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Abstract The evidence from both data and models indicates that specific equilibrium climate sensitivity
S[X] —the global annual mean surface temperature change (ΔTg) as a response to a change in radiative
forcing X (ΔR[X])—is state dependent. Such a state dependency implies that the best fit in the scatterplot
of ΔTg versus ΔR[X] is not a linear regression but can be some nonlinear or even nonsmooth function. While
for the conventional linear case the slope (gradient) of the regression is correctly interpreted as the specific
equilibrium climate sensitivity S[X], the interpretation is not straightforward in the nonlinear case. We
here explain how such a state-dependent scatterplot needs to be interpreted and provide a theoretical
understanding—or generalization—how to quantify S[X] in the nonlinear case. Finally, from data covering
the last 2.1 Myr we show that—due to state dependency—the specific equilibrium climate sensitivity
which considers radiative forcing of CO2 and land ice sheet (LI) albedo, S[CO2 ,LI], is larger during interglacial
states than during glacial conditions by more than a factor 2.

1. Introduction

Global temperature rise due to the anthropogenic emissions of greenhouse gases will be a challenge for the
years to come and are in the focus of climate research, also summarized in the International Panel on Climate
Change (IPCC) assessment reports (Stocker et al., 2013). The expected change in equilibrium annual mean
surface temperature due to a doubling of atmospheric CO2 concentration is called equilibrium climate sensi-
tivity (ECS), and when normalized by the given radiative forcing change caused by the expected anomaly in
atmospheric CO2 also named specific equilibrium climate sensitivity S. For a better quantification of S avail-
able climate simulations for the near future need to be compared and validated with whatever information is
available for the paleoclimatic records (PALAEOSENS-Project Members, 2012).

One prominent approach (e.g., Köhler et al., 2015; Martínez-Botí et al., 2015; Rohling et al., 2012; von der
Heydt et al., 2014) to calculate S (or following the nomenclature of PALAEOSENS-Project Members (2012),
more precisely S[X]) from paleodata is to evaluate the regression of scatterplots, in which global mean sur-
face temperature anomaly (ΔTg) has been plotted against radiative forcing anomalies (ΔR[X]), since following
its definition,

S[X] =
ΔTg

ΔR[X]
, (1)

S[X] is easily obtained from the slope of a linear regression line, which needs to pass through the origin to avoid
any biases. Passing through the origin (ΔTg = 0 K; ΔR[X] = 0 W m−2) implies that no temperature change
(with respect to a defined reference climate state) is detected for conditions without forcing anomalies.
Usually, the preindustrial climate state serves as reference. Here X corresponds to the forcing processes con-
sidered, typically changes in CO2 (sometimes also including the other greenhouse gases (GHG) CH4 and N2O),
potentially corrected for some slow feedbacks such as planetary albedo changes caused by variations in land
ice (LI), vegetation (VG) or dust (aerosols (AE)) (PALAEOSENS-Project Members, 2012). However, please note
that in climate simulation studies used for the IPCC very often (but not always) S[X], as defined in equation (1),
and what we here call “specific equilibrium climate sensitivity,” is termed “climate sensitivity parame-
ter.” Once multiplied with the radiative forcing related to a doubling of atmospheric CO2 concentration,
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one might approximate or calculate Equilibrium Climate Sensitivity (ECS) or Earth System Sensitivity (ESS)
(Lunt et al., 2010) out of S[X]. In detail, from S[CO2] one can calculate ESS, which represents the full reaction of
the whole Earth System to a certain CO2 radiative forcing. A paleodata-based ESS is comparable to results
from Earth System Models with interactive ice sheets, vegetation, etc. Furthermore, from S[CO2 ,LI] ECS can be
approximated by considering land ice changes as a forcing in the paleodata (PALAEOSENS-Project Members,
2012). The such obtained ECS is comparable to results of climate models where land ice remains constant.
An exact quantification of ECS, however, needs the consideration of corrections for all slow feedbacks (see
equation (2) in PALAEOSENS-Project Members, 2012). S[CO2 ,LI] is the most practical permutation of S[X], because
the radiative forcing of many other slow processes are much more difficult to reconstruct.

In the review of the PALAEOSENS group in 2012 a quantitative expression of S[X] based on equation (1) was
already included but only for individual data points, or whole time series. The state-dependent character of
S[X] was already detected but could not be quantified in greater detail. Since then, climate sensitivity from
paleodata has continued to be analyzed by regression analysis in the scatterplot of ΔTg versus ΔR[X] (e.g.,
Friedrich et al., 2016; Köhler et al., 2015; Martínez-Botí et al., 2015; von der Heydt et al., 2014).

The analysis of the problem is straightforward, if linear regression methods are applied, which implies that
S[X] is a general property of the climate system. However, results point more and more in the direction that
climate sensitivity is state dependent (e.g., Crucifix, 2006; Hargreaves et al., 2007; von der Heydt et al., 2016;
Yoshimori et al., 2011), implying that for the ΔTg − ΔR[X] scatterplot nonlinear regressions (e.g., higher-order
polynomials) are describing the data more appropriate than a simple linear fit (Köhler et al., 2015; von der
Heydt et al., 2014). In such cases the quantification of S[X] becomes more intricate and S[X] is not a general
feature of the climate system anymore but state dependent. Note that some contribution to this nonlinearity
might also be caused by the type of forcing with greenhouse gas forcing influencing the long-wave spectrum
of the outgoing radiation having potentially a different effect than albedo changes influencing the amount
of incoming short-wave radiation (e.g., Yoshimori et al., 2011).

