A ‘fuzzy clustering’ approach to conceptual confusion: how to classify natural ecological associations
The concept of the marine ecological community has recently experienced renewed attention, mainly owing to a shift in conservation policies from targeting single and specific objec- tives (e.g. species) towards more integrated approaches. Despite the value of communities as dis- tinct entities, e.g. for conservation purposes, there is still an ongoing debate on the nature of spe- cies associations. They are seen either as communities, cohesive units of non-randomly associated and interacting members, or as assemblages, groups of species that are randomly associated. We investigated such dualism using fuzzy logic applied to a large dataset in the German Bight (south- eastern North Sea). Fuzzy logic provides the flexibility needed to describe complex patterns of natural systems. Assigning objects to more than one class, it enables the depiction of transitions, avoiding the rigid division into communities or assemblages. Therefore we identified areas with either structured or random species associations and mapped boundaries between communities or assemblages in this more natural way. We then described the impact of the chosen sampling design on the community identification. Four communities, their core areas and probability of occurrence were identified in the German Bight: AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA, GONIADELLA-SPISULA, and PHORONIS. They were assessed by estimating overlap and compactness and supported by analysis of beta-diversity. Overall, 62% of the study area was characterized by high species turnover and instability. These areas are very relevant for conservation issues, but become undetectable when studies choose sampling designs with little information or at small spatial scales.
AWI Organizations > Biosciences > Coastal Ecology
AWI Organizations > Institutes > HIFMB: Helmholtz Institute for Functional Marine Biodiversity
Helmholtz Research Programs > PACES II (2014-2020) > TOPIC 2: Fragile coasts and shelf sea > WP 2.2: Species interactions in changing and exploited coastal seas