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Abstract We present vertically resolved observations of aerosol composition during pristine
summertime Arctic background conditions. The methansulfonic acid (MSA)-to-sulfate ratio peaked near
the surface (mean 0.10), indicating a contribution from ocean-derived biogenic sulfur. Similarly, the organic
aerosol (OA)-to-sulfate ratio increased toward the surface (mean 2.0). Both MSA-to-sulfate and OA-to-sulfate
ratios were significantly correlated with FLEXPART-WRF-predicted air mass residence time over open
water, indicating marine-influenced OA. External mixing of sea salt aerosol from a larger number fraction
of organic, sulfate, and amine-containing particles, together with low wind speeds (median 4.7 m s−1),
suggests a role for secondary organic aerosol formation. Cloud condensation nuclei concentrations were
nearly constant (∼120 cm−3) when the OA fraction was <60% and increased to 350 cm−3 when the organic
fraction was larger and residence times over open water were longer. Our observations illustrate the
importance of marine-influenced OA under Arctic background conditions, which are likely to change as the
Arctic transitions to larger areas of open water.

1. Introduction

The climate impacts of aerosol depend strongly on particle number, size, and chemical composition [e.g.,
Boucher et al., 2013]. In the Arctic, interactions between aerosol, clouds, and climate are complicated by a com-
bination of high surface albedo; the dependence of cloud emissivity on droplet size and aerosol properties
[e.g., Curry, 1995; Lubin and Vogelmann, 2006; Kay and Gettelman, 2009]; and the seasonal cycle in aerosol
concentration, size, and composition [e.g., Shaw, 1995; Quinn et al., 2007; Sharma et al., 2012; Breider et al.,
2014; Croft et al., 2016a]. Aerosol can exert a strong influence on Arctic climate, and changes in anthropogenic
aerosol concentrations likely contributed to the magnitude of Arctic warming and impacted sea ice concen-
trations in recent decades [Najafi et al., 2015; Acosta Navarro et al., 2016; Gagné et al., 2017]. In parallel with
changing anthropogenic inputs, Arctic warming and decreasing sea ice extent [e.g., Stroeve et al., 2012] are
expected to impact atmospheric composition due to changes in atmosphere-ocean interactions. The com-
plex implications of sea ice loss for atmospheric dynamics, clouds, and aerosol remain poorly constrained
[e.g., Struthers et al., 2011; Liu et al., 2012; Browse et al., 2014], owing to both the complexity of the aerosol
system and to a paucity of observations in autumn and summer.

In the Arctic lower troposphere, nucleation and Aitken mode particles dominate the size distribution dur-
ing summer, in contrast to the accumulation mode-dominated winter and spring [Engvall et al., 2008a; Ström
et al., 2011; Heintzenberg and Leck, 2012; Tunved et al., 2013; Kupiszewski et al., 2013; Leaitch et al., 2013; Croft
et al., 2016a]. Enhanced wet removal and less frequent long-range transport at lower altitudes combine in late
spring to suppress the condensation sink and facilitate this shift in the aerosol size distribution [e.g., Stohl,
2006; Engvall et al., 2008b]. This seasonal cycle and late-spring transition have been characterized in terms
of aerosol number and size not only at Arctic ground sites [e.g., Ström et al., 2003; Tunved et al., 2013; Leaitch
et al., 2013] but also in the lower troposphere [Engvall et al., 2008b]. In summer, low concentrations of particles
at cloud condensation nuclei (CCN)-active sizes [e.g., Leck et al., 2002; Martin et al., 2011; Burkart et al., 2017]
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can lead to low cloud droplet number concentrations and to a high sensitivity of clouds to available CCN
[Mauritsen et al., 2011; Leaitch et al., 2016]. Arctic clouds exert a strong influence on the surface energy bal-
ance [Intrieri et al., 2002; Lubin and Vogelmann, 2006] and can influence the thickness, melting, and freezing
of sea ice [Kay and Gettelman, 2009; Tjernström et al., 2015]. Despite their importance for Arctic climate, the
composition and sources of summer aerosol are not well characterized.

