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ABSTRACT

Sea surface temperature (SST) data from the Copernicus Marine Environment Monitoring Service are

assimilated into a pan-Arctic ice–ocean coupled model using the ensemble-based local singular evolutive

interpolated Kalman (LSEIK) filter. This study found that the SST deviation between model hindcasts and

independent SST observations is reduced by the assimilation. Compared with model results without data

assimilation, the deviation between the model hindcasts and independent SST observations has decreased by

up to 0.28C at the end of summer. The strongest SST improvements are located in the Greenland Sea, the

Beaufort Sea, and the Canadian Arctic Archipelago. The SST assimilation also changes the sea ice concen-

tration (SIC). Improvements of the ice concentrations are found in the Canadian Arctic Archipelago, the

Beaufort Sea, and the central Arctic basin, while negative effects occur in the west area of the eastern Siberian

Sea and the Laptev Sea. Also, sea ice thickness (SIT) benefits from ensemble SST assimilation. A comparison

with upward-looking sonar observations reveals that hindcasts of SIT are improved in the Beaufort Sea by

assimilating reliable SST observations into light ice areas. This study illustrates the advantages of assimilating

SST observations into an ice–ocean coupledmodel system and suggests that SST assimilation can improve SIT

hindcasts regionally during the melting season.

1. Introduction

The Arctic climate has undergone a rapid change

during the last 30 years. The observed summer sea ice

extent decreased at a rate of 13%decade21 from 1979

to 2014. In 2012 the new record September Arctic min-

imum sea ice extent appeared, in which the ice extent

reduced by 49% relative to the 1979–2000 September

climatology (Overland and Wang 2013). Along with

evidence of the reduction in sea ice extent, sea ice

drilling observations also revealed a large decline in the

thickness of multiyear sea ice, even though ice thickness

measurements are difficult to take. The intense thickness

decline of multiyear sea ice was observed over the last

9 years (Overland and Wang 2013). As the summer sea

ice retreats, the Arctic Ocean is providing new oppor-

tunities for scientific research and commercial naviga-

tion. TheArctic marine environmental forecasts (sea ice,

ocean and atmosphere) are therefore urgently needed to

well manage the opportunities (Jung et al. 2016).

As an essential part to reduce the uncertainties asso-

ciated with the initial states and external forcing, data

assimilation methods have been widely involved in

forecasting systems to improve forecasting accuracy.

Many studies have shown the advantages of assimilating

ocean data into ocean models to improve the ocean

prediction skills (Brusdal et al. 2003; Brasseur et al. 2005;

Stanev et al. 2011). Brusdal et al. (2003) assimilatedCorresponding author: Xi Liang, liangx@nmefc.gov.cn
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sea level anomaly (SLA) and SST data into a nonlinear

Miami Isopycnic Coordinate Ocean Model in the North

Atlantic by using three ensemble Kalman filters. They

found that all the hindcasts of sea level anomaly,

SST, sea salinity fields, subsurface temperature, the

thickness of the isopycnic layers, and velocity fields

were improved. Using the singular extended evolutive

Kalman (Brasseur et al. 1998) filter analysis method, a

multivariate set of observations (along-track altimetry,

in situ temperature, salinity profile data, and SSTs)

was assimilated into a first prototype eddy-permitting

North Atlantic configuration of the Nucleus for Euro-

pean Modelling of the Ocean (Madec et al. 1998)

primitive equation model. The assimilation resulted in

an improvement of the temperature at all depths, ther-

mocline, and annual mean surface current, especially in

the Gulf of Mexico and the Caribbean Sea (Brasseur

et al. 2005). Stanev et al. (2011) assimilated surface

current and SST data from stationary stations, a high-

frequency radar system, a FerryBox system (Petersen

et al. 2011), and satellites into a 3D hydrodynamicmodel

in the coastal area of the German Bight. The assimila-

tion substantially improved modeled SST, sea surface

salinity, and surface current fields not only in the vicinity

of the ferry track but also over larger model areas.

Other studies also have shown the advantages of as-

similating ice data into ice–ocean models to improve the

ice prediction capabilities (Lisæter et al. 2003, 2007;

Tietsche et al. 2013; Yang et al. 2014, 2015). Lisæter et al.
(2003) assimilated ice concentration data into a coupled

ice–ocean model by ensemble Kalman filter (EnKF;

Evensen 1994); it was found that ice concentration im-

provements appeared in the ice edge areas in summer.

