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Abstract

There is mounting evidence that multiyear ice (MYI) is a unique component of the

Arctic Ocean and may play a more important ecological role than previously

assumed. This study improves our understanding of the potential of MYI as a suit-

able habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from

MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive

spring seasons. This included four MYI hummocks with a mean chl a biomass of

2.0 mg/m2, a value significantly higher than FYI and MYI refrozen ponds. Our

results support the hypothesis that MYI hummocks can host substantial ice-algal

biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-

snow surface of these features. We identified an ice-algal habitat threshold value

for calculated light transmittance of 0.014%. Ice classes and coverage of suitable

ice-algal habitat were determined from snow and ice surveys. These ice classes and

associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow

and ice thickness data products. This habitat classification accounted for the vari-

ability of the snow and ice properties and showed an areal coverage of suitable ice-

algal habitat within the MYI-covered region of 0.54 million km2 (8.5% of total ice

area). This is 27 times greater than the areal coverage of 0.02 million km2 (0.3% of

total ice area) determined using the conventional block-model classification, which

assigns single-parameter values to each grid cell and does not account for subgrid

cell variability. This emphasizes the importance of accounting for variable snow and

ice conditions in all sea ice studies. Furthermore, our results indicate the loss of

MYI will also mean the loss of reliable ice-algal habitat during spring when food is

sparse and many organisms depend on ice-algae.
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1 | INTRODUCTION

The extent of multiyear sea ice (MYI) has declined dramatically dur-

ing the satellite record from 75% of the total Arctic sea ice pack in

the mid-1980s to 45% in 2011 (Maslanik, Stroeve, Fowler, & Emery,

2011). This trend is expected to continue, given the large sea ice

volume losses recently observed from satellite ice thickness data

(Laxon et al., 2013) and predicted by modelling studies (Schweiger

et al., 2011). Furthermore, sea ice extent has been declining in all

seasons with the most pronounced rates of decline in summer

(Stroeve et al., 2011, 2012). The record minimum summer sea ice

extent set in September 2012 (Parkinson & Comiso, 2013), which

was a remarkable decline from the previous 2007 record, demon-

strates the continued vulnerability of Arctic sea ice to continued cli-

mate change. In spite of the particular vulnerability of Arctic

ecosystems to climate change, monitoring biological and biogeo-

chemical processes and interactions is difficult as these components

are not easily observed from satellites or airborne systems. Of great

consequence to our understanding of the Arctic sea ice system is

the paucity of ecologically relevant studies within the vast MYI-cov-

ered region of the Arctic Ocean (Wassmann, 2011; Wassmann,

Duarte, Agusti, & Sejr, 2011).

A disproportional amount of research effort regarding sea ice

ecology has been dedicated to coastal regions dominated by first-

year sea ice (FYI). To understand and monitor Arctic changes,

there is an urgent need to characterize biogeochemical processes

associated with MYI. There is mounting evidence that MYI is a

unique and important component of the Arctic sea ice system and

has a more important ecological role than was previously assumed.

For instance, Hatam, Lange, Beckers, Haas, and Lanoil (2016) sug-

gested that a shift from a predominantly MYI to predominantly

FYI sea ice cover will result in more functional instability within

sea ice bacterial communities with potential consequences for

nutrient dynamics in the Arctic marine environment. Furthermore,

within the central Arctic Ocean during summer, regions dominated

by MYI showed the highest proportion of ice-related primary pro-

duction compared to the water column (Fern�andez-M�endez et al.,

2015; Gosselin, Levasseur, Wheeler, Horner, & Booth, 1997).

Under-ice-algal aggregate biomass (Katlein, Fern�andez-M�endez,

Wenzh€ofer, & Nicolaus, 2014) and maximum in-ice-algal biomass

(Lange, Katlein, Nicolaus, Peeken, & Flores, 2016) were also

observed within MYI-dominated regions compared to FYI-domi-

nated regions. There remains a significant knowledge gap in terms

of MYI-algal biomass and production during spring due to the

logistical constraints of sampling within this region at this time of

the year.

One approach to improve our understanding of the role of MYI-

related ecosystems would be to identify key relationships between

the algal biomass and the physical sea ice environment, which can

be substantially different between MYI and FYI. Such relationships

would improve our ability to model sea ice biogeochemical processes

in MYI, identify important ecological thresholds and develop sea ice

habitat classifications based on properties that are related to ice-

algal biomass, and which can apply to pan-Arctic satellite and air-

borne observations.

During spring, light availability is an important controlling factor

of ice algae growth largely influenced by the physical properties of

the snow and ice that control light transmittance to the bottom-ice

(see review in Vancoppenolle, Bopp et al., 2013). Due to the influ-

ence of snow and ice on light transmission (Maykut & Grenfell,

1975; Thomas, 1963), snow and ice thickness have the potential to

be used as proxies to identify regions of suitable sea ice-algal habi-

tat. Threshold light levels (i.e., critical light levels) for ice-algal growth

have been proposed and may be determined by laboratory experi-

ments (Gosselin, Legendre, Demers, & Ingram, 1985; Gosselin,

Legendre, Therriault, Demers, & Rochet, 1986). Therefore, we pro-

pose the physical environment may be a proxy of light availability

for ice algae and empirical relationships can be used to establish a

sea ice habitat classification.