Long-range transport from lower latitudes can be an important source of aerosol and gas phase species to the
Arctic during summer, especially in the middle and upper troposphere. However, wet removal within and out-
side Arctic regions results in less efficient transport of aerosol compared to other times of the year [e.g., Stohl,
2006; Garrett et al., 2011; Croft et al., 2016a]. Episodic transport of biomass burning and other low-latitude
emissions have been characterized previously by both aircraft and ground-based measurements during sum-
mer [Warneke et al., 2009, 2010; Hecobian et al., 2011; Kupiszewski et al., 2013; Lathem et al., 2013; Law et al.,
2014]. Significant differences in aerosol concentration, composition, and hygroscopicity have been observed
between Arctic background and transported aerosol over the North American Arctic [e.g., Brock et al., 2011;
Lathem et al., 2013].

New particle formation, growth, and emission of sea spray are important Arctic aerosol sources in the absence
of transport [e.g., Orellana et al., 2011; Leaitch et al., 2013; Croft et al., 2016a] and result in diverse aerosol
chemical composition. Under the relatively clean conditions of Arctic summer, ocean-derived dimethyl sul-
fide (DMS) can play a significant role in aerosol formation and growth, through its oxidation to sulfuric acid
and methansulfonic acid (MSA) [Chang et al., 2011a; Leaitch et al., 2013]. Recent measurements have illustrated
the role of regional ammonia emissions from sea bird colonies in particle formation and growth [Wentworth
et al., 2015; Giamarelou et al., 2016; Croft et al., 2016b]. In addition, oxidized iodine species can play a role,
but their sources in Arctic regions remain unclear [Mahajan et al., 2010; Allan et al., 2015]. Organic aerosol in
the summertime Arctic is likely the complex result of primary marine emissions and secondary chemical pro-
cesses. Wind-driven formation of sea spray is associated with primary emission of organic aerosol from the
sea surface [e.g., Shaw et al., 2010; Frossard et al., 2011; Orellana et al., 2011; Karl et al., 2013; Frossard et al.,
2014a]. Polysaccharides, protein, and humic-like substances have been observed in aerosol at Alert, Nunavut,
and over the Beaufort Sea, suggesting a contribution from primary marine emissions [Fu et al., 2013, 2015].
Marine-influenced organic aerosol, associated with MSA, has been observed over the central Arctic Ocean
during summer and could arise from some combination of primary and secondary sources [Chang et al.,
2011b]. Detection of molecular tracers for secondary organic aerosol (SOA) has indicated a contribution from
secondary processes. In particular, tracers of isoprene, terpene, and fatty acid oxidation have been detected
in summer aerosol at several Arctic sites, including Alert, Nunavut; Station Nord, Greenland; and Zeppelin,
Svalbard [Fu et al., 2009; Kawamura et al., 2012; Fu et al., 2013; Hansen et al., 2014]. Sources of gas phase pre-
cursors to SOA are poorly characterized in Arctic summer but could include Arctic terrestrial [Schollert et al.,
2014; Kramshoj et al., 2016] and marine emissions [Willis et al., 2016; Kim et al., 2017; Mungall et al., 2017].

Our understanding of Arctic aerosol-climate interactions is still incomplete, in part due to a lack of observa-
tions that can relate aerosol composition to sources during summer. This work focuses on vertically resolved
measurements of aerosol composition in the Canadian High Arctic, made during a time period of clean Arc-
tic background conditions and over an area where high biological activity was observed in the surface ocean
[Gosselin et al., 2015; Mungall et al., 2016]. We use these observations to study the impact of regional sources
on Arctic aerosol composition and cloud condensation nuclei.

2. Measurements and Modeling
2.1. Aerosol and Trace Gas Measurements
Measurements of aerosol physical and chemical properties, trace gases, and meteorological parameters were
made aboard the AWI Polar6 aircraft based in Resolute Bay, Nunavut, Canada (74∘41’N, 94∘52’W) during
4–21 July 2014. Figure 1a illustrates flight tracks on a map of the average sea ice concentration during
July 2014. Relevant measurements are described briefly here; detailed descriptions are presented in Leaitch
et al. [2016], Willis et al. [2016], Burkart et al. [2017], and Köllner et al. [2017]. State parameters and winds
were measured with an AIMMS-20 (Aventech Inc., Barrie, ON, Canada). Carbon monoxide was sampled
through a Teflon inlet using an Aerolaser ultrafast CO monitor (model AL 5002). Aerosol was sampled near
isokinetically through a stainless steel shrouded diffuser inlet. Leaitch et al. [2010] characterized aerosol
inlet performance and for typical airspeeds (∼75 m s−1) it provides near-unity transmission of particles
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Figure 1. (a) Map of the Canadian Arctic Archipelago showing the July average sea ice fraction in 2014 from the
National Snow and Ice Data Center [Cavalieri et al., 1996; nsidc.org]. Resolute Bay, NU, is marked with a star. (inset) Map
of the study area with flight tracks from 4 to 12 July 2014. (b) Seven day integrated total column potential emission
sensitivity predicted by FLEXPART-WRF, plotted as a residence time. The color scale indicates the average origin of air
sampled along the flight tracks shown in Figure 1a and represents the residence time of air at a particular location
before arriving at the aircraft position. The mean residence time is shown for each model grid cell, the magnitude of
which is dependent on spatial averaging.

