-method in 

Atlantic open ocean waters (10ºS to 64ºN).  

4.2.1 C/
234

Th ratios compilation 

A critical component of the 234Th-derived C fluxes is the C/234Th ratio measured in particulate 



samples. This is necessary for converting 234Th fluxes into C fluxes. Basic questions such as how to 

accurately sample the particles that are responsible for that export remain enigmatic and 

controversial (i.e., Lampitt et al., 2008; Burd et al., 2010; Bishop et al., 2012). Besides the technical 

difficulties in particle collection, the questions of how and why C/234Th ratios vary in marine 

systems have been raised by several studies for more than a decade (see review by Buesseler et al., 

2006), with still no clear agreement. Nonetheless, one of the most common methods is to use large 

particles (> 50 μm) collected using in situ filtration pumps placed below the depth of the Zeu 

(usually standardized as 100-150 m), where C/234Th variability is minimized and similar across 

techniques, e.g. sediment traps (e.g. Buesseler et al., 2008; Jacquet et al., 2011a; Maiti et al., 2008; 

Puigcorbé et al., 2015). The compilation presented here is based predominantly on ISP collected 

samples at 100 m, with the exception being the ratios obtained using sediment traps during the 

North Atlantic Bloom Experiment (NABE; Buesseler et al., 1992), and those from Charette and 

Moran (1999) that were measured in particles collected by filtering water (> 53 mm) from a rosette 

(Table S3).  

C/234Th ratios obtained using ISP at 100 m ranged from 2.3 to 16 μmolC dpm-1, with no clear 

latitudinal pattern and were within the range observed from previous studies (0.9 – 25 μmolC dpm-

1), although relatively high ratios were measured in the oligotrophic domain (up to 16 ± 2 μmolC 

dpm-1) where previous studies usually reported ratios < 5 μmolC dpm-1 (Figure 3). This may be due 

in part to the relative timing of our sampling and the depth of the deep chlorophyll maximum (e.g., 

PE23). In fact, variability in the C/234Th ratios from the compilation of studies, regardless of the 

domain, is highest in summer: May (2.3-25 μmol C dpm
-1), July (2.5-22 μmol C dpm

-1), and August 

(0.9-19 μmol C dpm
-1). In winter months (October to January), C/234Th ratios range from 2.2 to 6.7 

μmol C dpm
-1 (data not shown).  

Data on C/234Th ratios are not evenly distributed across domains. A large fraction of the data 

correspond to the oligotrophic domain (n = 38), with the majority (n = 23) reported by Buesseler et 



al. (2008) from a relatively small area (2º of latitude and ~5º of longitude) and focusing on 

mesoscale eddies. The subpolar domain is also highly sampled with regards to C/234Th ratios (n = 

36) compared to the temperate (n = 23), riverine (n =4), and equatorial domains (n = 4). Because of 

their proximity to the Mauritanian upwelling zone and their distance from the Amazon River 

outflow, stations between 5ºN and 20ºN in the eastern basin are considered as upwelling stations 

rather than riverine (Figure 5).  

4.2.2 C export fluxes compilation 

Three different estimates of C/234Th ratios in particles were applied to overcome the limited number 

of data collected along the transect and to obtain C export fluxes at 100 m at all the stations. Table 2 

is a summary of the average C export rates for each domain, differentiating between this study and 

prior studies included in the comparison. When using the ratios from this study or those from the 

compilation of studies, the C export fluxes obtained were not significantly different (p = 0.65), 

whereas when applying the C/234Th ratio calculated using the power-law regression from Figure 

3A, significantly lower estimates were obtained, particularly in the riverine and the subpolar 

domains (Table 2; Figure 4) (p = 0.0019). These low estimates are likely due to the fact that these 

domains were not included in the dataset from Owens et al. (2015) used to obtain the C/234Th fitting 

curve and also because ratios reported by Owens et al. (2015) were sampled during Octobert to 

December, when C/234Th ratios tend to be lower and less variable (see section 4.2.1 C/234Th ratios 

compilation). In contrast, the ratios obtained in this study and the compilation from previous studies 

were mainly obtained during spring/summer months.  