The aim of this study is to investigate how we can quantify S[X] from a data set suggesting state-dependent
behavior. We will further investigate climate records of the last 2.1 Myr, already discussed in Köhler et al. (2015).
In the next section we will discuss the data that will be used for analysis. Section 3 will highlight some gen-
eral insights on the system behavior from the scatterplots of ΔTg versus ΔR[CO2 ,LI], while section 4 discusses
different (practical) approaches how to calculate S[CO2 ,LI] and quantify its state dependency. Note that while
in section 3 we briefly discuss two specific aspects how the data analysis might influence the nonlinear char-
acteristics found in the scattered data of ΔTg versus ΔR[CO2 ,LI], the focus of this paper is not on the question
whether we find such a nonlinearity (further discussion on that question are found in Köhler et al., 2015) but
on how to quantify S[X], once you have detected its state-dependent character. This generalized view on the
quantification of the state-dependent S[X] is new and a major step forward in extracting climate sensitivity
from paleodata.

2. Data Over the Last 2.1 Myr

If we want to quantify S[CO2 ,LI], time series of global annual mean surface temperature anomaliesΔTg, radiative
forcing of atmospheric CO2 (ΔR[CO2]) and land ice-based surface albedo forcing (ΔR[LI]) are necessary. Such
time series have been compiled in Köhler et al. (2015) for the last 5 Myr. For such investigations how land
ice-based surface albedo changes the radiative forcing ΔR[LI] an energy balance model needs to be applied
in order to calculate top of the atmosphere (or planetary albedo) changes, which are of relevance here. The
energy balance model used here is described in Köhler et al. (2010). Here we investigate those data in more
detail, focusing on the last 2.1 Myr, since the CO2 data sets analyzed in Köhler et al. (2015), that reached beyond
that point in time, led to results which are difficult to interpret. In particular, the best fits in scatterplots of ΔTg

against ΔR[CO2 ,LI] based on those data were far off the origin potentially indicating some systematic bias in the
data. The climate variables used here (Figure 1) are based on the following (please refer to Köhler et al. (2015)
for further details):

Global annual mean surface temperature change. An inverse approach was used to deconvolve the LR04
benthic 𝛿18O (Lisiecki & Raymo, 2005) into its sea level and temperature components (de Boer et al.,
2014). This framework included 3-D ice sheet models and therefore also derived Northern Hemisphere (NH)
temperature changes (ΔTNH). Using information on the polar amplification factor (fpa) from PMIP3/CMIP5
model output, the global annual mean surface temperature change was calculated after ΔTg = ΔTNH∕fpa.
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Figure 1. Changes in temperature and radiative forcing over the last 2.1 Myr. (a) Global mean surface temperature
change ΔTg . The approach of Köhler et al. (2015) used here and a more recent global temperature estimate of Snyder
(2016) is plotted for comparison. Marked is the global cooling during the LGM derived from PMIP3/CMIP5 (blue square).
(b) Changes in radiative forcing based on atmospheric CO2 (ΔR[CO2]). CO2 data from ice cores (Bereiter et al., 2015) and
based on 𝛿11B (Hönisch-lab, Hönisch et al., 2009). (c) Radiative forcing of land ice albedo ΔR[LI]. (d) The sum of the
radiative forcing changes due to CO2 and land ice sheets (ΔR[CO2 ,LI]) whenever CO2 data allow its calculation.
Uncertainties show 1𝜎.

In Köhler et al. (2015) three different version of ΔTg based on different assumptions on fpa have been calcu-
lated. Here we use the standard version ΔTg1 that relates polar amplification linearly to northern hemispheric
temperature. Note that conclusions in Köhler et al. (2015) did not depend on this choice in fpa.

Radiative forcing from land ice. In the deconvolution approach of de Boer et al. (2014) the areal distribution of
land ice area has also been simulated. This information together with the incoming solar insolation (Laskar
et al., 2004) was used in a simplistic energy balance model (Köhler et al., 2010) to calculate in latitudinal
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bands of 5∘ changes in radiative forcing ΔR[LI]. The novelty of this approach was that the combination of
3-D ice sheet models and their latitudinal dependency was leading to nonlinearities in the relationship
between temperature change and radiative forcing change, which have so far been overlooked in other, more
simplistic approaches (e.g., Hansen et al., 2013; Martínez-Botí et al., 2015; von der Heydt et al., 2014; van de
Wal et al., 2011).