20 nm to 1μm. Measurements included number concentrations of particles>5 nm (TSI ultrafine condensation
particle counter (UCPC) 3787, TSI Inc., Shoreview, MN, USA), particle size distributions for 20–100 nm
(Scanning Mobility Spectrometer, Brechtel Manufacturing Inc., Hayward, CA, USA, and TSI CPC 3010), parti-
cle size distributions for 100 nm to 1 μm (Ultra-high Sensitivity Aerosol Spectrometer, Droplet Measurement
Technologies (DMT), Longmount, CO, USA), cloud condensation nuclei concentrations (DMT CCNC, 0.6%
supersaturation, operated at constant pressure [Leaitch et al., 2016]), refractory black carbon mass concen-
trations (DMT SP2, 75–700 nm), single-particle aerosol composition using the Aircraft-based Laser Ablation
Aerosol Mass Spectrometer (ALABAMA, 200 nm to 1 μm), and nonrefractory aerosol composition using a
time-of-flight aerosol mass spectrometer (70–700 nm, Aerodyne ToF-AMS, Billerica, MA, USA).
2.1.1. Aerosol Composition
Operation of the ToF-AMS during this campaign is described in Willis et al. [2016]. The ToF-AMS [DeCarlo et al.,
2006] was operated in “V mode” with a mass range of m/z 3–250, a vaporizer temperature of ∼650∘C, and a
time resolution of 20 or 30 s. The ToF-AMS sampled behind a pressure-controlled inlet system [Bahreini et al.,
2008; DeCarlo et al., 2008], which was characterized by Willis et al. [2016]. Detection limits for sulfate, nitrate,
ammonium, methansulfonic acid, and organics were 0.009, 0.008, 0.004, 0.005, and 0.08 μg m−3, respectively,
at standard pressure. Methansulfonic acid was quantified using the method of Zorn et al. [2008] and is further
described in Figures S1 and S2 in the supporting information and Willis et al. [2016]. The ToF-AMS signal for sea
salt, NaCl+ (m/z 57.96), can be used to detect sea salt mass concentrations [Ovadnevaite et al., 2012] and is used
here as an indication of sea salt. Aerosol mass concentrations were derived from raw mass spectral data using
the Igor Pro-based ToF-AMS Analysis Toolkits (v.1.57 and v.1.16) [Seuper, 2010]. A composition-dependent
collection efficiency (CDCE) can be applied to correct for nonunity particle detection [Middlebrook et al., 2012];
particles were largely acidic (Figure S3), and application of CDCE led to corrections of 18 ± 10%. Owing to
uncertainties arising from mixing state, presence of sea salt (requiring low CE [e.g., Frossard et al., 2014b]), and
validation of ToF-AMS mass concentrations by comparison with other instruments (Figure S4), we use relative
quantities derived from ToF-AMS measurements in the following analysis.

Single-particle mass spectra were obtained from the ALABAMA [Brands et al., 2011], which uses laser ablation
(266 nm) to detect ambient aerosol in a bipolar time-of-flight aerosol mass spectrometer. Particles entering
the ALABAMA are detected optically, and owing to limitations in optical detection combined with transmis-
sion efficiency in the aerodynamic lens, the ALABAMA detects particles between ∼200 and 1000 nm (vacuum
aerodynamic diameter, dva). A total of 6970 particle spectra with size information were collected by the
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ALABAMA, and these particles are classified into five main categories (secondary, Na/Cl, Na, EC, and levoglu-
cosan containing) based on marker peaks. Pronounced peaks at m/z multiples of 12 (C+∕−

n : 12, 24, … , 108)
identify elemental carbon (EC). Sodium chloride is identified by peaks at m/z 23, 35, 37, 81, 83, 93, and 95
(Na+, Cl−, Na2Cl+, and NaCl−2 ). Potassium is identified by m/z 39 and 41 (K+). Levoglucosan is identified by m/z
45 (CHO−

