

Stefanie Arndt, Christian Haas

Alfred Wegener Institute Helmholtz Center for Polar and Marine Research

Spatial variability and temporal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers

HELMHOLTZ

Temporal evolution of surface properties snow Objective Internal snowmelt Deriving onset dates of seasonal snowmelt Internal ice lave processes on Antarcticwide scales and its inter-Superimposed annual variability ice formation **Snow-ice formation** ice summer winter spring autumń winter Year-round snow cover Seasonal changes in snow properties dominated by snow Diurnal thawing and refreezing ice Internal snowmelt Antarctic ocean

Snowmelt patterns from passive microwave observations

Method: Analysis of diurnal variations in brightness temperature (passive microwave, 37 GHz, vert. pol.)

Arndt et al., 2016 (JGR)

Snowmelt patterns from passive microwave observations

Method: Analysis of diurnal variations in brightness temperature (passive microwave, 37 GHz, vert. pol.)

Key points

Temporary snowmelt shows a latitudinal dependence

Continuous snowmelt is usually 17 days after temporary snowmelt onset observed Results indicate **four characteristic melt types**

Arndt et al., 2016 (JGR)

Temporal evolution of radar backscatter

Based on Haas, 2001

ERS QSCAT ASCAT -8 (dB) -10 -16 -18 -20

C

HELMHOLTZ | ASSOCIATION

Temporal evolution of radar backscatter

HELMHOLTZ

Temporal evolution of radar backscatter

Spatial variability of snowmelt onset dates

Latitudinal gradient in snowmelt onset dates

- North: warm-air advection
- South: diminished warm-air advection and stronger heat loss at the snow surface

120	From scatterometer data			From passive microwave observations
Region	Pre-melt Onset	Snowmelt Onset	Diurnal thawing- refreezing Onset	Temporary Snowmelt Onset (TeSMO)
Southern Weddell Sea	27 Nov ± 25 days	16 Dec ± 19 days	19 Dec ± 13 days	21 Dec ± 11 days
Northern Weddell Sea	24 Nov ± 16 days	06 Dec ± 16 days	09 Dec ± 9 days	13 Dec ± 11 days
Bellingshausen Sea	01 Dec ± 29 days	04 Dec ± 27 days	19 Oct ± 20 days	19 Oct ± 28 days
Amundsen Sea	24 Nov ± 23 days	06 Dec ± 18 days	02 Dec ± 10 days	05 Dec ± 16 days
Ross Sea	11 Dec ± 18 days	15 Dec ± 17 days	13 Dec ± 8 days	16 Dec ± 10 days
All regions	29 Nov ± 10 days	10 Dec ± 12 days	09 Dec ± 5 days	12 Dec ± 8 days

n=1

QSCAT-ASCAT

2008/2009

-40

Frequency: 13.4 GHz

QSCAT-ERS-2

1999/2000

Time series of snowmelt onset dates

No significant trend in snowmelt onset dates but large inter-annual variability

Onset dates from different sensors

Scatterometer observations:

- Frequency: 5.6 and 13.4 GHz
- higher penetration depth

Passive microwave observations:

- Frequency: 37 GHz
- smaller penetration depth

Perennial sea ice RS WS **BS/AS** 60 scatterometer Earlier from 40 **Difference** (days) 20 Ω scatterometer Later from -20 -40 $\sigma_{\rm melt}^{-\sigma}$ 0 $d\sigma^0$ -60 pre 2 3 5 6 7 8 9 10 11 12 1 4 Location

Snowmelt onset dates from scatterometers are earlier by 13 and 5 days than those from passive microwave observations

Onset dates from different sensors

Difference (days)

Scatterometer observations:

- Frequency: 5.6 and 13.4 GHz
- higher penetration depth

Passive microwave observations:

- Frequency: 37 GHz
- smaller penetration depth

Snowmelt onset dates from scatterometers are earlier by 13 and 5 days than those from passive microwave observations

Onset dates from different sensors

Hypothesis:

Different sensors respond to snow melt processes in different depths within the snow cover

Summary

- Retrieved snowmelt onset dates show a latitudinal dependence
- Correcting for sensor differences between Ku- and C-band scatterometers allows to compile a backscatter time series
- Snowmelt onset dates show no significant trend but a large inter-annual variability for the study period
- Using satellite remote sensing sensors with different signal frequencies might allow to describe snowmelt processes in different snow layers
 - Improvement of energy and mass budget calculations for the ice-covered Southern Ocean
 - Knowledge gain on uncertainties and spatial variability of space-borne retrievals of sea-ice concentration, sea-ice thickness and snow depth