Radiative forcing from CO2. Ice core-based CO2 data cover the last 800 kyr. They have been stacked in Bereiter
et al. (2015) but are based on various different ice cores (EPICA Dome C, EPICA Dronning Maud Land, Law
Dome, Siple Dome, Talos Dome, Vostok, West Antarctic Ice Sheet Divide) and studies (Ahn & Brook, 2014;
Bereiter et al., 2012, 2015; MacFarling-Meure et al., 2006; Marcott et al., 2014; Monnin et al., 2001, 2004; Petit
et al., 1999; Rubino et al., 2013; Schneider et al., 2013; Siegenthaler et al., 2005). Additionally, CO2 based on
𝛿11B isotopes (n = 52 data points) from the Hönisch-lab have been published (Hönisch et al., 2009), which
cover the last 2.1 Myr and agree with the ice core data during their overlap. The radiative forcing of CO2 is
calculated after ΔR[CO2] = 5.35 ⋅ ln(CO2∕278 ppm) W m−2 (Myhre et al., 1998).

ΔTg and ΔR[LI] are available at time intervals of 2 kyr. Therefore, all ice core CO2 data have been resampled
to the same temporal spacing, and CO2 from the Hönisch-lab have been aligned to the nearest simulation
output. Only time steps, for which all three relevant records exist are used for further analysis. Since both ΔTg

and ΔR[LI] are based on a model-based interpretation of the LR04 benthic 𝛿18O stack (Lisiecki & Raymo, 2005),
which itself has temporal resolutions of 2 ka and above for data older than 600 kyr and of 1 kyr for younger
samples only little impact is expected from the 2 kyr resampling of the time series.

A more recent global temperature stack (Snyder, 2016) agrees with our approach within the uncertainties
for the last 1.2 Myr. Temperature reconstructions differ further back in time with higher temperatures found
in the stack of Snyder (2016), which is based on sea surface temperature reconstructions only. We there-
fore conclude that the analysis of the data based on ice core CO2 covering the last 800 kyr is in agreement
with this new temperature stack while that based on the Hönisch CO2 data might need further refinements.
We here refrain from using the new temperature change record of Snyder (2016) since in our approach ΔTg

and ΔR[LI] are closely related to each other. In future studies a new calculation of land ice distribution might
be performed that considers the temperature information of Snyder (2016), but this is beyond the scope of
this study.

3. General Insights From 𝚫Tg − 𝚫R[CO2,LI] Scatterplots

In the previous study we have used polynomial fits to the data to discriminate between a linear or nonlinear
relationship in ΔTg − ΔR[CO2 ,LI] scatterplots (Köhler et al., 2015). Those data sets based on CO2 data from ice
cores or the Hönisch-lab, initially analyzed in Köhler et al. (2015), revealed that a higher-order polynomial best
fit the scatteredΔTg −ΔR[CO2 ,LI] data indicating a state dependency in S[CO2 ,LI]. While in this initial study we first
investigated the relationship between both variables more general, for example, allowing the fits to disagree
with the origin, we here have our focus on the quantification of S[CO2 ,LI] and therefore demand as additional
constraint that ΔTg = 0 K for ΔR[CO2 ,LI] = 0 W m−2. Furthermore, we expand on these previous analyses by
investigating two additional questions:

How important is the decision which variable is plotted on the x axis for the detection of this nonlinearity/state
dependency? While most previous studies perform a regression with ΔR[X] on the x axis (treating ΔTg as the
dependent andΔR[X] as the independent variable), there are arguments to be made for also trying a regression
with the axes flipped (i.e., ΔTg on the x axis). In particular, if the fast and slow feedbacks that determine the
climate sensitivity depend in a linear (or polynomial) way on the temperature, this would lead toΔR[X] being a
polynomial function of ΔTg, and not vice versa. Also, if there was a bifurcation in the Earth’s climate—such as
occurred during the Snowball Earth, or, potentially, to a hothouse climate (e.g., Pierrehumbert et al., 2011)—a
regression with ΔR[X] on the x axis would not capture the bifurcation, since there would be multiple ΔTg’s for
the sameΔR[X], while a regression withΔTg on the x axis would capture this bifurcation, as there would still be
only one ΔR[X] for each ΔTg. For these reasons, it seems worth exploring if the choice of independent variable
changes our analysis.

Note that scatterplots of ΔR[X] against ΔTg are different than the plots of net top-of-atmosphere flux against
surface temperature commonly found in studies of climate simulations subjected to abrupt forcing, often
known as “Gregory plots” (Gregory et al., 2004). These studies analyze how simulations relax back to their
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Table 1
Fitting a Linear or a Nonlinear Function to the Data With the Precondition to Meet the Origin (a = 0)