A proxy for ice-algal growth was previously suggested by Lange

et al. (2015) using snow and ice observations. Lange et al. (2015)

conducted a multiyear study within the Lincoln Sea and demon-

strated no significant differences between springtime MYI and FYI-

algal chl a biomass. However, it was proposed that MYI hummocks

(i.e., relatively large surface undulations protruding ~ 1 m above the

adjacent level ice) may be suitable habitat for relatively high accumu-

lations of algal biomass because of the typically lower snow cover

on hummocks (<0.1 m), which could lead to higher light levels at the

ice bottom, despite hummocks being thicker than the surrounding

level ice. This hypothesis has potential pan-Arctic implications as

snow-free/thin-snow hummocks are a common feature of MYI

(Iacozza & Barber, 1999; Perovich et al., 2003; Sturm, Holmgren, &

Perovich, 2002) and can represent large areas of suitable ice-algal

habitat currently not accounted for in sea ice biomass estimates and

modelling studies.

Here, we test the hypothesis that MYI hummocks have the

potential for higher biomass than other ice types due to increased

light transmission by providing statistically significant sampling

efforts of MYI hummocks, MYI and FYI locations in the perennial ice

zone. We further develop two observation-based habitat classifica-

tion systems and apply them to pan-Arctic sea ice thickness and

snow depth data, providing insights into the potential significance of

MYI in terms of suitable ice-algal habitat on a pan-Arctic scale.

2 | MATERIALS AND METHODS

Here, we present observations and data collected in early May 2013

at two FYI stations and six MYI stations in the Lincoln Sea, north of

Ellesmere Island, Canada (Figure 1). MYI dominates the ice coverage

in this region; thus, FYI sites were less accessible and limited FYI

sampling. These observations are supplemented with observations

collected in 2010–2012 (see Lange et al., 2015). All sites visited from

2010 to 2013 are regrouped by location and shown in Figure 1.

Groupings for 2012 and 2013 sites are listed in Table 1. Methods

described in this study refer to sampling conducted during the 2013
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campaign unless otherwise stated. Site naming follows the same pro-

tocol as in Lange et al. (2015), in the form “SS-YY” with each two-

digit site “SS” enumerated in consecutive order starting with “01” for

each (2-digit) year “YY”.

2.1 | Light transmittance derived from snow and
ice morphology measurements

Snow depth and ice thickness surveys were conducted consistent

with surveys presented in Lange et al. (2015) and as described by

Haas and Eicken (2001). In combination with the drill hole ice thick-

ness measurements and snow depth surveys, measurements of the

snow and ice surface elevation were conducted using a laser level

and survey rod. The laser survey provided snow and ice surface ele-

vation relative to the reference laser level plane and was conducted

as described in Haas and Druckenmiller (2009). By tying these data

in to sea ice freeboard measurements at the drill hole locations, the

surface elevations were converted to relative elevations from the

local sea surface height (i.e., the ice surface elevations represent sea

ice freeboard). In 2012, the snow and ice surveys were conducted

along a single transect at each site. During that year, survey tran-

sects were conducted along a MYI floe (site 01-12), a FYI floe

(02-12) and at one site that spanned a MYI floe and a refrozen lead

(05-12). Survey data from site 05-12 were split into two separate

surveys at the boundary between the MYI floe and the refrozen

lead. Survey transect lengths for each site are shown in Table 1. In

2013, the surveys were carried out along two perpendicular 100-m-

long transects that intersected in the middle of each transect. In

2013, the snow and ice surveys were conducted on two FYI stations

(02-13 and 03-13) and six MYI stations (01-13, 04-13, 05-13, 06-13,

07-13, 08-13; Table 1).

Coincident electromagnetic (EM) ice thickness surveys were con-

ducted during the 2012 campaign using a Geonics EM31 (9.8 kHz,

3.66 m coil spacing) obtaining ice thickness values using an exponen-

tial fit method as described by Weissling, Lewis, and Ackley (2011).

During the 2013 campaign, EM thickness surveys were conducted

using a EMP-400 from GSSI (9 kHz, 1.21 m coil spacing). Results

were obtained using a model analysis (2400 mS water conductivity)

that finds the best fit between modelled and measured quadrature

values, assigns the according ice thickness and averages data over 5-

m intervals. Thickness values were then interpolated to 1-m intervals

using the spline interpolation method provided by the R software

function spline in the “stats” package.

Bulk optical thickness, kB (dimensionless; i.e., the bulk extinc-

tion of light over the entire column of snow and ice), was calcu-

lated for the snow and ice surveys based on common literature

values, symbolized hereafter as kB. For all calculations, we used

extinction coefficients for dry snow ks = 20.0 m�1 and sea ice

ki = 1.55 m�1 (Grenfell & Maykut, 1977; Thomas, 1963). The

value of ks was chosen from a table of values (Thomas, 1963)

based on a corresponding snow density comparable to measured

values for our study region (Lange et al., 2015). The values of ks

and ki were integrated over the depth of the corresponding ice

and snow layers to provide optical thickness values (dimensionless)

for all measurement locations along the survey transects and for

each core site. kB was then calculated as the sum of the optical

thickness values for snow and ice. Larger values of kB mean shal-

lower penetration of light.