Lisæter et al. (2007) assimilated CryoSat ice thickness

measurements into a coupled Arctic ice–ocean model

with the EnKF. The results show that surface properties

of the ocean, such as ocean salinity, surface temperature,

and ice concentration fields, can benefit from the ice

thickness assimilation if reasonably configured stochas-

tic wind forcing is used. Tietsche et al. (2013) illustrated

that assimilation of ice concentration can improve the

ice thickness simulation in a global climate model. Yang

et al. (2015) assimilated summer sea ice concentration

(SIC) data into a coupled ice–oceanmodel with the local

singular evolutive interpolated Kalman (LSEIK) filter.

The assimilation resulted in an improvement of the sea

ice edge, concentration, and thickness forecasts.

However, only a few studies investigated the influence

of assimilating ocean data on the coupled ice–ocean

model system, especially the simulation of sea ice. A

multivariate set of observations (SLA, SST, in situ

temperature and salinity, ice concentration, ice drift)

was assimilated into the Norwegian Tunable Optical

Profiler for Aerosol and Ozone (TOPAZ) forecasting

system (Sakov et al. 2012). Noticeable improvements

were found for ice extents, ice thickness, salinity in

the Arctic, and temperature in the Fram Strait, but the

paper did not examine the effects of ocean data assim-

ilation on the simulation of sea ice.

To forecast the Arctic Ocean environment, aiming at

an operational implementation of a reliable ice–ocean

forecasting system, a pan-Arctic ice–ocean coupled

model system was established two years ago at the

National Marine Environmental Forecasting Center.

The system is based on the Regional Ocean Modeling

System (ROMS; Shchepetkin and McWilliams 2003,

2005; Moore et al. 2004) but does not include a data

assimilation module. Recently, a data assimilation

module based on the Parallel Data Assimilation

Framework (PDAF; Nerger and Hiller 2013) using the

ensemble-based local SEIK filter was developed for the

pan-Arctic ice–ocean coupled model system. Here we

report on the assimilation of satellite SST observations

into the pan-Arctic ice–ocean model system in a hind-

cast mode for the period of May–September 2014.

An ensemble of only fourmembers is used. The analysis

of the assimilation experiment shows that, despite the

very small ensemble size, a substantial improvement of

the modeled SST can be obtained. The effects of the

SST assimilation on ice concentration and thickness will

be presented in our study.

The rest of this paper is organized as follows. Section 2

provides a description of the model configuration, the

data assimilation, and the experiment design. In section 3

we will assess the model results without and with data

assimilation. A summary and conclusions will be given in

section 4.

2. Model configuration, data assimilation, and
experiment design

a. Pan-Arctic ice–ocean coupled model

The Arctic ice–ocean coupled model system is based

on ROMS. ROMS is a widely used, free-surface, terrain-

following primitive equation ocean model that was

originally developed at Rutgers University. ROMS has

special advantages for regional- and basin-scale ocean

modeling (Marchesiello et al. 2003; Di Lorenzo 2003;

Budgell 2005). ROMS includes the four separate dy-

namic kernels, which are nonlinear, tangent linear, rep-

resenter tangent linear, and adjoint. Shchepetkin and

McWilliams (2003, 2005) described the algorithms of the

ROMS nonlinear kernel in detail, while Moore et al.

(2004) presented the algorithms of the tangent linear and

adjoint kernels. ROMS also includes several coupled

1986 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 34



model components for biogeochemical, sediment, bi-

ological, and sea ice simulations. The sea ice component

of ROMS is a combination of the elastic–viscous–plastic

(EVP) rheology (Hunke and Dukowicz 1997; Hunke

2001) and simple one-layer ice and snow thermody-

namics with a molecular sublayer under the ice (Mellor

and Kantha 1989). The dynamics and thermodynamics

of the coupled sea ice component are described in

Budgell (2005).

In our application, the Arctic ice–ocean coupled

model system uses the nonlinear kernel and the sea ice

model component of ROMS. For the Arctic model

configuration, polar stereographic coordinates are used.