𝜒2 1st versus 2nd 2nd versus 3rd r2

Data set x axis n 1st 2nd 3rd F p F p m L %

Ice cores ΔR[CO2 ,LI] 394 3,027 1,334 1,200 497.5 <0.001 46.9 <0.001 3rd ∗∗ 71

Ice cores ΔTg 394 1,944 1,882 1,837 12.9 <0.001 9.6 <0.01 3rd ∗ 63

Hönisch ΔR[CO2 ,LI] 52 661 441 427 24.9 <0.001 1.6 0.21 2nd ∗∗ 65

Hönisch ΔTg 52 192 169 162 6.8 0.01 2.1 0.15 2nd ∗ 74

Note. The 5,000 Monte Carlo-generated realizations of the scattered ΔTg − ΔR[CO2,LI] were analyzed. The data are randomly picked from the entire Gaussian
distribution described by the 1𝜎 of the given uncertainties in bothΔTg andΔR[CO2,LI] . The parameter values of fitted polynomials are given as mean±1𝜎 uncertainty
from the different Monte Carlo realizations using as ΔTg the ΔTg1 calculated in Köhler et al. (2015). Data sets differ in the underlying CO2 data (ice cores (800 kyr)
or Hönisch-lab (2.1 Myr)). Analyses differ by which variable is assumed to be the independent variable to be plotted on the x axis (ΔR[CO2,LI] or ΔTg). n: number of
data points in data set; 𝜒2: weighted sum of squares following either first-, second-, or third-order polynomials; F: F ratio for F test to determine if the higher-order
fit describes the data better than the lower order fit (first-versus second-order polynomial or second- versus third-order polynomial); p: p value of the F test; m:
order of significant polynomial; L: significance level of F test (∗: significant at 1 % level (0.001 < p ≤ 0.01); ∗∗: significant at 0.1 % level (p ≤ 0.001)); r2: correlation
coefficient of the fit.

Figure 2. Scatterplots of data of global temperature change ΔTg against radiative forcing ΔR[CO2 ,LI]. ΔTg is calculated
with the polar amplification factor fpa being a linear function of ΔTNH. Radiative forcing of CO2 together with land ice
(LI) albedo with CO2 based on (left, gray points) ice cores (Bereiter et al., 2015) or (right, red points) 𝛿11B from
Hönisch-lab (Hönisch et al., 2009). (a and b) Radiative forcing plotted on x axis. (c and d) ΔTg plotted on x axis. Black
lines show average best fits (second- or third-order polynomials) to 5,000 Monte Carlo realizations of the data (details in
Table 1). Cyan broken lines in Figures 2a and 2b show additionally the regressions obtained in Figures 2c and 2d with
flipped axes to facilitate comparisons. Each subfigure contains the mean uncertainty of the fit by dividing 𝜒2 (the
weighted sum of squares from the regression analysis) by n and the correlation coefficient r2. Uncertainties show 1𝜎.
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Figure 3. Scatterplots of ice core-based data of global temperature change ΔTg against radiative forcing ΔR[CO2 ,LI],
which distinguish between (a) cooling (𝛿(ΔTg)∕𝛿t < 0) and (b) warming (𝛿(ΔTg)∕𝛿t ≥ 0). Lines are Monte Carlo-based
averages (n = 5, 000) of third-order polynomial through the origin, black for all data.

attractor after being perturbed away from it, and therefore, their trajectories need not reflect the relationship
between radiative forcing and equilibrium warming (Armour et al., 2013). While one of the authors used cli-
mate simulations to trace this relationship in a previous study (Bloch-Johnson et al., 2015), generating plots
of ΔTg versus ΔR[X], the resulting curve does not account for the slow feedbacks that one would expect to
find in the paleoclimate record and so is likely different than what would be found in paleodata (von der
Heydt & Ashwin, 2016). As a result, while studies of climate simulations sometimes find state dependence
(Bloch-Johnson et al., 2015; Jonko et al., 2013; Meraner et al., 2013), it is a separate question to investigate
from paleodata if S[X] is state dependent.

When exchanging axes for both data sets (CO2 from ice cores for the last 800 kyr and based on Hönisch-lab
reconstruction for the last 2.1 Myr) and applying the same rigorous statistics as before (Monte Carlo approach
to consider uncertainties in both directions, 5,000 replicates, F test statistics to establish if higher-order poly-
nomials better fit the data), we find similar nonlinearities (Table 1 and Figure 2) indicating that the choice of
the axes is negligible. Note that we restrict all analyses to cases, in which the fits meet the origin. While non-
linear regression lines for the Hönisch-lab data with the different choices of the axes also agree reasonable
well when plotted again in the same plot (see Figure 2b), regression lines for the ice core data diverge for
glacial conditions (see Figure 2a). This divergence might be caused by the third-order polynomial fitted to
the ice core data (while at best a second-order polynomial was fitted to the Hönisch-lab data). It shows that
while the nonlinearity between ΔR[CO2 ,LI] and ΔTg does not depend on the choice of the axes, the simplified
quantification of the relationship between both variables is in detail depending on this choice.

Is there a different relationship for those data, which describe global cooling or a glaciation versus those that
describe global warming or a deglaciation? For the data set based on the ice core CO2 this information
can be gained when comparing each data point with its precursor, finally calculating 𝛿(ΔTg)∕𝛿t. For the
Hönisch-lab-based CO2 data the distance between neighboring data points is too large to come to a mean-
ingful results here. Ice core-based CO2 data are nearly equally distributed into warming (49%) and cooling
(51%) periods. Using the same Monte Carlo approach as before with 5,000 replicates and taken data uncer-
tainty in both directions into account, we found a higher nonlinearity (stronger bend of the higher-order
polynomial fitting the data) in those data obtained from cooling climatic conditions (Figure 3). This is in
agreement with a recent analysis of paleodata, in which a pronounced decoupling of the orbital (7 kyr run-
ning mean) components of atmospheric CO2 and temperature during phases of decreasing obliquity has
been detected (Hasenclever et al., 2017). During declining obliquity land ice sheets are build up synchronous
to long-term cooling (glaciation). Atmospheric CO2 levels, which during obliquity rise closely follow the
observed global warming, are during obliquity fall decoupled from temperature change, that is, decreases on
the order of 10 kyr later. This decoupling is possibly caused by CO2 outgassing from mid-ocean ridge and hot
spot volcanism triggered by falling sea level.
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The new insights from these two questions are fundamental, since they (i) support the natural choice of
the axes used in paleoclimate (data based) research and (ii) highlight again that a dominant part of the
nonlinearity in the climate system (and therefore the state dependency in S[X]) is connected to land ice
sheet growth.