Following Nicolaus, Hudson, Gerland, and Munderloh (2010),

transmittance (T) is defined as the ratio of the transmitted under-ice

irradiance (ET) to the incoming solar irradiance (ES), taking the form:

T ¼ ET=ES (1)

Transmitted under-ice irradiance can be estimated by applying

the Bouguer–Lambert law, according to the simple and widely used

sea ice radiative transfer model (e.g., Grenfell & Maykut, 1977;

F IGURE 1 Map of the study region
north of Ellesmere Island, Canada. Site
groupings are shown, and the
corresponding sites for each group are
provided in Table 1
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Katlein, Perovich, & Nicolaus, 2016; Katlein et al., 2015; Perovich,

1996), taking the form:

ET ¼ ð1� aÞESe�kB (2)

Combining Equation (1) and (2), we can get:

T ¼ ð1� aÞe�kB (3)

where kB is calculated as described above, and a is the surface

albedo. Assuming predominantly diffuse incoming light conditions,

we used values for a taken from Perovich (1996) for bare ice (0.70)

or snow (0.81). To calculate transmittance for the core locations and

the snow and sea ice surveys, we applied Equation (3) to the calcu-

lated kB values and using the appropriate a value.

2.2 | Chl a

Sea ice core sampling and processing were conducted following pro-

cedures outlined in Lange et al. (2015). Chl a concentrations were

determined fluorometrically using equations from Parsons, Maita,

and Lalli (1989). Individual core sections were cut, then slowly

melted and processed within 24 hr. Sample volumes between 50

and 250 ml were filtered onto Whatman GF/F 25-mm filters and

extracted in 90% acetone at 4°C in the dark during 24 hr. The fluo-

rescence was read on a Turner Design 10AU fluorometer calibrated

with pure chl a extract (Anacystis Nidulans, Sigma Chemicals), prior

and after acidification with 5% HCL (Parsons et al., 1989). We verti-

cally integrated chl a (excluding phaeopigments) over the bottom

section of each ice core, which varied in length between 0.1 and

0.2 m, hereafter referred to as the bottom-integrated chl a concen-

trations (mg/m2). Here, we used the bottom-integrated chl a concen-

trations presented in Lange et al. (2015) (N = 18) in addition to the

nine cores collected in 2013 (N = 27). At one site, 06-13, ice cores

were extracted from a refrozen pond (06-13-RP) and from an adja-

cent hummock (06-13-Hum). At this hummock site, three bottom-ice

cores were sampled in order to assess the representativeness of ice

cores from a MYI-hum site, which was important to test the hypoth-

esis. We used the mean of these three cores as one sample for the

statistical comparison between ice types (06-13-Hum).

2.3 | Statistical analyses

To identify a threshold value for suitable sea ice algae habitat, we

used piecewise “hockey stick” regression (Toms & Lesperance, 2003;

Toms & Villard, 2015) between the natural logarithm-transformed

transmittance (ln[T]) and chl a biomass for the ice core locations.

Hockey stick regression identifies the change point value (i.e.,

threshold) of the calculated transmittance, which separates regions

of high chl a biomass (hereafter referred to as suitable habitat) from

regions of low chl a biomass (hereafter referred to as not-suitable

habitat). Hockey stick regression tests if the samples were generated

by two different regression equations, which are split at the change

point, using a nonlinear least squares algorithm to test for model

convergence. Here, we used a bootstrap sample size of 1000 and

calculated the 95% confidence intervals (CI). Hockey stick analysis

was conducted using the SiZer package in R software version 2.15.2

(R-Development-Core-Team, 2012).

To test whether there were significant differences in bottom-ice-

algal chl a biomass and calculated transmittance (T) between the dif-

ferent ice types, we performed an analysis of variance (ANOVA)

applied to the log-transformed chl a and T observations. The differ-

ent ice types included the following: younger refrozen lead ice (FYI-

Young), older FYI (FYI), MYI with a refrozen melt pond (MYI-RP) and

MYI hummocks (MYI-Hum). Log-transformations were conducted to

conform with the assumptions of homogeneity in variance and a

normal distribution. For a significant ANOVA test (p < .05), which

indicated significant differences between ice types, we followed by

post hoc Tukey HSD test to identify which ice types were signifi-

cantly different (p < .05).

The 2013 snow and ice surveys were conducted in two perpen-

dicular directions, west–east (WE) and south–north (SN). Each direc-

tional transect had a survey length of 100 m for a total survey

length of 200 m per site. Snow depth, ice thickness, ice freeboard

and T values were individually compared between the two survey

directions at each site using a Student’s t-test with a significance

level of p < .05.