The nonlinear kernel and the sea ice model have the

same horizontal grids with 1159 3 999 grid points, a

maximum grid distance of 6.22 km, and a minimum grid

distance of 4.23 km. The system uses 30 vertical layers

of the nonlinear kernel with stretched terrain-following

coordinates (Song and Haidvogel 1994). The topo-

graphical data are from International Bathymetric

Chart of the Arctic Ocean, version 2.23, which has a

horizontal resolution of 2 km and was interpolated onto

the model grid (Fig. 1). The Mellor–Yamada level 2.5

parameterization (Mellor and Yamada 1982) is chosen

as the vertical mixing scheme, althoughK-profile (Large

et al. 1994) and generic length scale parameterizations

(Umlauf and Burchard 2003) are optional.

The initial ocean fields are extracted from the 1988–2007

averaged annual mean value of the Simple Ocean Data

Assimilation, version 2.2.0 (SODA 2.2.0; Giese and Ray

2011). The ocean open boundary condition is extracted

from the 1988–2007 averaged monthly mean value of

SODA 2.2.0. The atmospheric external forcing, which is

used to spin up themodel, is extracted from the 1994–2013

averaged monthly mean value of the National Centers

for Environmental Prediction Reanalysis-2 (NCEP–DOE

AMIP-II Reanalysis; Kanamitsu et al. 2002). From

1 January 2014 on, the model is forced by the 0.58-
resolution daily atmospheric forecast forcing data from

the Global Forecast System (GFS; Kanamitsu 1989) to

ensure more realistic atmospheric forecast forcing during

the data assimilation experiment. The runoff data of six

large rivers in the Arctic come from the monthly mean

value of the Arctic Great Rivers Observatory (Peterson

et al. 2002) dataset.

The initial SIC field is from the 25-km Special Sensor

Microwave Imager (SSM/I) F15 dataset (Wentz and

Meissner 2000). SSM/I F-15 is a near-polar-orbiting

passive microwave radiometer that has been carried

onboard the Defense Meteorological Satellite Program

satellite since December 1999. The initial sea ice thick-

ness (SIT) field is from the Global Ice–Ocean Modeling

and Assimilation System dataset (Zhang and Rothrock

2003). The landfast ice is initialized with data from

the National Snow and Ice Data Center (Konig

Beatty 2012).

b. Ensemble data assimilation

In ensemble data assimilation methods, an ensemble

of model state realizations is used to represent possible

model evolution trajectories, which include the un-

certainty of the model state. This uncertainty can be due

to different errors, for example, generated by inaccurate

observations, coarse external forcing, and relatively

simple parameterizations. All ensemble states are in-

tegrated by the model in the so-called forecast phase.

These forecasts then represent a statistical sampling

of the uncertainty in the forecast model state. The

ensemble mean and ensemble covariance matrix are

then used in the analysis step where the observations are

assimilated. The statistics of the ensemble are diagnosed

to verify the assimilation reliability (Candille et al. 2007;

Rodwell et al. 2016). The computing cost of the data

assimilation process is usually determined by the cost

of integrating the ensemble states using the model.

Thus, while increasing the ensemble size will improve the

error estimates, it will also enlarge the computing cost

and thus lead to decreasing forecast efficiency. In practice

only ensembles of order 10–100 are feasible to compute.

To allow for a stable data assimilation process with

ensembles that are very small compared to the number

of grid points in a model, a localization of the filter

analysis is used. The localization is obtained by separately

updating each single water column using only observa-

tions within a specified influence radius around each

water column. In addition, the observational influence is

weighted according to the distance of an observation

from the surface grid point that is updated (see, e.g., Losa

et al. 2012, 2014).

In this study, the LSEIK filter (Nerger et al. 2006) as

implemented in PDAF (http://pdaf.awi.de; Nerger and

Hiller 2013) is used. PDAF is a software environment

for ensemble data assimilation that was developed at

the Alfred Wegener Institute in Germany. It contains

fully implemented and optimized data assimilation

algorithms, in particular ensemble-based Kalman filters.

For the data assimilation, a state vector is defined that

is composed of SST, SIC, and SIT. Thus, only these

three variables are directly modified in the analysis

step. During the following forecast phase, other model

variables will react dynamically to the changes in the

variables contained in the state vector.