Furthermore, to the naked eye, it seems that the nonlinear regressions heavily depends on the few data points
obtained from interglacial conditions, for example, close to the origin. One might therefore be interested if
the detected nonlinearity changes (or potentially vanishes and again a linear relationship is found) once these
points are slightly shifted or neglected in the regression analysis. Our nonlinear regression analysis only weakly
depends on them, since all regressions are forced to meet the origin in order to find no temperature change
for no forcing change. For further details on the nonlinearity please refer to our preceding study (Köhler
et al., 2015).

4. Quantifying the State Dependency of S[X]

In the previous section we have discussed how to detect state dependency from the scatterplots of ΔTg and
ΔR[CO2 ,LI] data, but we have not yet quantified S[CO2 ,LI] for the different climate states or regimes. This quantifi-
cation depends on the way the data are analyzed, as we will discuss below. The different approaches will be
first applied to the ice core data of the last 800 kyr. We finally quantify S[CO2 ,LI] also from data of the last 2.1 Myr
based on CO2 proxy data from the Hönisch-lab.

We assume that the information obtained from the paleodata refers to quasi-equilibrium climates, implying
that atmosphere and ocean are equilibrated, but not the ice sheets, also not containing the full response of
atmosphere and ocean to the changing ice sheets. This might be a simplification, since in climate simulations
it takes on the order of a few thousand years after an imbalance in Earth’s energy budget until a new equilib-
rium surface temperature has been established (e.g., Hansen et al., 2011), and including ice sheet will lead to an
even much longer equilibrium time scale. The quasi-equilibrium assumption taken here should nevertheless
be valid. It has been tested in similar data sets (see supporting information in PALAEOSENS-Project Members,
2012). Furthermore, abrupt climate changes connected with Dansgaard-Oeschger or similar events are not
contained in the output of the 3-D ice sheet models (de Boer et al., 2014), from which we calculate global tem-
perature change ΔTg and land ice albedo radiative forcing ΔR[LI]. How a time-dependent climate sensitivity
might be calculated is not within the scope of this study but was investigated elsewhere (e.g., Rohling et al.,
2018; von der Heydt & Ashwin, 2016; Zeebe, 2013).

The easiest and most robust estimate of S[CO2 ,LI] is obtained, when S[CO2 ,LI] is calculated individually for each
time step ti out of ΔTg(ti) and ΔR[CO2 ,LI](ti) (Figure 4d). Taking the uncertainties of the individual data points
into account, a probability density functions (PDF) of S[CO2 ,LI] is calculated straightforward (Figure 4f ), from
which the median, the most likely, and the spread (uncertainty distribution) within S[CO2 ,LI] can be obtained.
If the underlying data set of the PDF is split into various subsets (here distinguishing data for two different
radiative forcing domains, Figure 4e) a first, rough quantification of the state dependency of S[CO2 ,LI] is gener-
ated and has already been obtained in Köhler et al. (2015). One known problem of this approach is that for
small disturbances in the radiative forcing (ΔR[CO2 ,LI] close to zero) one might obtain in the point-wise calcu-
lations of S[CO2 ,LI] unrealistically high and low values. Such values might be caused by dating uncertainties of
the underlying paleorecords or transient effects (de Boer et al., 2012). In our analysis in Köhler et al. (2015)
we found 20 outliers (from 394 data points contained in Figure 4) that did not match in the realistic range of
S[CO2 ,LI] between 0 and 3 K W−1 m2, and they have been rejected from further analysis. Furthermore, from those
data with ΔR[CO2 ,LI] close to zero, which have not been rejected, calculated values of S[CO2 ,LI] seemed to follow
a different pattern than the rest of the data (Figure 4e). Again, we understand these anomalies to be probably
based on dating uncertainties, nonnegligible influence of transient climate response, and the problem that
the ratio from two small numbers might easily contain a large error.