2.4 | Spatial autocorrelation analyses

Spatial autocorrelation was used to investigate the horizontal variabil-

ity of sea ice thickness, snow depth and sea ice surface topography

(i.e., sea ice freeboard). Autocorrelation was estimated using Moran’s

I (Legendre & Fortin, 1989; Moran, 1950), which was calculated for

each of the eight sites at 30 equally spaced (3.3 m) distance classes

between 2.65 and 98.35 m. Individual autocorrelation coefficients or

Moran’s I estimates were plotted for each distance class in the form

of a spatial correlogram (Legendre & Fortin, 1989). All analyses were

conducted using the “R” software function correlog from the “pgir-

mess” package. Autocorrelation coefficients for each distance class

were assigned a two-sided p-value following methods in Ref (Legen-

dre & Fortin, 1989), using a significance level of p < .05. We focused

on the first x-intercept of the correlogram line (indicated by dashed

vertical lines in Figure 2), which identifies the patch size, P, of the

variables (Legendre & Fortin, 1989). In our case, patch sizes were

identified for snow depth (Ps; Figure 2a), ice thickness (Pi; Figure 2b)

and ice surface topography (Pfb; Figure 2c). This methodology is con-

sistent with spatial autocorrelation analyses used in other snow and

sea ice studies to identify patch sizes of both biological and physical

variables (e.g., Gosselin et al., 1986; Granskog et al., 2005; Rysgaard,

K€uhl, Glud, & Hansen, 2001; Søgaard et al., 2010).

2.5 | Pan-Arctic sea ice algae habitat classification
system

For the pan-Arctic habitat classification, we used the CryoSat-2 sea

ice thickness data product of Ricker, Hendricks, Helm, Skourup, and

Davidson (2014). Snow depth values are included in the Ricker et al.
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(2014) CryoSat-2 data product and are derived using a modified ver-

sion of the Warren snow water equivalent climatology (Warren

et al., 1999). This included reduction of snow depth over FYI by

50% as suggested by Kurtz and Farrell (2011). Ricker et al. (2014)

used sea ice type data (FYI and MYI) from the OSI-SAF daily ice

type product as described by Eastwood (2012). All CryoSat-2 data

are averaged over an entire month, with data gridded to a 25 by

25 km grid spacing. For the habitat classification, we used the data

derived for April 2013 to be closest in time to our sampling period

(30 April to 07 May 2013). Ice thickness data are not derived from

CryoSat-2 for the months of May through October due to the influ-

ence of liquid water within the snowpack on the radar signal. Within

the CryoSat-2 data, there were grid cells with missing or unreliable

data, which were removed from our analyses. We applied a mask to

the CryoSat-2 data as described by Ricker et al. (2014). Data outside

this mask were excluded because the snow depth climatology is not

valid in these regions (Warren et al., 1999).

We used two different habitat classification systems to classify

CryoSat-2 data products into different habitat classes based on ice

type, ice thickness and snow depth:

1. Hockey stick habitat classification: Each grid cell is assigned one of

five habitat classes based on classification criteria. The two MYI

habitat classes were separated based on the mean monthly Cryo-

Sat-2 ice thickness. A threshold MYI thickness value of 3.25 m,

used to distinguish between the two MYI classes, was deter-

mined based on the midpoint between the thickest MYI-Thin site

(3.1 m) and the thinnest MYI-Thick site (3.4 m; Table 1). MYI

with ice thickness ≥3.25 m was classified as 1: MYI-Thick and

MYI < 3.25 m was classified as 2: MYI-Thin. FYI was separated

into three habitat classes based on the modified Warren monthly

climatology snow depth and CryoSat-2 monthly mean ice thick-

ness. FYI with ice thickness <1.1 m or classified as “new-ice”

within CryoSat-2 data was classified as 5: FYI-Young. FYI with

ice thickness ≥1.1 m and snow depth ≤0.17 m was classified as

4: FYI-Thin-snow. FYI with ice thickness ≥1.1 m and snow

depth > 0.17 m was classified as 3: FYI-Thick-snow. These ice

thickness and snow depth classification criteria were applied to

the CryoSat-2 data products and assigned the according value of

per cent coverage of suitable habitat and the 95% confidence

intervals determined from the snow and ice survey-derived T val-

ues. All threshold values were determined from in situ ice core

chl a biomass, and snow and ice survey observations were

described in Section 3.2.

2. Block-model habitat classification: Throughout the article, we

define the term “block model” as a modelling or up-scaling

approach where each grid cell, which is typically of the order of

10s 9 10s of kilometres, is assigned one ice thickness and one

snow depth value thereby not accounting for spatial variability of

these properties within the grid cell. Accordingly, for this habitat

classification, a single value of T (Equation 3) was calculated for

each grid cell integrated over the ice thickness using ki

(1.55 m�1), snow depth using ks (20 m�1) and a (0.81, based on

the consistent presence of snow). Based on the threshold value

of T and the 95% confidence interval (CI95) (see Section 3.2),

each grid cell was assigned a habitat class of either suitable

(T ≥ threshold and CI95) or not-suitable (T < threshold and CI95)

for ice-algal growth (Table 5).

3 | RESULTS

3.1 | Snow and ice thickness morphology and
derived light transmittance

The Lincoln Sea sampling area is a dynamic area due to interaction

with, and exchange of, sea ice with the Arctic Ocean. The sampling

area was comprised of immobile landfast coastal sea ice at the

southern edges and mobile pack ice at its northern extent. The land-

fast ice consists primarily of consolidated MYI floes with smaller

amounts of FYI forming in the interstitial space during freeze-up.