The data assimilation experiment begins 1 May 2014

with an ensemble of four model states generated from

second-order exact sampling (Pham 2001) from a model

trajectory. For this procedure, daily snapshots for the
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three model variables (SST, SIC, SIT) are stored as

columns of a matrix for the period 1 May–31 July 2014

from the experiment without data assimilation. After

subtracting the mean of these states, a singular value

decomposition is computed. The leading four modes

of the singular value decomposition are then used to

generate ensemble members of the initial fields by

multiplying them with a random matrix that preserves

the mean and covariance contained in the models. With

this ensemble generation method, the ensemble mem-

bers represent possible ocean states, the ensemble mean

represents the best estimate, and the ensemble spread

represents the uncertainty that arises from model

variability.

At the initial time and after each ensemble forecast of

24 h, an analysis step is computed in which the ensemble

members are used to assimilate the observational SST

data with the LSEIK filter to generate new ensemble

members. On each model grid point, the localization

radius is set to 12 grid points, corresponding to ap-

proximately 50 km. Within the localization radius, all

observations are weighted exponentially according to

their distance to the analyzed grid point.

In the ensemble forecasts, each ensemble member is

integrated over 24 h using ROMS driven by all forcings,

such as atmospheric forcing, ocean open boundary

condition, and river runoff.

c. Observational data

The SST observations, which are assimilated, are

from the Arctic Ocean High Resolution Sea Surface

Temperature Analysis from the Copernicus Marine

Environment Monitoring Service (product SST_ARC_

SST_L4_NRT_OBSERVATIONS_010_008_b, available

from http://marine.copernicus.eu). The dataset provides

near-real-time daily satellite gap-free Level-4 sea surface

temperature. The SST data are derived from infrared and

microwave radiometers, and have a horizontal resolution

FIG. 1. Topography of the model domain (m) and position of the BGEP ULS: A: BGEP_uls13a

(74.998N,149.988W),B:BGEP_uls13b (77.998N,150.068W),andC:BGEP_uls13c (73.998N,139.958W).
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of 0.038 3 0.038. The dataset also provides estimated error

standard deviations of the SST. It is a state-of-the-art

Arctic SST product for operational implementation. For

the experiment performed here, the SST observations are

interpolated onto the model grid. For the data assimila-

tion, the error of the SST data is approximated as a con-

stant error of 0.78C. This error estimate contains not only

the measurement error but also representation errors, for

example, as a result of the different resolutions of the data

product and the model grid.

For the validation of the experiments, independent SST

data from the Real-Time Global Sea Surface Tempera-

ture High-Resolution (RTG_SST_HR) analysis from the

Marine Modeling and Analysis Branch in NCEP (avail-

able from ftp://polar.ncep.noaa.gov/pub/sst/rtg_high_res)

are used. The daily RTG_SST_HR product is produced

on a 0.0838 3 0.0838 grid with a two-dimensional varia-

tional interpolation analysis of the most recent 24h of

buoy and ship data, satellite-retrieved SST data, and

SST derived from the satellite-observed sea ice coverage.

The Arctic section of RTG_SST_HR data are extracted

and used for comparison in our experiment.

To evaluate the effect of the data assimilation on

the SIC, observations of SIC from the near-real-time

daily Advanced Microwave Scanning Radiometer 2

(AMSR2) provided by the Institute of Environmental

Physics, University of Bremen (available from http://

www.iup.uni-bremen.de:8084/amsr2data/asi_daygrid_

swath/n6250/), are used. The AMSR2 on board the

Global Change Observation Mission–Water satellite

was launched on 18 May 2012 and daily SIC maps

are available from 26 January 2013.