4.1. Approach I: The Point-Wise Approach
A state-dependent equation of the specific equilibrium climate sensitivity S[X] might be obtained from ana-
lyzing the paleodata in greater detail. To do so, a function has to be found that relates the temperature
perturbations ΔTg to radiation perturbations ΔR[X]. It is not necessary that such a function is developed
analytically; it can be derived from nonlinear regression analysis of the scattered data. For reasons of simplicity
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Figure 4. Data of the last 0.8 Myr analyzed for specific equilibrium climate sensitivity S[CO2 ,LI]. In all subplots data are
split into data from “warm” (gray) and “cold” (blue) periods distinguished by ΔR[CO2 ,LI] = −3.5 W m−2. (a) Time series of
radiative forcing ΔR[CO2 ,LI] caused by CO2 (Bereiter et al., 2015), corrected by land ice albedo feedback (de Boer et al.,
2014; Köhler et al., 2015). (b) Time series of global surface temperature change ΔTg (Köhler et al., 2015). (c) Scatterplot of
ΔTg versus ΔR[CO2 ,LI] including a best fit through the origin. (d) Time series of point-wise calculated specific equilibrium
climate sensitivity S[CO2 ,LI]. Only data with their mean in S[CO2 ,LI] in the range [0, 3] K W−1 m2 are analyzed and plotted.
(e) Same data as in Figure 4d in a scatterplot of S[CO2 ,LI] against radiative forcing ΔR[CO2 ,LI]. Thick line is the calculated
state-dependent S[CO2 ,LI](ΔR[CO2 ,LI]) derived from the third-order nonlinear fit through the ΔTg − ΔR[CO2 ,LI] data with the
additional condition to meet the origin (a = 0) . (f ) Probability density distribution of ice core-based S[CO2 ,LI]. (f ) Labels
denote 16th, 50th, and 84th percentile.
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Figure 5. Illustrating of the differences in the calculation of S[CO2 ,LI]
when based either on approach I (quantification of point-wise results,
Spw) or on approach II (linear slope, Sslope) for different orders of the
polynomial fit to the data. (a) Scatterplot of ΔTg versus ΔR[CO2 ,LI]
including various different fits to the data. We compare two different
linear fits (best fit (blue, ΔT = −1.83 + 0.66 ⋅ (ΔR)) or with the additional
constrain to pass through the origin (a = 0, green, ΔT = 1.10 ⋅ (ΔR))
with second- (red, ΔT = 2.01 ⋅ (ΔR) + 0.20 ⋅ (ΔR)2) and third- (black,
ΔT = 2.58 ⋅ (ΔR) + 0.48 ⋅ (ΔR)2 + 0.03 ⋅ (ΔR)3) order polynomial. From
Monte Carlo statistics and F tests the third-order fit was chosen to fit
the data best (Köhler et al., 2015). (b) Scatterplot of the corresponding
S[CO2 ,LI] versus ΔR[CO2 ,LI] data including the different fits to the data for
both approaches I (Spw, equation (3) and the uncorrected approach II
(Slocal, equation (5). Results of approach II agree with results of
approach I when they are corrected following equation (11). The results
for S[CO2 ,LI] based on the linear fit to the data with a = 0 are identical for
both approaches (green line), therefore not distinguishable. Detailed
functions in Figure 5b are easily derived from the given equations
for fits in Figure 5a. Uncertainties in the parameter values are omitted
for clarity.

both variables are described in the following by ΔT and ΔR. For nonlinear
description of ΔT as a function of ΔR a higher-order polynomial is the most
obvious choice (but other equations are possible):

ΔT(= f (ΔR)) = a + bΔR + cΔR2 + dΔR3 +… (2)

Climate sensitivity can then be calculated as

Spw = ΔT
ΔR

= a
ΔR

+ b + cΔR + dΔR2 +… (3)

This approach is called point-wise (pw) since the derived equation in the S−ΔR
data space agrees with the individual data points (Figures 4e and 5b). Please
note that in all plots of S againstΔR (Figures 4e, 5b, and 6a) the plotted regres-
sions are not based on any analysis of the relationship between these two
variables (which are due to the dependency of S against ΔR statistically not
robust) but on the analysis of the underlying ΔT –ΔR plots. The reference
climate has to be chosen such that a = 0, to ensure finite climate sensi-
tivity at ΔR = 0. In the above case, climate sensitivity is constant (i.e., not
state dependent) if the higher-order terms are zero: c = d = 0. Otherwise,
climate sensitivity is a function of the radiation perturbation and therefore
state dependent. This approach has been applied for the ice core data and is
contained in Figure 4e.

Please also note the following: When calculating PDFs based on single points
(e.g., as done in Köhler et al., 2015) each data point is weighted with equal
weight. This is different from approaches in which regression functions are
applied. For example, in linear regressions which would be applied for the
state-independent case, the frequently applied regression method of ordi-
nary least squares (OLS) minimizes the sum of squared residuals, which leads
to a higher weight for data points farther away from the origin.

4.2. Approach II: Using Local Slopes (Piece-Wise Linear Analysis)
In the constant case (c = d = 0), climate sensitivity can also be found by
taking the local slope of the T-R-relation, therefore called Slocal:

Slocal = 𝛿ΔT
𝛿ΔR

= b. (4)

However, in the state-dependent case

Slocal = 𝛿ΔT
𝛿ΔR

= b + 2cΔR + 3dΔR2 +… (5)

Now Slocal (equation (5)) is evidently not equal to the point-wise-calculated cli-
mate sensitivity Spw (equation (3)). For illustrative purposes we have included
some realization of S based on local slopes in Figure 5b. Clearly, they disagree
from results obtained with the point-wise approach. Indeed, the suggested
equations do not meet the scattered data of S[CO2 ,LI] versus ΔR[CO2 ,LI].