F IGURE 2 Spatial correlograms showing Moran’s I as a function of distance classes (metres) at MYI site 06-13 for survey measurements of
(a) snow, (b) ice thickness and (c) ice surface topography. Vertical dashed line corresponds to the identified patch size listed in Table 1. Filled
red circles are significant values, and open circles are nonsignificant values at p < .05
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The division between landfast ice and pack ice is not a distinct line

but rather a transitional region that can be characterized by ice with

limited mobility due to geographic barriers and the intermittent nat-

ure of ice export through Nares Strait.

The sampled FYI ice sites can be considered the oldest FYI

because the ice formed in the interstitial space between MYI floes

during initial freeze-up. FYI surveys had relatively uniform ice thick-

nesses, with site mean thicknesses in the range 1.6–1.8 m and low

intrasite variability (Table 1). Only one sea ice ridge was surveyed at

FYI site 03-13 but was only partially surveyed at the end of the

transect (Fig. S3). Ice thickness was highly variable between and

within MYI sites, with site mean thicknesses ranging between 2.1

and 3.7 m and large intrasite variability (Table 1). Two MYI sites

were exceptionally thick with site mean thicknesses of 3.4 m (01-12)

and 3.7 m (05-13; Table 1). These two sites were classified as thick

MYI (“1: MYI-Thick”; Table 1) and also had the thickest snow cover

(>0.4 m; Table 1). The remaining MYI sites were classified as thin

MYI (“2: MYI-Thin”; Table 1), and all had comparable median snow

depths (0.28 to 0.33 m; Table 1). Snow depth was highly variable

within all MYI sites (Table 1). Two FYI sites (02-12 and 03-13) had a

significantly (t-test, p < .05) thicker snow cover with site medians of

0.29 m compared to the other FYI site (02-13) with a median snow

depth of 0.17 m (Table 1). The FYI sites were classified into thicker

snow (“3: FYI-Thick-Snow”) and thinner snow (“4: FYI-Thin-Snow”;

Table 1). In general, the snow cover was thicker on MYI (median for

all sites 0.34 m) than on FYI (median of all sites 0.25 m); however,

the lower range of snow depth observations (25th percentile) was

comparable at 0.18 m for FYI and 0.21 m for MYI (Table 1).

The characteristic differences between FYI and MYI observed for

all surveys are evident in Figure 3. Based on a visual inspection of

the surveys, the level surface morphology and uniform ice thickness

from a typical FYI survey (Figure 3a) were obviously different from

the undulating surface and highly variable ice thickness from a typi-

cal MYI profile (Figure 3b).

One survey was conducted on young FYI (site 05-12), which

formed more recently than the older FYI sites by the formation and

subsequent refreezing of open water leads. This site consisted of

thinner, uniform ice 0.8 m thick and a very thin and uniform snow

pack around 0.06 m (Table 1). This site was classified as young FYI

(“5: FYI-Young”; Table 1).

Overall, the FYI-Young site had the largest survey-derived T (me-

dian: 1.8%), with relatively lower variability (Table 1; Figures 4 and

5). The FYI-Thin-Snow site had the second largest survey-derived T

with an overall median (IQR) of 0.12% (0.04%–0.4%; Table 1; Fig-

ures 4 and 5). FYI-Thick-Snow and MYI-Thin sites had comparable

survey-derived T values with medians (IQR) of 0.0076% (0.002%–

0.028%) and 0.0033% (0.0004%–0.029%), respectively (Table 1; Fig-

ures 4 and 5). The MYI-Thick sites had the lowest survey-derived T

values with a median (IQR) of 0.0000% (0.0000%–0.0007%; Table 1;

Figures 4 and 5).

ANOVA and post hoc Tukey HSD tests indicated that ice core

location T values were not significantly different between FYI and

MYI-Hum ice types or between FYI-Young and MYI-Hum (Table 2).

However, significant differences in T were observed for all other

combinations of ice types (Table 2; Figure 6). FYI-Young cores had

the highest T, and MYI-RP had the lowest T values (Figure 6b). MYI-

Hum and FYI core T values were in between FYI-Young and MYI-RP

T values. MYI-Hum ice core T values were generally more uniform

than FYI T values (Figure 6b) but with overlapping ranges of values.

The snow depth, sea ice thickness and surface topography tran-

sects conducted in 2013 are shown in the supplementary material

(Figs S1–S8). The directional comparison, west–east vs. south–north,

of the eight perpendicular snow and ice surveys showed significant

differences for ice thickness at four sites, for snow depth at five

sites and for ice freeboard at three sites (Table 3).

From the snow and ice survey data, we found significant

(p < .05) negative correlations between snow depth and ice free-

board for the FYI-Young site (r = �.56), FYI sites (r = �.69) and MYI

sites (r = �.73; Table 4). All other correlations were not significant

(Table 4).