The effect of the data assimilation on the SIT is

assessed using SIT observations at three positions in

the Beaufort Gyre (BG) from the Beaufort Gyre

Exploration Project (BGEP). The thickness is mea-

sured by an upward-looking sonar (ULS) that is

mounted in the uppermost mooring floatation. The

ULS samples the ice draft with a precision of60.3m in

ice thickness. Drafts are converted to thickness by

multiplying a factor of 1.1 (Nguyen et al. 2011). Data

from three moorings are used whose locations are

shown in Fig. 1: BGEP_uls13a is moored at 74.998N,

149.988W to sample ice thickness from 14 August 2013

to 30 September 2014 with a sampling interval of 2 s;

BGEP_uls13b is moored at 77.998N, 150.068W to

sample ice thickness from 21 August 2013 to 7 October

2014; and BGEP_uls13c is moored at 73.998N,

139.958W to sample ice draft from 9 August 2013 to

26 September 2014. Daily SIT data from the three

ULSs are used in the experiments to validate the SIT

(the data are available from the BGEP website, http://

www.whoi.edu/website/beaufortgyre/data).

d. Experiment design

A schematic of the experiment design is shown in

Fig. 2. From the initial ocean field, the pan-Arctic ice–

ocean coupled model system has been integrated for

20 model years forced by NCEP–DOE AMIP-II Re-

analysis atmospheric data. After this spinup period, the

system reaches a relatively stable state. Starting on

1 January 2014, the monthly NCEP–DOE AMIP-II

Reanalysis atmospheric forcing is replaced by GFS

daily atmospheric forcing. The simulation is then

continued until 30 September 2014. This hindcast

experiment without data assimilation is referred to as

Ex_NoDA.

Ex_EnDA begins on 1 May 2014. Starting from the

initial ensemble, alternating analysis steps and 24-h

ensemble forecasts are performed every day until

30 Sep 2014.

The simulation results of the two experiments are

analyzed for the period from 1 May to 30 September

2014 with the independent SST, AMSR2 SIC, and

BGEP SIT data to discuss the effect of the SST assimi-

lation on the Arctic model hindcasts.

3. Results

a. SST

To assess the experiments, the model fields at

three dates—20 June, 10 August, and 30 September

2014, thus after the spin up of the data assimilation

process—are examined. Figure 3 shows the modeled

SST and the absolute value of the deviation between

the modeled SST and independent NCEP SST data on

20 June 2014. The SST deviation in heavy ice-covered

areas with AMSR2 SIC larger than 80% is not shown

in the figure because satellite-retrieved SST data have

large errors in these areas. In Ex_NoDA, the SST

deviates from the NCEP SST data by about 58C in

the northern coastal regions of the European–Asian

continent. Another large deviation of up to 48C is

visible along the eastern coast of Greenland. The

large deviations close to the coasts of more than 48–58C
result from when the model grid is covered by sea ice

but the observation is in open water. In the Greenland

Sea, the SST deviation in the western basin is larger

than that in the eastern basin. In the Barents Sea, the

SST deviation is generally larger than 1.58C with a

maximum of 3.58C. Over the whole model domain,

the root-mean-square error (RMSE) between the SST

from Ex_NoDA and NCEP SST data is 2.318C
(Fig. 3a). With the data assimilation in Ex_EnDA, the

cycling of forecasts and analyses improves the mod-

eled SST field. In the ensemble forecast on 20 June
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2014, the RMSE is reduced by 0.058C (Fig. 3b). The

LSEIK analysis step further corrects the SST field,

reducing the RMSE between the SST analysis field and

the NCEP SST data by another 0.068C (Fig. 3c).

The difference in the deviation plots from Ex_NoDA

and Ex_EnDA in Fig. 3d shows the improvement of

the SST field as a result of the data assimilation.

Positive values depict an improvement, while negative

values show that the SST is deteriorated. The data

assimilation improves the SST by up to 0.58C in the

central areas of the Greenland Sea. In other sectors

of the Arctic Ocean, SST is also improved by more

than 28C. However, there are also regions where the

data assimilation deteriorates the SST, such as south

of Svalbard, at the eastern edge of the ice on the east

coast of Greenland, and in the northern part of

Baffin Bay.

Figure 4 shows the modeled SST and the absolute

deviation of SST on 10 August 2014. Compared to

20 June, the area with SICs of less than 80% has

significantly increased. The RMSE in the modeled SST

from Ex_NoDA has increased to 2.848C in the middle of

the summer. Figure 4a shows that SST deviations of

more than 48C appear in the Chukchi Sea, the western

East Siberian Sea, the Laptev Sea, the central Barents

Sea, and the western Greenland Sea. The deviation in

the Pacific sector is generally larger than that in the

Atlantic sector. Compared to Ex_NoDA, the data as-

similation reduces the RMSE in the 24-h forecasts by

0.068C (Fig. 4b) and the analysis by 0.18C (Fig. 4c). The

largest SST improvements appear in the northern

Greenland Sea and the Beaufort Sea (Fig. 4d).