Given that sampling was not evenly spaced through the months, nor through the domains, it is 

likely that seasonal and spatial biases exist in our compilation of C/234Th ratios. Nonetheless, while 

variability exists in C/234Th ratios even when sampled during the same period, this variability 

should be representative of the sampling period of that study.  Therefore, in the next two sections 

we discuss export efficiencies and satellite-derived export models in comparison to 234Th-derived C 



export fluxes obtained using the average C/234Th ratio of this study based on the ISP samples at 100 

m for each domain. This also further reduces uncertainties associated with differences in depth and 

allows for more direct comparisons with previous work that only focused on fluxes from 100 m.  

Our dataset of C export fluxes at 100 m has a similar latitudinal trend in C export relative to 

previous studies (Figure 6). The emerging general picture is that highest C export fluxes (mmol C 

m-2 d-1) are found in the subpolar domain (17 ± 12; n = 38), followed by the riverine (12 ± 12; n = 

8), the temperate (8 ± 7; n = 31), the equatorial (4 ± 2; n = 11) and the oligotrophic (2 ± 2; n = 98) 

regions. High latitudes were characterized by high and variable C export fluxes (up to ~40 mmol C 

m-2 d-1), likely due to the strong weather conditions (i.e., storms) and patchiness of phytoplankton 

blooms. The variability observed in the riverine region was also large, mainly due to the inclusion 

of stations clearly influenced by the Amazon outflow (stations PE32 and PE33 and also two stations 

from Charette and Moran, 1999), as well as stations located outside the river plume. The equatorial 

domain had among the lowest C flux estimates. The sole exception was one station reported by 

Thomalla et al. (2006) for which a C export of 25 ± 12 mmol C m-2 d-1 was attributed to the 

occurrence of a short phytoplankton bloom triggered by the nutrient input from a local upwelling 

event. The equatorial station from Charette and Moran (1999) (at 0.5ºS) also had a relatively high C 

flux export compared to the rest of the stations from the domain, although with large uncertainties. 

This large export flux was mainly driven by a high C/234
Th ratio (20 μmol C dpm

-1), and the authors 

suggested that it was a consequence of dust inputs. However, the ratios from Charette and Moran 

(1999) were obtained from particles collected with a bottle rosette, which have been found to 

provide higher C/234Th ratios than in situ pumps (Liu et al., 2009). 

4.3 Carbon export efficiencies  

Ideally, export efficiencies should be estimated using the C export flux at either the base of the Zeu 

or the PPZ (Buesseler and Boyd, 2009; Owens et al., 2015) rather than at a given depth horizon for 

all stations. However, due to the limitations of our dataset (e.g. no PAR sensor, limited vertical 



resolution below 150 m, and modeled C/234Th ratios above and below 100 m) and in order to 

compare with prior studies, we focus on C export fluxes at 100 m.  

Carbon export efficiencies (C export flux at 100 m/NPP) were determined using three different 

satellite-derived models for NPP estimates (see Table S1). Differences were found between the 

estimates of NPP, which were higher for most areas for A&M96 than for the other models, except 

for the temperate domain where the VGPM model produced consistently higher estimates. Despite 

the differences, the A&M96 and the VGPM models are not significantly different (p = 0.15) but 

they are different from the CbPM model (p < 0.05), which provided the lowest NPP values in most 

of the stations, except in the equatorial domain (Table S1). In general, the best agreement between 

the three models was found in the oligothropic area. Maiti et al. (2016) found similar results in the 

Gulf of Mexico, where the VGPM model resulted in about 40% higher NPP than the CbPM model. 

According to Westberry et al. (2008), the CbPM deviates significantly in the distribution and timing 

of production. Contrary to conventional “chlorophyll-based” models, which assign all changes in 

Chl-a to a change in biomass and hence a change in NPP, the CbPM distinguishes between changes 

in Chl-a caused by photo-adaptation versus changes due to growth (NPP). In addition, CbPM model 

deviations in the subpolar, temperate and riverine domains may also be related to the presence of 

coccolithophores and larger diatom sizes, which disproportionately increase backscattering due to 

their shells and frustules (Westberry et al., 2008). 

