Snapshot of Carbon Distribution and Degradation in Arctic Valleys

Justine Ramage Anne Morgenstern Gustaf Hugelius Daniel Fortier Hugues Lantuit

Carbon stocks in the Arctic

Soil organic carbon storage in northern permafrost region: 999 Pg (0-3 m)

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., ... & O'Donnell, J. A. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. *Biogeosciences*, *11*(23), 6573-6593.

14.12.2017 Arctic Change 2017

Carbon stocks in the Arctic

Soil organic carbon storage in northern permafrost region: 999 Pg (0-3 m)

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., ... & O'Donnell, J. A. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. *Biogeosciences*, *11*(23), 6573-6593.

14.12.2017 Arctic Change 2017

Hillslope processes

In nonegal and a second and a second and

14.12.2017 Arctic Change 2017

Hillslope processes

14.12.2017 Arctic Change 2017

Hillslope processes

ananan a

Erosion

Accumulation

No. of Street of Street

- Thermal perturbation
- Localized disturbances: solifluction, active layer detachments, thaw slumps

Hillslope thermokarst

4.9%

of the northern circumpolar permafrost region

6.2% of SOC storage

Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., ... & Turetsky, M. R. (2016). Circumpolar distribution and carbon storage of thermokarst landscapes. *Nature communications*, *7*.

14.12.2017 Arctic Change 2017

Research Question

WHAT IS THE IMPACT OF HILLSLOPE PROCESSES ON CARBON STORAGE IN VALLEYS?

14.12.2017 Arctic Change 2017

Study Area

14.12.2017 Arctic Change 2017

Origin and Geomorphology

Watershed:	140 ha	77.5 ha	61.8 ha
Stream length:	2.5 km	1.4 km	0.9 km
Elevation:	81 to 5 m	68 to 4 m	55 to 5 m

14.12.2017 Arctic Change 2017

Soil pits: active layer & Sampling permafrost Scheme Upland Slopes Mid Foot **Bottom** Transect 1 X Upstream Transect 2 Transect 3 X X Downstream

14.12.2017 Arctic Change 2017

Soil pits: active layer & Sampling permafrost Scheme Upland Slopes Mid Foot **Bottom** Transect 1 X Upstream Transect 2 Transect 3 X X Downstream

14.12.2017 Arctic Change 2017

Transects

Transect 1: Upper valley

Sampling Scheme

1

14.12.2017 Arctic Change 2017

Sampling Scheme

Transects

Transect 2: Middle valley

14.12.2017 Arctic Change 2017

Sampling Scheme

Transects

Transect 3: Lower valley

14.12.2017 Arctic Change 2017

14.12.2017 Arctic Change 2017

Results

	ALD mean	SOC mean	TN mean	C:N mean
	(cm)	(kg C m ²)	(kg N m ²)	
Bottom	41.2 ± 9.3	33.8 ± 9.1	2.5 ± 0.8	14.1 ± 2.1
Footslope	94.5 ± 11.0	18.5 ± 6.3	1.9 ± 0.7	11.0 ± 1.5
Midslope	57.6 ± 17.7	25.3 ± 10.4	2.2 ± 0.6	11.8 ± 1.5
Upland	41.1 ± 8.8	27.1 ± 6.3	2.1 ± 0.4	13.9 ± 2.2

** p < 0.05

14.12.2017 Arctic Change 2017

	ALD mean	TOC mean	TN mean	C:N moon	** p <
	(cm)	(kg C m ²)	(kg N m ²)	C.N mean	
Downstream	58.5±22.6	25.1±10.3	2.1±0.7	12.5±2.5	
Mid-stream	51.6±19.7	26.3±8.8	2.2±0.5	12.6±1.9	
Upstream	38.7±6.0	30.2±4.0	2.2±0.3	14.9±1.6	

* p < 0.05

14.12.2017 Arctic Change 2017

Results

Valley

position

East West

	Slop	e
or	ientat	tion

Results

	SOC mean kg m²	TN mean kg m²	C:N mean	** p < 0.05
East	30.6 ± 6.7	2.3 ± 0.6	14.3 ± 0.7	-
West	26.7 ± 3.3	2.1 ± 0.2	13.5 ± 0.2	

14.12.2017 Arctic Change 2017

Acknowledgments

Thanks! Merci

BIG THANK TO MY COLLEAGUES WHO HELPED ME DIG ALL SOIL PROFILES MANUALLY IN 2015! Jan Kahl Samuel Stettner George Tanski Anna Irrgang Hugues Lantuit Gustaf Huguelius Saskia Ruttor Isabel Eischeid

14.12.2017 Arctic Change 2017