Deteriorations of the SST field are still visible in Baffin

Bay and the region south of Svalbard.

Figure 5 shows themodeled SST and the absolute SST

deviation on 30 September 2014. The errors in the SST

field of Ex_NoDA shrink at the end of the summer, and

theRMSE is reduced to 2.048C.Deviations of more than

38C appear now in the Beaufort Sea, the central East

Siberian Sea, and the southern Barents Sea (Fig. 5a).

Because of the ensemble data assimilation, the SST

RMSE is reduced by 0.068C in the forecast field

(Fig. 5b), while the SST analysis reduces the RMSE by

0.138C (Fig. 5c). The largest SST improvements appear

in the Beaufort Sea and the eastern Greenland Sea

(Fig. 5d). At this time only small deteriorations of the

SST are visible. They are mainly located in Baffin Bay,

while the deterioration south of Svalbard is significantly

reduced compared to the earlier dates.

Figure 6 compares the time evolution of RMSE

between NCEP SST data and the modeled SST with

and without data assimilation. The RMSEs are aver-

aged over the full model domain excluding the areas

with SIC larger than 80%. The SST from Ex_NoDA

shows a large deviation from the NCEP SST data in the

middle of summer, reaching amaximum of 3.48C around

19 July 2014. The deviation is smaller in spring and

in late summer. The minimum RMSE of 1.78C appears

FIG. 2. Schematic of the experiments.
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FIG. 3. Absolute deviation (8C) between modeled SST and NCEP SST data: (a) Ex_NoDA,

(b) Ex_EnDA24-h forecast, (c) Ex_EnDAanalysis, (d) Data assimilation improvement [(a) minus

(c)]. Modeled SST (8C): (e) Ex_NoDA and (f) Ex_EnDA analysis on 20 Jun 2014. Coverage of the

heavy ice cover with AMSR2 SIC larger than 80% is reduced, giving more space to see the data

assimilation influence.
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FIG. 4. As in Fig. 3, but for 10 Aug 2014.
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FIG. 5. As in Fig. 3, but for 30 Sep 2014.
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around 18 May 2014. The Ex_EnDA SST shows smaller

deviations from theNCEP SST data than the Ex_NoDA

SST. The RMSE difference of both experiments is

smaller in the middle of the summer than in spring and

late summer. The data assimilation reduces the RMSE

by up to 0.28C compared to Ex_NoDA. During each

forecast phase, the error in the SST field increases but

remains below the error of Ex_NoDA. At each analysis

step, the data assimilation system merges the observa-

tional SST information into the model trajectory and

reduces the RMSE.

Ex_EnDA begins at 1 May 2014, modeled SST is

updated after assimilating the SST observations, and the

differences between Ex_EnDA SST and Ex_NoDA

SST on 1 May 2014 can be seen as a perturbation.

During the following forecast step, this perturbation is

suppressed by the energy from the subsurface layer.

After 5May 2014, Ex_EnDA reaches a dynamic balance

between the SST assimilation effects and upper-ocean

thermodynamics. The conflict trends before 5 May 2014

come from a spinup process as a result of suddenly

assimilating SST into the model system.

b. Sea ice concentration

To assess the influence of the data assimilation on

the SIC, the same three dates are chosen as for the SST.

The SIC is updated by the data assimilation through the

cross covariances between SST and SIC, which are es-

timated by the ensemble. The difference between the

modeled SIC fields from AMSR2 observations are

shown in Fig. 7. The first and second columns show the

differences for Ex_noDA and Ex_DA, respectively.

The third column shows the difference of the absolute

values of the two first columns, which can be interpreted

as the improvement by the assimilation. Thus, the as-

similation reduced the deviation from the observation

for positive values and negative values indicate de-

teriorations. Generally, the modeled SIC shows a wider

sea ice extent than the AMSR2 sea ice observations on

all three dates. This difference represents a model bias,

which is visible as red areas in the difference plots in

the left and middle columns of Fig. 7. This bias is only

partially corrected by the data assimilation. The third

column shows that, as another general feature, the

changes by the data assimilation increase during the

course of the assimilation experiment.