The condition for state dependency, however, remains the same: The
higher-order terms have to be nonzero. For the local slope case, this means
that the slope is nonconstant.

4.3. Combining Data-Based Approaches and Model Results
Climate models usually perturb a reference climate {R0; T0}, and end up with
a new climate {R1; T1}. They consider climate sensitivity in the following way:

Smodel =
T1 − T0

R1 − R0
. (6)

One might argue that only radiative forcing anomalies are of interest, and not the absolute radiative forc-
ings R0 and R1, so the denominator in equation (6) should be ΔR1. For the sake of generalization we keep
equation (6) as is, but the reader will see below (equation (9)) how relevant this formulation might be.
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Figure 6. Revised calculation of S[CO2 ,LI] (a) following the quantification of the point-wise approach I (Spw, this study).
Results based on the ice core data of the last 0.8 Myr and based on the Hönisch data over the last 2.1 Myr (Hönisch et al.,
2009) are compared with previous estimates of von der Heydt et al. (2014) (vdHeydt2014) and of Martínez-Botí et al.
(2015) (M2015). (b and c) PDFs based on the same data, as already contained in Köhler et al. (2015), are plotted,
including the 16th, 50th, and 84th percentile in the “warm” and “cold” data regimes. Vertical broken line in Figure 6a
marks where the PDFs in Figures 6b and 6c distinguish “cold” from “warm” data.

Equation (2), the higher-order polynomial fit of temperature versus forcing, is also valid, if based on absolute
values in T and R, so one might fit in a model-output T versus R scatterplot:

T(= f (R)) = a + bR + cR2 + dR3 +… (7)

Using this approach would imply (using equation (7), here reduced for simplicity to a second-order
polynomial)

Smodel =
b(R1 − R0) + c

(
R2

1 − R2
0

)

R1 − R0
. (8)

Now, if the reference climate {R0; T0} happens to be the preindustrial reference climate (which is not always
the case), we have ΔR1 = R1 − R0; ΔT1 = T1 − T0, then

Smodel =
bΔR1 + cΔR2

1 + 2cR0ΔR1

ΔR1
= (b + 2cR0) + cΔR1 = b′ + cΔR1, (9)

with b′ = (b + 2cR0). Equation (9) is equal to approach I, the point-wise quantification of climate sensitivity
(Spw), but the parameter b′ of the nonlinear regression is depending on the reference climate, in detail the
radiative forcing R0.

More generally, S can be obtained from Slocal, by the following equation:

S = 1
R2 − R1 ∫

R2

R1

Slocal dΔR. (10)

= 1
ΔR2 − ΔR1 ∫

ΔR2

ΔR1

Slocal dΔR, (11)
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with ΔRi = Ri − R0, where Ri stands for either R1 or R2. Equation (11) is generally valid for both model and
data-based approaches and one central finding of our study and agrees in case of the reference climate being
the preindustrial periods with Spw (approach I). In other words, point-wise climate sensitivity is a measure of
the mean local slope climate sensitivity over the radiation perturbation interval.

5. Discussions, Conclusions, and Implications

Following these different approaches explained above and its applications to the data sets investigated in
Köhler et al. (2015), we find the following:

In case no state dependency in S[X] is found the data in the ΔTg − ΔR[X] can be analyzed by linear regres-

sions to derive the slope that is after S[X] = ΔTg

ΔR[X]
an estimate of S[X]. Be aware that approaches that combine

point-wise-derived values of S[X] in a probability density function to a more general number treat all individual
data points with the same weight, while data far away from the origin get a higher weight in linear regression
analysis using OLS.

If state dependency of (specific) equilibrium climate sensitivity is found one has to be careful when quan-
tifying equilibrium climate sensitivity S[X]. The results based on local slopes are not directly comparable to
estimates based on models or point-wise calculations; they can however be transferred into each other: The
results based on local slopes transfer in results based on models or on the point-wise analysis by calculating
the integral over the radiation perturbation interval following equation (11), which is one main finding of
our study.

The local slope and point-wise approaches are not the same, in particular, when the function is strongly non-
linear, because the point-wise approach constructs lines between different points on a function independent
of how far they are separated. The local slope approach instead constructs tangents along the function and
does not need a reference point. As long as one analyses a regime of data where there exists a reasonable func-
tional dependence between ΔR[X] and ΔTg, the point-wise approach is probably more practical. But if there
is a regime shift hidden in the data, which we (by uncertainties) overlook and interpret as strongly nonlinear
polynomial, then the point-wise approach gives incorrect estimates of S[X].

Taken at face value, the more sophisticated quantification of S[CO2 ,LI] as a function of radiative forcing pertur-
bation ΔR[CO2 ,LI] obtained here from the data sets described in Köhler et al. (2015) leads to numbers, which
are by a factor of about 2 to 2.7 higher during climate conditions representing interglacials of the Pleistocene
(last 2.1 Myr) than during full glacials during this period (Figure 6). The higher number for warmer climates
are qualitatively also supported by a recent study, in which output from 785 kyr of climate simulations have
been analyzed in a similar manner (Friedrich et al., 2016), although in that study S[GHG,LI,AE] and S[GHG,LI,AE,VG]
have been quantified.

