EMS Annual Meeting Dublin, Ireland, 4th to 8th of September 2017

Tido Semmler, Thomas Jung, Marta A. Kasper, Soumia Serrar

Using NWP to assess the influence of the Arctic atmosphere on mid-latitude weather and climate

Questions

- By how much could weather forecasts in the Northern mid-latitudes be improved if we had perfect knowledge of the Arctic?
- How can Arctic conditions influence northern midlatitudes in a climatological sense?
- Under which large-scale circulation conditions is the influence strongest?

Composites

Fig. 5: Z500 difference (m) between composites for *improved and neutral forecasts* with Arctic relaxation for Northern Asia (green box) considering forecast lead times 1 to 7 days. Stippled areas

Method

- IFS experiments started on the 1st and 15th of each month from 1979 to 2012 without and with relaxation towards ERA-Interim applied from 75 N to 90 N
- 204 start points for each season
- Error reduction due to relaxation evaluated

Averaged root mean square error (RMSE) reduction Z500

Fig. 1: RMSE reduction (%) of Z500 forecasts due to Arctic relaxation.

Forecast error reduction relatively little over mid-

T2M winter

indicate areas significant according to a Wilcoxon test.

Strongest forecast

improvement over northern Asia in situations with northerly flow anomalies – especially in winter (in summer hardly visible).

Fig. 6: 2 m temperature difference (K) between composites for improved and neutral forecasts (with respect to Z500) with Arctic relaxation for Northern Asia (green box) in winter considering forecast lead times 1 to 7 days.

Cold anomalies up to 3 K over north-western Asia, eastern and Central Europe

lead time

Fig. 2: Climatological Z500 (*m*) from ERA-Interim by season

North component over land South component over sea

Fig. 3: RMSE reduction (%) of Z500 depending on the forecast lead time

Strongest reduction in winter and autumn

Fig. 4: RMSE reduction (%) of 2 m temperature depending on the forecast

Generally similar picture close to the surface and in mid-troposphere

such events in model?

• No trend in Arctic influence over the investigated 34 years

References:

• Semmler, T., T. Jung, M. A. Kasper, and S. Serrar (2017): Using NWP to assess the influence of the Arctic atmosphere on mid-latitude weather and climate. Advances in Atmospheric Sciences, doi: 10.1007/s00376-017-6290-4

• Jung, T., M. A. Kasper, T. Semmler, and S. Serrar (2014): Arctic influence on subseasonal mid-latitude prediction. Geophysical Research Letters, doi: 10.1002/2014GL059961

570 Bremerhave