Objective: Pollen based reconstruction of past vegetation composition since 1914 at the Otjikoto region.

Methods: Several sediment cores were collected from Otjikoto lake. Pollen and chemical analysis were performed on 30 sediment samples of core 15oj10 (30 cm).

Fossil pollen diagram of selected taxa. MAP: Mean annual precipitation (Harris et al., 2014). Shadow curves correspond to 10x exaggeration.

Chemical sediment composition reflect water dynamics at Otjikoto Lake

1) Increase of total inorganic carbon and decreasing precipitation during the last 10 years reflect **low water recharge** at Otjikoto lake.
2) High levels of total nitrogen and total organic carbon suggest additional **nutrient input** and high lake productivity in the thirties.
3) A peak of total inorganic carbon and continued high precipitation suggest increased **runoff**.

Key messages

- Fossil pollen reflect **vegetation change** following fluctuations in the precipitation.
- Fossil pollen reflect **encroachment** within the last 10 years.
- Chemical sediment composition reflect **low water recharge** at Otjikoto lake during the last 10 years.

Pollen and chemical sediment analysis are suitable to reconstruct vegetation history and environmental conditions of savannahs.

References

Map: Mean annual precipitation (Harris et al., 2014); N: Total nitrogen; TIC: Total inorganic carbon; TOC: Total organic carbon.