Spatial autocorrelation analyses using spatial correlograms indi-

cated larger sea ice thickness patch sizes (Pi) for FYI (~30 m) than

for MYI (14–24 m; Table 1). Snow patch sizes (Ps) were generally lar-

ger for FYI (30–45 m) compared to MYI (9–25 m; Table 1). Free-

board (surface topography) patch sizes (Pfb) were also typically larger

for FYI (25–39 m) than MYI (6–25 m); however, two MYI sites (01-

13 and 04-13) had patch sizes comparable to FYI (23–25 m;

Table 1). The other four MYI sites had surface topography patch

sizes between 6 and 10 m (Table 1). Patch sizes for each variable

and site are summarized in Table 1, and spatial correlograms

for each site and variable are shown in supplementary material

(Figs S9–S16).

3.2 | Chl a biomass

ANOVA and post hoc Tukey HSD tests indicated that ice core chl a

biomass was significantly higher in MYI-Hum ice cores than FYI and

MYI-RP ice cores (p < .05; Table 2 and Figure 6a). No significant dif-

ferences in ice core chl a biomass were observed between the other

ice types (Table 2 and Figure 6a). Three bottom-ice cores (triplicates)

were taken from the same hummock at site 06-13; the mean of the

triplicate core sections, 2.53 mg/m2, was the maximum value used in

the ANOVA and Tukey tests (Figure 7). Two of the triplicate cores

had the highest (3.59 mg/m2) and second highest (2.73 mg/m2) bio-

mass values of all cores (Figure 7). The third triplicate had the sixth

highest biomass (1.26 mg/m2). The three other MYI hummocks sam-

pled were among the top eight highest biomass of all bottom-ice

cores (Figure 7).

Two anomalous ice cores were identified as follows: core 06-13-

RP had anomalously high chl a biomass (0.55 mg chl a m�2) given its

low calculated T value (0.00008%). Station 06-13-RP was one of

two snow removal sites (this one was ~5 m away from the edge of

the sampled hummock). Therefore, we had under-ice PAR measure-

ments (data not presented here) that were ~500 times greater than

expected based on the thick snow cover (~0.4 m), which was likely

due to horizontal light scattering from the nearby hummock (see
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Section 4.2). Core 06-12 had anomalously low chl a biomass

(0.05 mg chl a m�2) given its high T value (4.1%). Core 06-12 was

removed from the piecewise hockey stick regression analysis. Fur-

thermore, the second FYI-Young core was also removed from the

hockey stick regression analysis due to the drastically different mor-

phological history of FYI-Young ice compared to the older FYI and

MYI (e.g., ice growth rates and the influence on establishing ice-algal

communities). This is discussed in more detail in Section 4.2.

Overall, phaeopigment concentrations were, on average,

0.18 mg/m3. Chl a represented, on average, 67.3% � 15.4% of the

total pigments for all core sections analysed.

Hockey stick regression analysis between chl a biomass and T

separated the ice core data into two distinct groups (Figure 7): (i)

suitable habitat for ice-algal growth indicated by relatively higher chl

a biomass (>0.5 mg chl a m�2) and (ii) not-suitable habitat for algal

growth indicated by near-zero chl a biomass (<0.5 mg chl a m�2)

and a regression line with a slope of approximately zero. The thresh-

old T value determined from the hockey stick regression analysis

was T = 0.014% with a 95% confidence interval between 0.0025%

and 0.068% (Figure 7).

3.3 | Floe-scale spatial coverage of suitable sea
ice-algal habitats

Based on the determined T threshold value of 0.014%, we identified

the spatial coverage along each snow and ice survey with

T ≥ 0.014% and classified these regions as suitable habitat for ice-

algal growth. The per cent coverage of suitable ice-algal habitat for

F IGURE 3 Snow and sea ice surveys
conducted at a) FYI site 02-12 showing
the south–north transect and b) MYI site
06-13 showing the West-East transect

F IGURE 4 Probability density
distributions of log-transformed
transmittance calculated from the snow
and sea ice surveys for each site. Dashed
vertical line corresponds to the threshold
transmittance value of 0.014% (log
space = �8.9). Grey shaded area
represents the 95% confidence interval
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all ice types showed a significant relationship with site median snow

depth (R2 = 0.82). The FYI-Young class had the highest coverage of

suitable habitat at 100% (CI95: 93%–100%); second highest was the

FYI-Thin-snow class at 94% (CI95: 65%–100%; Table 1). FYI-Thick-

snow and MYI-Thin classes had comparable suitable ice-algal habitat

coverage at 40% (CI95: 8%–71%) and 33% (CI95: 17–54; Table 1),

respectively, although FYI-Thick-snow had larger uncertainty. The

MYI-Thick class had the lowest suitable habitat coverage of 7%

(CI95: 2–16; Table 1). Station 05-12 was not included in the habitat

classes because we had low confidence that the survey representa-

tively sampled the ice types of the floe due to the short survey

length and the fact it was only in one direction.

3.4 | Pan-Arctic-scale spatial coverage of suitable
sea ice-algal habitats

Excluding missing data and grid cells outside the data mask (Fig-

ure 8), MYI had a total area of 1.83 9 106 km2 (28% of total ice

area), FYI had a total area of 4.30 9 106 km2 (67%), and FYI-Young

ice had a total area of 0.31 9 106 km2 (4.7%; Table 5). Class 4: FYI-

Thin-snow had the largest areal coverage of suitable habitat with

2.81 million km2 representing ~44% of the total ice area (Table 5).