2 ), 59 (C2H3O−
2 ), 71 (C3H3O−

2 ), and 73 (C3H5O−
2 ). Particles identified as secondary (Figure S5) contain a

mixture of sulfate (m/z 97 (HSO−
4 ) and m/z 96 (SO−

4 )), potassium, MSA (m/z 95 (CH3SO−
3 )), organic carbon (m/z

27, 37, and 43 (C2H+
3 , C3H+, and CH3CO+ or C3H+

7 )), and trimethylamine (TMA, m/z 58 and 59 (C3H8N+ and
C3H9N+)). All secondary particle spectra may not contain peaks for each species. TMA was identified based
on laboratory measurements of TMA particles [Köllner et al., 2017] and previously published measurements
[e.g., Rehbein et al., 2011; Healy et al., 2015].

2.2. Identifying Air Mass History With FLEXPART-WRF
The Lagrangian particle dispersion model FLEXible PARTicle dispersion model driven by meteorology from
the Weather Research and Forecasting model (FLEXPART-WRF) [Brioude et al., 2013] (https://www.flexpart.eu/
wiki/FpLimitedareaWrf) was used to study air mass histories during NETCARE 2014 [Wentworth et al., 2015].
FLEXPART-WRF is based on FLEXPART [Stohl et al., 2005] and uses the limited area meteorological forecast
from WRF [Skamarock et al., 2001]. The FLEXPART-WRF simulation is driven by a WRF simulation at 12× 12 km
horizontal resolution. We use FLEXPART-WRF run in backward mode to study the origin of air influencing
aircraft-based aerosol measurements. Model output provides a residence time of air prior to sampling that can
be used to calculate a potential emission sensitivity (PES) integrated over a period of time prior to sampling.
We use backward mode FLEXPART-WRF output, in conjunction with sea ice concentrations from Nimbus 7
SMMR and DMSP SSM/ISSMIS passive microwave data [Cavalieri et al., 1996], to calculate the average residence
time of sampled air masses over open water (≤30% sea ice concentration) in the lowest model levels (up to
300 m) and over the last 5 days prior to sampling. For these calculations, we present the average residence
time in each model grid cell. One FLEXPART-WRF PES was calculated every 10 min along flight tracks for all
flights during 5–12 July 2014; therefore, aerosol observations from 4 July are not included in the analysis
with FLEXPART-WRF. Aerosol observations were subsampled to the FLEXPART-WRF time resolution by taking a
2 min average of measurements around the model release time, when the aircraft altitude was within±100 m
of the model release altitude.

3. Results and Discussion
3.1. Overview of Meteorological Situation
We focus on observations made in a period of Arctic background conditions (4–12 July 2014). Air masses sam-
pled by the aircraft had resided in the middle-to-northern Canadian Arctic Archipelago for at least the 7 days
prior to sampling (Figure 1b). During this period, meteorological observations and measurements of trace
gases and black carbon indicated a thermodynamically stable and clean atmosphere, characteristic of Arctic
background conditions (Figure S6). The median (interquartile range) wind speed from near the surface to 3 km
was 4.7 (2.7–6.3) m s−1 (Figure S7). Temperature profiles indicated a surface-based temperature inversion of
∼5∘C up to an altitude of 300–400 m (Figure S6). Aliabadi et al. [2016] made similar observations using Polar6
observations and radiosondes to estimate a boundary layer height of 275 ± 164 m. We will refer to the por-
tion of the lower troposphere with a positive vertical gradient in temperature profile as the boundary layer.
The median boundary layer wind speed was 4.0 m s−1 compared to 5.1 m s−1 aloft (Figure S8). WRF wind fields
indicate relatively homogeneous low wind speeds during this period (Figure S9). Carbon monoxide concen-
trations were generally low (78.4 ± 2.5 ppbv, average ± standard deviation) and showed little variation with
altitude (Figure S6). Refractory black carbon concentrations were below thresholds suggested for defining
clean marine air [e.g., Gantt and Meskhidze, 2013], with an average concentration of 2.0±1.4 ng m−3 (Figure S6).
While this stable and clean Arctic background regime is not the only important state of the summertime Arctic,
it provides a unique opportunity to study regional sources of Arctic aerosol.