Export efficiencies were generally < 25% across the entire transect when using the A&M96 and the 

VGPM models to derive NPP. When using the CbPM model, export efficiencies were significantly 

higher (up to 60%) in the transition stations between the oligotrophic and the temperate domains 

and at station PE32 (Figure 7). NPP from A&M96 lead to export efficiencies < 10% at the majority 

of stations (20 out of 33) and agrees well with the global compilation of direct estimates by 

Buesseler (1998). Unrealistically high export efficiencies (> 100%) were obtained at station PE6, in 

the subpolar domain, when using NPP derived from the VGPM model and at station PE16, in the 

temperate domain, when using NPP derived from the CbPM model (this model estimates 3-fold to 



one order of magnitude lower NPP at PE16 relative to the surrounding stations). In the subpolar 

domain, export efficiencies obtained from the CbPM model are not presented due to unrealistically 

low NPP estimates. 

Previous studies reported export efficiencies ranging between 2 and 42% in the eastern basin of the 

temperate domain (Buesseler et al., 1992; Le Moigne et al., 2013b). The average export efficiency 

in that domain for this study ranges from 5 to 18%, depending on the NPP model used and without 

considering station PE16 (Figure 7). In the oligotrophic domain, Buesseler et al. (2008) measured 

export efficiencies ranging from 2 to 12%. Our study calculates export efficiencies as high as 22% 

in the central part of the oligotrophic domain, although export efficiencies as high as 59% were 

estimated in the northern stations. Charette and Moran (1999) reported export efficiencies >100% at 

those stations affected by the Amazon River plume, but the highest value obtained in that area for 

this study was only 36% (using the VGPM model for NPP). 

4.4 Comparison with satellite-based export models 

Satellite-derived C export models have the potential to provide estimates of annual C export at 

regional to global scales. In addition, these models have a predictive power that can be used to 

forecast impacts on the global carbon cycle from possible changes in environmental conditions 

(e.g., changes in temperature, stratification, etc.). Satellite-based models, however, also have a 

myriad of assumptions and limitations and recent studies have highlighted the necessity to develop 

sub-ecosystem-scale parameterization in order to provide more accurate results (Galbraith et al., 

2015; Siegel et al., 2014). 

The three satellite-based export models described in section 2.3 (D05, L11 and H11) were applied 

and compared to the 234Th-derived C export estimates obtained along the northern section of the 

GA02 transect. In order to apply these models, we used the three different satellite-derived NPP 

estimates from A&M96, CbPM and VGPM models (Table S1). About 85% of the C export fluxes 

derived from the 234Th method were < 10 mmol C m-2 d-1. Using this C export as a reference, we 



observed that when using the NPP from the A&M96 model, the percentage of stations having 

fluxes below 10 mmol C m-2 d-1 was reduced to 46% and 55% (for D05 and L11 models, 

respectively) and to 58% (D05) and 73% (L11) when using the NPP from the VGPM model. In 

contrast, when using the NPP results from the CbPM model most of the stations (> 80%) had fluxes 

< 10 mmol C m-2 d-1 limit (Figure S6). Hence, the results of the export models were closer to our 

234Th-derived C export estimates when using the CbPM model. We therefore focus on the CbPM-

derived NPP in the satellite-derived export models discussed below. The one exception is the 

subpolar region, where, because of unrealistically low NPP values, we used the average NPP 

obtained from the A&M96 and VGPM models. 