The areal coverage of suitable habitat for class 5: FYI-Young was

0.31 million km2 representing 4.7% of total ice area (Table 5). Habi-

tat classes 2: MYI-Thin and 3: FYI-Thick-Snow had the same areal

coverage of 0.53 million km2 representing 8.2% of the total ice area

(Table 5). Class 1: MYI-Thick had the lowest areal coverage of suit-

able habitat of 0.02 million km2 representing only 0.3% of the total

ice area (Table 5).

Based on the block-model habitat classification, MYI contributed

substantially less to the overall suitable habitat coverage compared

to the observation-based approach (Figure 8 and Table 5). It is

apparent from Figure 8d that a large majority of the MYI cover is

classified as not-suitable for ice-algal growth, with an estimated suit-

able MYI-algal habitat area of only 0.02 million km2 representing

0.3% of the total ice area (Table 5). This is over an order of magni-

tude less suitable MYI-algal habitat coverage compared to the

hockey stick classification of MYI habitat (Table 5). On the other

hand, suitable habitat coverage for FYI was similar using both classi-

fication systems with the block model showing suitable habitat cov-

erage for FYI of around 4 million km2 and the hockey stick

classification for FYI was 3.3 million km2 (Table 5).

The range of uncertainty values for MYI habitat classes have a

more uniform spread relative to the overall suitable habitat coverage

estimate in comparison with FYI for both classification systems. This

is evident from the upper and lower limits of the CI95 for suitable

F IGURE 5 Probability density
distributions of log-transformed
transmittance calculated from the snow
and sea ice surveys combined for each ice
class. Dashed vertical lines corresponds to
the threshold transmittance value of
0.014% (log space = �8.9). Grey shaded
area represents the 95% confidence
interval

TABLE 2 Post hoc Tukey HSD test results showing the adjusted
p-value matrix for multiple comparison of the means of the log-
transformed chl a biomass and corresponding calculated
transmittance (T) between the different ice types at ice core
locations

Variable Ice type FYI FYI-Young MYI-RP MYI-Hum

Chl a FYI (N = 6) –

FYI-Young

(N = 2)

0.87 –

MYI-RP

(N = 13)

0.986 0.74 –

MYI-Hum

(N = 4)

0.047 0.52 0.013 –

T FYI (N = 6) –

FYI-Young

(N = 2)

0.01 –

MYI-RP

(N = 13)

0.009 0.000 –

MYI-Hum

(N = 4)

0.24 0.30 0.0001 –

Bold values indicate significant difference between ice types (p < .05).
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MYI-algal habitat, which had comparable absolute differences to the

overall estimate for both classification systems. FYI on the other

hand had lower limits of the CI95 with much greater absolute differ-

ences relative to the overall estimate in comparison with the upper

limits of the CI95 (Table 5 and Figure 8). This suggests a potential

bias for estimating suitable FYI-algal habitat.

4 | DISCUSSION

4.1 | Sea ice-algal chl a biomass in different ice
types

To the best of our knowledge, the bottom-ice biomass values from

MYI hummock ice (range 0.62–3.6 mg chl a m�2; 4.1–35.9 mg chl

a m�3; Figure 6a) are among the highest reported from Arctic

springtime MYI. Melnikov, Kolosova, Welch, and Zhitina (2002)

observed comparable maximum bottom-ice-algal chl a concentrations

of 9.32 mg/m3 in MYI from the Beaufort/Chukchi Seas during July.

Sch€unemann and Werner (2005) reported MYI bottom chl a concen-

tration of 3.4 mg/m3 during late-winter (April) in Fram Strait. Lange

et al. (2015) argued in combination with the Sch€unemann and Wer-

ner (2005) study that high bottom-ice-algal biomass may be common

features associated with MYI hummocks due to their typically thin-

ner or absent snow cover resulting in more available light for bot-

tom-ice algae. Based on a more representative sample size, this

study provides evidence that MYI hummocks can support sea ice chl

a biomass in the upper range of values reported for MYI in the Arc-

tic Ocean (Melnikov et al., 2002; Sch€unemann & Werner, 2005) and

higher than those observed in FYI in the same region. These results

reinforce the hypothesis proposed by Lange et al. (2015) that MYI

hummocks are a suitable habitat for sea ice-algal biomass, which can

be attributed to more available light due to a typically thinner or

absent snow pack compared to the surrounding MYI with a more

uniform surface topography.

Of the two FYI-Young cores sampled in this study, one core had

high chl a biomass comparable to the MYI-Hum cores, which we can

also attribute to high bottom-ice light levels due to a thin, uniform

snow pack and thin ice. The other FYI-Young core had the thinnest

snow cover and thinnest sea ice of any cores considered in this

study. However, it had near-zero chl a even though light levels

within the bottom-ice layer would have been high. Lange et al.