3.2. Secondary Marine Influence on Aerosol Composition
Under Arctic background conditions, average vertical profiles of aerosol composition suggest a surface source
of methanesulfonic acid (MSA) and organic aerosol (OA). MSA is not a conservative tracer for dimethyl sulfide
(DMS) influence on aerosol sulfur [e.g., Bates et al., 1992], but its enhanced presence in the boundary layer rel-
ative to sulfate demonstrates marine influence on submicron aerosol. We consider changes in relative aerosol
composition with altitude to distinguish variations related to absolute source strengths of aerosol and precur-
sors, available oxidants, and wet deposition in the boundary layer. The mean OA-to-sulfate and MSA-to-sulfate
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Figure 2. (a) Profile of MSA-to-sulfate ratio derived from ToF-AMS measurements. Symbols show the mean profile across
flights, and shading represents the range (5th to 95th percentiles). (b) Profile of the OA-to-sulfate ratio. (c) Linear
correlation between observed MSA-to-sulfate ratio and FLEXPART-WRF predicted air mass residence time over open
water (<30% sea ice concentration) in the lowest 300 m. The color scale represents observed wind speed. Each point
represents an average of ToF-AMS observations near the point of each FLEXPART-WRF release, which were available at
10 min intervals along flight tracks. Shading represents the 95% confidence interval for the linear regression. (d) Linear
correlation between observed OA-to-sulfate ratio and FLEXPART-WRF predicted air mass residence time over open water.

ratios peaked in the boundary layer, largely below ∼400 m (Figures 2a and 2b), and decreased with altitude.
Absolute mass concentrations of MSA and OA were relatively constant or increased in the lowest altitudes,
while sulfate decreased toward the surface within the boundary layer (Figure S3). This change in composition
was coincident with a shift in the particle size distribution toward smaller sizes [Burkart et al., 2017]. Of the
species detected by the ToF-AMS, organic aerosol accounted for∼65% of the total nonrefractory aerosol mass
near the surface, on average. This contribution decreased distinctly above the boundary layer (Figure 2b). The
mean OA-to-sulfate ratio vertical profile, showing higher ratios near the surface and a decrease with altitude,
suggests a surface source of organic species.

To gain further insight into OA sources, we use FLEXPART-WRF to investigate air mass history and its relation-
ship to aerosol composition. The fraction of OA and MSA in submicron aerosol was significantly correlated
(p < 0.001) with FLEXPART-WRF predicted air mass residence time over open water (Figures 2c and 2d). Here
we have defined open water as sea ice concentrations ≤30% and have considered air mass residence times in
the lower 300 m as a best estimate for the boundary layer height. Similar results were obtained with the sea
ice concentrations ranging from 0% to≤50% and model heights from 100 to 500 m. The relationship between
MSA-to-sulfate ratio and residence time over open water (R2 = 0.64, Figure 2c) is consistent with our current
understanding of a marine DMS source in the Canadian Arctic summer where strong biological activity was
observed in the surface ocean [Gosselin et al., 2015; Mungall et al., 2016]. Likewise, the relationship between
OA-to-sulfate and residence time over water (R2 = 0.74, Figure 2d) suggests a regional marine source of OA.
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Figure 3. Relationship between the ToF-AMS estimated oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios of
organic species [Canagaratna et al., 2015] colored by the MSA-to-sulfate ratio, above 300 m (triangles) and below 300 m
(circles). All observations above ToF-AMS detection limits are shown for the period 4–12 July. Grey lines represent the
ambient range of O/C and H/C observed by Ng et al. [2011]. Elemental composition of C8 –C30 saturated alcohols,
C8 –C32 saturated acids, C2 –C11 saturated diacids, a C4 unsaturated diacid (maleic and fumaric acid), C4 –C12
carbohydrates (e.g., trehalose, erythritol, arabitol, mannitol, sucrose, galactose, glucose, and fructose), and C5 and C10
ketoacids (levulinic and pinonic acid, respectively) are shown for reference [Kawamura et al., 1996; Fu et al., 2013;
Jayarathne et al., 2016].