Figure 7a shows the difference between Ex_NoDA

and the AMSR2 SIC observation on 20 June 2014.

The model bias results in concentration deviations of

more than 30% in the western Greenland Sea, the

northern Barents Sea, the southern Kara Sea, the

Laptev Sea, the Chukchi Sea, the southern Beaufort

Sea, and Baffin Bay. At this date improvements in the

SIC are visible only in small regions close to the coast

(Figs. 7b and 7c) and the RMS deviation is reduced

only from 28.76% to 28.56%. On 10 August 2014,

Ex_NoDA again overestimates the sea ice extent.

More than 30% SIC deviation appears around the

central Arctic ice cap (Fig. 7d). The data assimilation

improved the SIC in the Canadian Arctic Archipelago,

but deteriorated it around the New Siberian Islands

(Fig. 7f). Here, the ensemble estimates of the cross

correlation between SST and SIC appear to be insuf-

ficient to correct the SIC based on the SST correction,

so the spatially averaged RMS deviation is not re-

duced. On 30 September 2014, extended improve-

ments as a result of the data assimilation in Ex_EnDA

are visible around the edge of the Arctic ice cap.

Remarkable SIC improvement is located in the

southern Beaufort Sea and the northern Greenland

Sea. The SIC of the heavy ice region in the central

Beaufort Gyre is also improved (Figs. 7h and 7i).

However, there are also regions in which the SIC

is deteriorated in Ex_EnDA. Overall, the RMS

deviation between the modeled and observed SIC is

reduced from 21.68% to 21.09%.

FIG. 6. Time evolution of RMSE between NCEP SST data (8C) and Ex_NoDA (line),

Ex_EnDA24-h forecasts (triangle), and Ex_EnDA analysis (cross). Areas with AMSR2 SIC

larger than 80% are not taken into account.
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FIG. 7. Deviation (%) between modeled SIC and AMSR2 SIC data. (top) 20 Jun 2014, (middle) 10 Aug 2014, and (bottom) 30 Sep 2014.

(left) Ex_NoDA, (center) Ex_EnDA analysis, (right) improvement (absolute difference: left column minus center column).
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Figure 8 presents the time evolution of RMSE

between the SIC data from AMSR2 and the model

with and without data assimilation. Ex_NoDA shows a

maximum SIC deviation of 31% from the AMSR2

observation around 30 June 2014. By assimilating SST

observations, the SIC is improved before 24 June 2014,

but then it is slightly deteriorated until 10 August 2014.

Overall, the SIC improvement of the domain-averaged

RMSE is not substantial in the Ex_EnDA experiment.

This is partly due to the SIC bias in the model, which is

not corrected by the data assimilation. The influence of

the data assimilation is particularly small at the begin-

ning of the experiment, while the changes in the SST are

relatively large. This situation is related to the very small

ensemble used in the data assimilation experiment. Be-

cause only SST data are assimilated, the SIC is changed

by the data assimilation using the ensemble-estimated

cross correlations between SST and SIC. Because of the

very small ensemble, these cross correlations are small

but also noisy, so the corrections at the analysis step of

the data assimilation process are less systematic. As a

second effect, the SIC reacts to the changed SST through

the model dynamics in the forecast phases.

c. Sea ice thickness

Because of the technical difficulty of SIT satellite

remote sensing, large-scale maps of SIT observations

are currently not available, which especially concerns

the summer season. However, on-site mooring data

obtained from upward-looking sonar can give us some

information about SIT at specific locations. Here, ice

draft data from three ULSs at different positions in the

Beaufort Sea are compared with the modeled SIT with

and without data assimilation (Fig. 9).

The sea ice in the experiment Ex_NoDA at location

A in Fig. 1 is thicker than that of the ULS observation.

The difference is about 0.6m in May and June and

reaches a maximum of about 1.5m on 10 August 2014.