Latitudinal C export fluxes derived from the three export models and 234Th-derived C export are 

shown in Figure 8. The magnitude of the fluxes differs significantly between models and with 

234Th-derived C export. For example, H11 significantly underestimates C export along the entire 

section relative to 234Th-derived C export estimates, whereas L11 and D05, despite the high 

variability, provide estimates that are in better agreement (within a 3-fold margin) (Figure 8). The 

export determined using the H11 model depends more heavily on temperature, and thus leads to 

low export fluxes (< 2 mmol C m-2 d-1) throughout the entire section. Maiti et al. (2013) conducted 

a similar comparison between 234Th- and satellite-derived C export in the Southern Ocean and 

observed a 2 to 4-fold overestimation of C export using the L11 and D05 models, with NPP 

obtained from the VGPM and the CbPM models. Stukel et al. (2015) found similar results in the 

eastern North Pacific Ocean. In the North Western Atlantic Ocean, we observe that D05 tends to 

significantly overestimate C export relative to in situ estimates in the equatorial domain, whereas 

L11 appears to underestimate C export, mainly in the northern half of the oligotrophic domain and 

at several riverine stations. Overall, the three models used here capture most of the geographical 

trends in C export, but not the absolute values. We therefore argue that parameterization of satellite-

derived models should be revised and adapted to the specific oceanic regimes, taking into account 

factors beyond temperature and NPP, such as the trophic structure, grazing intensity or recycling 



efficiency (Maiti et al., 2013). In addition already the variation among NPP model results shows 

that further optimization of these is necessary, which is an on-going process also fostered by 

various intercomparison and validation activities (e.g., Carr et al., 2006; Saba et al., 2011). 

5. CONCLUSIONS  

GEOTRACES is a global program whose objective is to “identify processes and quantify fluxes 

that control the distributions of key trace elements and isotopes in the ocean” (www.geotraces.org). 

The spatial coverage of 234Th-derived C export presented here, together with the sections presented 

in Owens et al. (2015) increased significantly the number of C export estimates for the North 

Atlantic Ocean (i.e., Le Moigne et al., 2013a). Upper ocean 234Th fluxes distribution agreed with 

previous studies, with high and variable export fluxes in the high latitudes and low to negligible 

fluxes in the oligotrophic region. 234Th fluxes did not reflect the Sahara dust inputs between 20ºN 

and 30ºN identified by high concentrations of dissolved trace metals. On the other hand, the 

Amazon River outflow clearly impacted 234Th inventories in the upper ocean, resulting in enhanced 

export to depth. 

Carbon fluxes also compared well with previous studies, independently of the C/234Th ratio estimate 

used, except for the riverine and subpolar domains where fluxes were underestimated when using 

the C/234Th from the power-law curve. Due to differences between satellite-derived NPP estimates, 

the export efficiencies varied widely, however, the majority of stations had export efficiencies 

< 25% regardless of the NPP estimate used and were < 10% when using the A&M96 NPP 

estimates, which is in agreement with the results presented by Buesseler (1998) that indicate that 

the majority of the global ocean has export efficiencies < 10%.  

When applying satellite-derived export models, similar latitudinal trends were observed between 

the three export models, although there were clear differences regarding the magnitude of the 

export. The Dunne et al. (2005) and Laws et al. (2011) models provided C export estimates closest 

to values obtained with the 234Th approach (within a 3-fold difference), but with no clear trends 



with regards to over or underestimating 234Th-derived C export fluxes. The Henson et al. (2011) 

model, on the other hand, consistently provided lower export estimates, probably due to the stronger 

dependency on temperature. In general, satellite-based export models are strongly influenced by 

SST and NPP, but lack biological parameters that influence C export. Tuning models and including 

biological parameters at a regional scale will help improve satellite-modeling efforts and provide 

export estimates in better agreement with in situ observations. Continued observing efforts are 

needed to resolve these open questions and thereby reduce uncertainty in the global carbon budget 

and improve carbon cycle monitoring from satellite-based platforms.  
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Figure 1: Stations locations along the northern GA02 transect, between May 2nd and July 4th 

2010, overlain by mean chlorophyll-a concentration (mg m
-3

) derived from MODIS AQUA remote 

sensing data (http://oceancolor.gsfc.nasa.gov) corresponding to sampling time (i.e., May for 

subpolar and temperate domains, May-June for oligotrophic domain, June for riverine domain and 

June-July for equatorial domain). White symbols correspond to stations sampled during the 

64PE319 cruise and black symbols during the 64PE321 cruise. Stars indicate those stations where 

particle samples were also collected. Black horizontal dashed lines indicate the different domains 

sampled. 