Air mass residence times over open water were less than ∼5 h at sampling altitudes above 1000 m (Figure
S10) and ranged from near 0 to∼45 h below 1000 m. Air masses aloft (i.e., above 1000 m) had resided over the
Canadian Arctic Archipelago for at least the last 5 days prior to sampling, while likely not entering the bound-
ary layer during that time. Sulfate was the dominant component of submicron aerosol above the boundary
layer and especially above 1000 m (Figure S3). While these results suggest marine influence on boundary layer
aerosol, it is also possible that aerosol aloft was influenced by marine emissions more than 5 days prior to
sampling.

When marine influence was strong, as indicated by residence time over open water, organic species were less
oxygenated. The wide range in both hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios (∼1 to 1.9
and ∼0.2 to >1, respectively) could indicate a diverse extent of aerosol aging [Jimenez et al., 2009] and/or vari-
ation in sources (Figure 3). Less oxygenated organics are present when the MSA-to-sulfate ratio is high within
the boundary layer and are coincident with larger residence times over open water, suggesting a marine
source of organic species with an H/C ratio approaching 2. Consistent with these observations, O/C ratios
decreased, while H/C ratios increased with increasing residence time over open water (Figure S11). While we
lack measurements of specific molecular tracers, when the MSA-to-sulfate ratio is high our observed elemen-
tal composition is consistent with molecules such as saturated acids, diacids and ketoacids that have been
measured in summertime Arctic aerosol and inconsistent with molecules such as saturated alcohols and car-
bohydrates [Kawamura et al., 1996; Fu et al., 2013; Jayarathne et al., 2016]. Our observations of high H/C and low
O/C organic aerosol could be consistent with expectations about primary marine organics [e.g., Rinaldi et al.,
2010; Decesari et al., 2011]; however, single-particle measurements indicate that sea salt-containing aerosol
made a relatively small contribution to detected particles (Figure 4).

Measurements of single-particle mixing state indicate a dominant number fraction of secondary particles that
do not contain sea salt (Figure 4). Secondary particles, containing mixtures of sulfate, ammonium, potassium,
MSA, trimethylamine, and other organic species (Figure S5) accounted for 67% of particles detected by the
ALABAMA and were externally mixed from sodium chloride-containing particles. Sea salt particles account
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Figure 4. Size-resolved single-particle aerosol composition from 6970
particles detected by the ALABAMA, in terms of vacuum aerodynamic
diameter (dva), for the period 4–12 July. Particle types are defined based
on marker peaks in the bipolar mass spectra and are defined as
Na/Cl-containing (blue), Na-containing (green), levoglucosan-containing
(gray), elemental carbon-containing (black), and secondary particles
containing peaks for potassium, sulfate, ammonium, trimethylamine,
methanesulfonic acid, and other organic compounds (light blue).
Na/Cl-containing particles also contained detectable organic carbon
signals, likely from carbohydrates. The mean mass spectrum of 4665
secondary particle spectra is shown in Figure S5. The total number of
particles detected by the ALABAMA in each size bin is shown in red dots.

for ∼1% of detected particles and were
mixed with sulfate and carbohydrate-like
OA [Köllner et al., 2017]. This external mix-
ing is consistent with the lack of corre-
lation between ToF-AMS OA and NaCl+

(R2 = 0.003, Figure S12). Although we
cannot rule out processes occurring in
marginal ice zones, wind speeds were
generally below those expected to pro-
duce significant primary marine aerosol
(PMA, Figures 2c and 2d color scale and
Figure S8) when both the OA-to-sulfate
ratio and residence time over open water
were high [e.g., de Leeuw et al., 2011;
Lewis and Schwartz, 2013; Grythe et al.,
2014]. Consistent with this observation,
concentrations of particles larger than
200 nm (an upper bound for PMA [Modini
et al., 2015]) were small in the boundary
layer (6.9 ± 3.8 cm−3) and accounted for
at most 1.3 ± 0.8% of particle number
concentrations and 33 ± 14% of particle
volume (Text S1 and Figure S13). In addi-
tion, the majority of OA-to-sulfate ratios
greater than 1.5 occurred on flights dur-
ing which aerosol growth was observed
[Willis et al., 2016; Burkart et al., 2017].

Together, these observations suggest that marine-influenced secondary organic aerosol formation con-
tributes to the growth of particles into the ToF-AMS size range (i.e., >70 nm).

3.3. Aerosol Composition and Cloud Condensation Nuclei
Cloud condensation nuclei (CCN) concentrations were as high as 350 cm−3 when aerosol was marine influ-
enced and the organic fraction (mfOrg) was greater than∼60%. Elevated organic fractions and CCN concentra-
tions were associated with high FLEXPART-WRF predicted air mass residence time over open water (Figure 5).