By assimilating the SST observations, the SIT is also

improved. No obvious changes in the SIT appear

before July. This is because the SIC is larger than 80%

in the Beaufort Sea during May and June, so SST

observations are not assimilated into the model fields

of the Beaufort Sea. After 30 June 2014, the SIC is

sufficiently small, so the data assimilation has an effect

in this region; thus, the thickness from Ex_EnDA be-

comes gradually closer to the ULS observation com-

pared to Ex_NoDA (Fig. 9a). A minimum deviation of

about 0.1m is reached at the end of the assimilation

experiment. Similar effects of the data assimilation are

obtained for the two other ULS time series (Figs. 9b

and 9c). For location C, the thickness error is reduced

to zero at the end of the data assimilation experiments.

From Fig. 7, the model has significantly overestimated

SIC in the south Beaufort Sea in relation to Figs. 4

and 5, the SST after assimilating the observations

becomes warmer in this region, and theRMSE between

the modeled SST and the observations reduced signif-

icantly, which means the cold bias can be constrained,

so more warmwater results in the sea ice melting faster.

The thickness at location B is reduced less than at the

position of the two other ULS measurements. This is

likely due to the farther poleward location, so the data

assimilation has a smaller influence compared to the

two other positions.

4. Summary and conclusions

In this paper, satellite SST data are assimilated into a

pan-Arctic ice–ocean coupled model by applying the

ensemble-based LSEIK filter. The data assimilation

reduces the deviation between the modeled SST and

independent SST observations. Compared with model

results without data assimilation, the root-mean-square

error between modeled SST and independent SST

observations has decreased by up to 0.28C at the end

of summer. Remarkable improvements in the SST are

located in the Greenland Sea, the Beaufort Sea, and

FIG. 8. Time evolution of RMSE (%) between AMSR2 SIC data and Ex_NoDA (line) and

Ex_EnDA analysis (cross).
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the Canadian Arctic Archipelago. The effects of SST

assimilation on SIC are not straightforward. SICs are

improved regionally in the Canadian Arctic Archipelago,

the Beaufort Sea, and the central Arctic basin, while

negative influences are found in the western area of the

Eastern Siberian Sea and the Laptev Sea. Further, SIT

benefits from ensemble SST assimilation. The few avail-

able upward-looking sonar observations reveal that the

SIT in the Beaufort Sea was significantly improved by

assimilating reliable SST observations into light ice areas.

Normally, ice temperatures have a stronger impact on SIT

than SIC in a heavy ice region. The SIC and SIT are

improved synchronously at location B in the Canada

Basin as a result of the cross correlations between SST,

SIC, and SIT. At locations A and C, only the SIT

improved, while there is no significant improvement in

SIC, which is partly due to the worsening of the SIC

simulation capability at locations A and C.

Because of the weakness of the basin-scale model in

the coastal sea and a nonoptimized model configuration

in generating ocean mean state, the SST hindcasts

without data assimilation are not ideal. However, after

assimilating SST observations the SST forecasts are

improved. Limited by the computational ability and the

large number of model grid points, the experiments are

conducted only in summer season in the Northern

Hemisphere. Large-scale satellite SITmaps could not be

found for the summertime. This fact limits the further

assessment of the influence of SST assimilation on SIT.

However, the three ULS observation time series in the

FIG. 9. Time evolution of SIT of Ex_NoDA (line), Ex_EnDA analysis (cross), and BGEP

ULS observations (line with triangle) at three positions: (a) 74.998N, 149.988W; (b) 77.998N,

150.068W; and (c) 73.998N, 139.958W. Lines of BGEPULS observations have been smoothed

with bar representing the variability.
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Beaufort Sea show that the SIT is also improved, at least

regionally and periodically.

Future work will focus on enlarging the ensemble of

model states because only four ensemble members will

neglect the many possible effects of the SST data as-

similation. However, the experiments show that the data

assimilation can be applied even with this small ensem-

ble size. This is, perhaps, due to the second-order exact

sampling of the initial ensemble, which includes the

leading modes of uncertainty, and the fact that the data

assimilation is essentially applied as a two-dimensional

problem. Further focus will be on optimizing the model

configuration and assimilating more ice–ocean variables

like SIC, SIT, sea surface level anomaly, and sea surface

salinity into the Arctic ice–ocean model system.
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