A previous approach based on first-order local slopes (von der Heydt et al., 2014) already suggested higher
S[CO2 ,LI] during interglacials than during glacials for data of the last 800 kyr, though only by 40%, while other
approaches (Martínez-Botí et al., 2015) did not consider state dependency within the data set covering the last
800 kyr. These previous results agree more with the results we obtain for full glacial conditions. This might be
the case, because linear regressions might not be forced through the origin. When comparing results based
on PDFs with the other approaches (as done in Figure 9 in Köhler et al. (2015)) the difference might also be
explained because in linear regressions data points farther away from the origin get a higher weight. The
reason of this cold bias is not necessarily caused by the fact that most data are available for cold climates, as
data may be binned, which has been tested in von der Heydt et al. (2014) and Köhler et al. (2015).

Interglacial climate conditions (ΔR[CO2 ,LI] ∼ 0 W m−2, Figure 6) have a specific equilibrium climate sensitivity
S[CO2 ,LI] between 2.0 K W−1 m2 (data of the last 2.1 Myr based on Hönisch-lab CO2-proxies) and 2.7 K W−1 m2

(ice core CO2 data of the last 800 kyr). However, since both data sets investigated here mainly sample colder
than present climates, these quantifications of S[CO2 ,LI] during interglacials are situated at the higher end of the
covered data range and might be taken with caution. They are clearly at the upper end of ranges of S[CO2 ,LI]

reported so far from various data sets of the last 65 Myr, for example, in PALAEOSENS-Project Members (2012),
Figure 3, the 95% probability in S[CO2 ,LI] ranged from 0.48 to 1.91 K W−1 m2. Transferring these results based
on data of the last Pleistocene to the near future remains difficult, since these paleodata cover mainly condi-
tions with negative radiative forcing anomaly, while for the future positive radiative forcing anomalies related
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to a rise in CO2 are of interest, which obstructs a comparison as we showed that S[CO2 ,LI] depends on ΔR[CO2 ,LI].
Furthermore, S[CO2 ,LI] needs to be corrected by factors related to fast and slow feedbacks to derive Sa, the actual
or Charney climate sensitivity, which is via the multiplication with the radiative forcing of a CO2 doubling
(ΔR2xCO2

= 3.7 W m−2) directly related to corresponding warming, ΔT2×CO2
, that is also constrained with cli-

mate models (see equation (2) in PALAEOSENS-Project Members, 2012). Corrections for not considered slow
processes, including one for land ice sheet albedo which we included here, would have been necessary (but
has not been considered) in Snyder (2016) who estimatedΔT2×CO2

based solely on the GHG forcing during the
period 100–700 kyr BP. Snyder (2016) found the median of S[GHG] to vary between 1.8 and 2.8 K W−1 m2 and,
including the uncertainties, translated these values into a 95% confidence interval of ΔT2×CO2

of 7–13 K. The
ommision of the necessary corrections of S[GHG] led to values in ΔT2×CO2

which are significantly higher than
in other approaches, while the values of the underlying S[GHG] agreed with values found by others, for exam-
ple, in PALAEOSENS-Project Members (2012) S[GHG] of 2.32 ± 0.76 (1𝜎) K W−1 m2 of the last 800 kyr has been
found. This overestimation of global warming in Snyder (2016) has already been discussed in Schmidt et al.
(2017) and highlights that like-with-like comparisions, for example, with S[X] found in other studies, are proba-
bly a robust approach, while during a transition to ΔT2×CO2

both corrections for unconsidered slow feedbacks
and the potential state-dependent character of S[X] need to be considered with care to avoid overestima-
tions. However, we like to emphasize again (as done already in Snyder (2017)) that the approach to calculate
S[X] based on paleodata defined in PALAEOSENS-Project Members (2012) and used in Snyder (2016) and here
does not test causation. Those processes considered as “forcing,” such as land ice albedo and CO2 radiative
forcing in S[CO2 ,LI], are typically those for which paleodata exist, and not those which are believed to be respon-
sible for the paleoclimate changes. Because causation was not suggested by the different setups, 10 different
permutation of S[X] have been calculated in PALAEOSENS-Project Members (2012).

Especially due to the state-dependent character of S[X] necessary corrections for other slow feedbacks and
a detailed calculation of Sa based on S[CO2 ,LI] are not readily available for ΔR[CO2 ,LI] = 0 W m−2. Therefore, a
detailed calculation of Sa is beyond the scope of this study. Nevertheless, this paleodata-based analysis sug-
gests that the equilibrium climate sensitivity for present-day is more at the high end with respect to reported
values in the IPCC AR5 report (e.g., Thematic Focus Element 6 in Stocker et al., 2013). Other paleostudies apply-
ing climate models of different complexity to various different climate background states, which have been up
to 16 K warmer than the preindustrial climate, also found a state dependency in S[CO2 ,LI] with mean numbers
ranging from 0.6 to 1.6 K W−1 m2 (von der Heydt et al., 2016).
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