Figure 2: Concentration profiles for 
234

Th (in dpm L
-1

; black diamonds and solid line), 
238

U (in 

dpm L
-1

; dotted line) and fluorescence (in mg m
-3

; green line) of each station.   



Figure 3: Panel A shows the C/
234

Th ratios profiles from large particles from Owens et al. (2015) 

for the North Atlantic cruise GA03 (circles), together with the C/
234

Th ratios obtained during this 

study (triangles), with symbols color coded by domain. The power law regression presented in 

panel A was derived within the depth ranges of the PPZ and the depth of the 
234

Th deficits using 20-

40 m-binned averages (black diamonds) (see Supplemental Information for details). This regression 

can be used to calculate C/
234

Th ratios at a desired depth (e.g., PPZ or deficit depth in Table S2). 

Panel B presents the box plots by domain for the C/
234

Th ratios from a compilation of studies 

conducted in the North Atlantic Ocean (see Table S3 for details). 

Figure 4: Carbon export fluxes at 100 m estimated using different C/
234

Th ratios: using the domain 

average from ratios obtained during this study (black circles), using the domain average from a 

compilation of previous works together with data from this study (gray triangles, see Table S3 for a 

description of the studies used) and using the ratios derived from the power-law regression shown 

in Figure 3A (white squares). 

Figure 5: Map with the locations considered in the compilation for each study. Dashed lines 

indicate the limits of the domains. Two stations from Charette and Moran (1999) marked with * 

should be considered riverine rather than equatorial since they were affected by the Amazon 

outflow. 

Figure 6: Carbon export fluxes at 100-150 m for this study (red symbols) and for the compilation 

of studies (gray symbols). The different symbols are used to indicate the sampling time. Two 

stations marked with * should be considered riverine rather than equatorial because they were 

affected by the Amazon outflow (Charette and Moran, 1999). Data from the compilation of studies 

located between 10ºN-20ºN were sampled in the eastern basin, therefore they belong to the 

upwelling domain rather than the riverine.   

Figure 7: Export efficiencies obatined using three different NPP estimates (see Table S1) and 

compared to carbon export fluxes at 100 m calculated using the C/
234

Th ratios measured during this 

study. 

Figure 8: Upper panel: Satellite-derived export models comparison (using NPP estimated with the 

CbPM model, except for the subpolar domain where the NPP values were averaged between 

A&M96 and the VGPM model; see text for details), together with 
234

Th-derived C export fluxes 

obtained at 100 m using C/
234

Th from this study averaged by domains. Lower panel: Ratios 

between the three satellite-based export models vs 
234

Th-derived export fluxes. The shaded gray 

area represents a 3-fold difference between estimates. 

 

 

 

Table 1: 234Th fluxes, C/234Th ratios and C fluxes at 100 m.  