Figure 5. Relationship between cloud condensation nuclei measured at
0.6% supersaturation and the ToF-AMS derived mass fraction of organic
aerosol. All observations for the period 4–12 July are shown with open
circles. Points where FLEXPART-WRF predictions were available (i.e., every
10 min along flight tracks) are shown with colored circles.

In contrast, CCN concentrations were
relatively constant (∼120 cm−3) when
organic aerosol contributed less than
60% of nonrefractory submicron aerosol
mass (Figure 5). These low CCN con-
centrations are consistent with those
previously observed in other Arctic
regions during summer [e.g., Leck et al.,
2002; Martin et al., 2011; Mauritsen
et al., 2011]. Very low CCN concentra-
tions, below 50 cm−3, likely result from
recent wet removal and were associated
with very low total particle concen-
trations [Burkart et al., 2017]. Since
organic species and sulfate constitute
the majority of nonrefractory aerosol
mass, higher CCN concentrations also
correspond to times when the frac-
tion of sulfate was below 40%. Using
the method described in Willis et al.
[2016], we estimated the hygroscopicity
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parameter for organic species (𝜅Org [Petters and Kreidenweis, 2007]) for three conditions: >150 CCN cm−3 and
mfOrg > 0.6, 50–150 CCN cm−3 and mfOrg > 0.6, and 50–150 CCN cm−3 and mfOrg < 0.6 (Table S1). Under
all three conditions, 𝜅Org was less than 0.1, indicating an organic component with low hygroscopicity. Few
studies of Arctic CCN have concurrent measurements of aerosol composition. Our observations are broadly
consistent with those of Martin et al. [2011] who inferred 𝜅Org < 0.2 (0.1% supersaturation) for CCN measured
over the Arctic Ocean that were 36% organic aerosol. The relationship between elevated CCN concentrations
and organic fraction therefore does not arise due to a strongly hygroscopic organic component; instead, the
hygroscopicity arises from the nonnegligible amount of sulfate present. Consistent with the results of Willis
et al. [2016], when CCN concentrations were elevated, particle number concentrations between 20 and 40 nm
and above 50 nm were moderately correlated (R2 = 0.25, p < 0.001, Figure S14), suggesting that growth
of particles below 40 nm exerted some control on the numbers of CCN active particles. Since we observe
enhancements in CCN numbers with higher fractions of nonhygroscopic OA, we hypothesize that the OA
participated in growth of particles to CCN active sizes (i.e., > ∼ 70 nm, Table S1) and thus contribute to CCN
activity through reduction of the Kelvin effect.

4. Conclusions

We present three pieces of evidence for a secondary source of marine biogenic OA in the Canadian High
Arctic, during a summertime period of pristine Arctic background conditions. First, in a clean and stable atmo-
sphere we observed MSA-to-sulfate and OA-to-sulfate ratios that peaked near the surface and decreased aloft.
Second, these ratios were significantly correlated with a measure of the air mass residence time over open
water predicted by FLEXPART-WRF, in a regime with spatially and temporally homogeneous low wind speeds.
Third, sea salt particles were externally mixed from a larger population of organic, MSA, and amine-containing
particles. When marine influence was strong, organic species had low O/C and high H/C ratios. Together, low
wind speeds in the region, evidence for aerosol growth [Burkart et al., 2017; Willis et al., 2016], and exter-
nal mixing of sea salt from organic and amine-containing particles indicates a role for secondary organic
aerosol formation; however, we emphasize that sea salt particles were mixed with carbohydrate-like OA
[Köllner et al., 2017] that also contributes to total OA in this marine environment. We observed an association
between elevated CCN concentrations, high organic fractions, and long air mass residence time over open
water, consistent with secondary organic aerosol processes driving the elevated CCN concentrations.

Our understanding of aerosol impacts in Arctic summer and the potential for change in a warming Arctic
remains incomplete, in part owing to a paucity of measurements in this remote region. This work provides
insight into regional aerosol sources in the summertime Arctic, which are likely to change as sea ice retreats.
Future measurements of small particle composition coupled to detailed chemical characterization of gas
phase species will improve our understanding of aerosol sources and transformations in remote regions,
aiding in our ability to understand resulting aerosol-cloud-climate interactions.
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