Cruise Domain Station 
234Th flux  

at 100m 

C/234Th   

from this study 
C flux using C/234Th 

ratios from this study 



# dpm m-2 d-1 μmol C dpm-1 mmol C m-2 d-1 

64PE319 

Subpolar 

PE2 320 ± 190 4.692 ± 0.064 1.48 ± 0.89 
PE5 1040 ± 160 7.6 ± 7.1 7.8 ± 7.5 

PE6 2740 ± 130 15.68 ± 0.22 43.0 ± 2.1 
PE8 280 ± 180 2.323 ± 0.015 0.66 ± 0.41 

Temperate 

PE11 470 ± 180 8.02 ± 0.16 3.7 ± 1.4 
PE12 710 ± 170 6.7 ± 1.9 4.7 ± 1.8 

PE13 710 ± 180 5.306 ± 0.064 3.79 ± 0.95 
PE14 1350 ± 200 6.7 ± 1.9 9.0 ± 2.9 

PE15 1740 ± 170 6.7 ± 1.9 11.6 ± 3.5 

PE16 1650 ± 170 6.7 ± 1.9 11.0 ± 3.3 

Oligotrophic 

PE17 1170 ± 180 10.2 ± 5.4 11.9 ± 6.6 

PE18 1270 ± 180 10.2 ± 5.4 13.0 ± 7.1 

PE19 720 ± 200 10.2 ± 5.4 7.3 ± 4.4 

64PE321 

PE21 610 ± 160 9.47 ± 0.56 5.8 ± 1.6 
PE22 -250 ± 210 10.2 ± 5.4 -2.6 ± -2.5 
PE23 77 ± 200 16.1 ± 1.9 1.2 ± 3.3 
PE24 -620 ± 180 10.2 ± 5.4 -6.3 ± -3.8 
PE25 320 ± 160 10.2 ± 5.4 3.3 ± 2.4 

PE26 -310 ± 180 5.231 ± 0.081 -1.63 ± -0.92 
PE27 140 ± 190 10.2 ± 5.4 1.4 ± 2.0 

PE28 510 ± 160 10.2 ± 5.4 5.3 ± 3.2 

Riverine 

PE29 930 ± 110 7.5 ± 7.3 7.0 ± 6.8 

PE30 490 ± 220 12.56 ± 0.86 6.2 ± 2.8 
PE31 670 ± 150 7.5 ± 7.3 5.0 ± 5.0 

PE32 1020 ± 160 7.5 ± 7.3 7.7 ± 7.5 

PE33 1480 ± 140 2.344 ± 0.057 3.46 ± 0.34 
PE34 670 ± 160 7.5 ± 7.3 5.0 ± 5.0 

Equatorial 

PE35 800 ± 170 4.14 ± 0.11 3.28 ± 0.69 

PE36 830 ± 110 4.14 ± 0.11 3.39 ± 0.45 
PE37 630 ± 140 4.14 ± 0.11 2.56 ± 0.57 

PE38 680 ± 130 4.14 ± 0.11 2.78 ± 0.54 

PE39 640 ± 130 4.14 ± 0.11 2.61 ± 0.54 

PE40 360 ± 150 4.14 ± 0.11 1.48 ± 0.60 

Note: C/234Th ratios in italic are the averaged value per domain. C export fluxes in italic are obatined using the averaged ratios. 

 

Table 2: Summary of C fluxes in the North Atlantic. For this study, three different C flux estimates 

are reported depending on the C/234Th ratio used. 

  
  

Lat 

This study Other studies 

n 

C flux at 100 m 

n 

C flux  

at 100 or 150 m 
C/234Th ratios 

from this study 
C/234Th ratios from 

compilation  
C/234Th from 
fitting curve 

mmol C m-2 d-1 mmol C m-2 d-1 

Subpolar 50ºN-65ºN 5 13 ± 20 11 ± 12 3.0 ± 3.2 33a, b, c 17.5 ± 9.6 

Temperate 35ºN-50ºN 6 7.3 ± 3.6 6.0 ± 3.0 3.0 ± 1.5 25d,e,f,g 8.3 ± 8.3 

Oligotrophic 20ºN-35ºN 11 3.5 ± 5.9 1.2 ± 2.2 0.9 ± 1.6 87d,e,h,i 2.3 ± 1.6 

Riverine 10ºN-20ºN 6 5.7 ± 1.5 12.2 ± 4.9 2.4 ± 1.0 2j 30 ± 12 

Equatorial 0º-10ºN 6 2.7 ± 0.7 5.7 ± 1.5 1.8 ± 0.5 5d,e,i 4.9 ± 2.0 

 
a Le Moigne et al. (2012) 
b Sanders et al. (2010) 
c Moran et al. (2003) 
d Owens et al. (2015) 
e Thomalla et al. (2006) 
f Le Moigne et al. (2013) 
g Buesseler et al. (1992) 
h Buesseler et al. (2008) 
i Brew et al. (2009) 



j Charette and Moran (1999). Note that two of the stations were considered riverine rather than equatorial because they 
were affected by the Amazon outflow. 
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