(2015) attributed the low biomass to either light levels that were too

high and inhibited algal biomass growth and accumulation (Barlow

et al., 1988; Juhl & Krembs, 2010; Michel, Legendre, Demers, &

Therriault, 1988), or sea ice growth rates were too rapid and there

was not sufficient time (i.e., due to recent formation of the ice) to

establish substantial algal biomass (Legendre, Aota, Shirasawa, Marti-

neau, & Ishikawa, 1991). Regardless of the higher light levels present

under FYI-Young ice types, higher chl a biomass was observed in

three of the bottom-ice hummock samples. This confirms the pre-

mise that something other than available light is limiting algal

growth, which is contrary to the assumption of the habitat classifica-

tion. Therefore, we excluded the FYI-Young cores from the hockey

stick regression analysis. Nevertheless, in the habitat classification

analysis, we did assign FYI-Young ice as having 100% suitable habi-

tat coverage, which we must note is solely based on the available

light for bottom-ice-algal communities but does not account for the

potentially different environmental histories of this ice type. We sug-

gest further work is required to determine a maximum T threshold

value to be considered in future habitat mapping studies.

One potential explanation for the lower than expected chl a bio-

mass from FYI sites with high potential light availability is that the

snow cover is continuously being redistributed, which would result

in a continuously changing light regime for the ice-algal communities

at the bottom of FYI. This is a consequence of the level surface

topography typical of FYI, which is apparent from the snow and ice

survey at FYI site 02-12 (Figure 3a). This results in a drifted snow

pack that is redistributed based on wind speed and direction and is

continuously changing as there are no surface ice features (e.g.,

ridges or hummocks) that can “trap” the snow (note: we are only

referring to level FYI). Therefore, constant changes in the FYI snow

cover may have resulted in a thicker snow pack averaged over a

longer period immediately before our measurements, in effect dimin-

ishing the capacity for FYI to accumulate chl a biomass compared to

MYI hummocks. The snow pack could have also been thinner.

F IGURE 6 Comparison between ice types from ice core data: (a)
chl a biomass and b) log-transformed calculated transmittance (T).
Bars represent the median, and error bars the interquartile range
(25th and 75th percentiles). Dashed horizontal line in (b) is the
threshold T = 0.014% (log space = �8.6). Horizontal grey shaded
area in b) represents the 95% confidence interval for the threshold T
value
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However, if this were the case, we would have expected to observe

higher biomass. Furthermore, if the snow pack was indeed thinner

before our sampling, then this would strengthen our premise that

the continuously changing snow pack has a negative impact on ice-

algal growth even under suitable light conditions. Ice algae that stops

and starts growing under continuously changing light conditions

would be far less efficient than ice algae with more consistent

growth conditions, for example MYI hummocks with consistently

low-snow cover. This is because photoadaptation involves break-

down and synthesis of biomolecules (e.g., pigments and enzymes),

which has an energy cost and a delayed response on the order of

days (Michel et al., 1988).

Observed differences in chl a do not necessarily translate into

differences in carbon biomass due to lower C:chl a ratios in low light

environments compared to high light environments (e.g., Michel

et al., 1988) and the likely contribution of nonalgal carbon within ice

communities. Therefore, the chl a biomass distinction can confidently

help identify distinct regimes of suitable vs. nonsuitable ice-algal

habitat in terms of available light. Interpreting the variability in chl a

biomass within those ice-algal habitat classes, however, would

require additional physiological and biogeochemical data.

4.2 | In situ survey-based sea ice-algal habitat
classification

Using piecewise “hockey stick” regression is an established approach

to identify ecological thresholds (e.g., Toms & Lesperance, 2003;

Toms & Villard, 2015). Our application of hockey stick regression

indicated a reliable threshold value for transmittance (T), with associ-

ated confidence intervals (CI95) needed to address the potential

TABLE 3 Directional comparison of snow and sea ice surveys from 2013 summarized by west–east (WE) and south–north (SN) transect
directions

Site
Ice
Type

Mean hi
(m)a Median (IQR) hi (m)a Median (IQR) hs (m)a

Median (IQR)
fb (m)a rmsfb

WE SN WE SN WE SN WE SN WE SN

02-13 FYI 1.7 1.8 1.7 (1.6–1.7) 1.8 (1.7–1.8) 0.20 (0.15–0.25) 0.13 (0.08–0.19) 0.11 (0.10–0.12) 0.12 (0.10–0.16) 0.11 0.13

03-13 FYI 1.6 1.6 1.6 (1.6–1.7) 1.6 (1.5–1.7) 0.28 (0.24–0.34) 0.31 (0.25–0.40) 0.05 (0.03–0.07) 0.04 (0.01–0.07) 0.06 0.06

01-13 MYI 2.7 3.1 2.7 (2.1–3.2) 2.8 (2.2–3.9) 0.36 (0.15–0.47) 0.28 (0.04–0.41) 0.11 (0.04–0.31) 0.18 (0.02–0.45) 0.22 0.34

04-13 MYI 3.4 2.7 3.3 (2.8–4.0) 2.7 (2.2–3.2) 0.32 (0.17–0.42) 0.34 (0.1–0.45) 0.16 (�0.03

to 0.37)

11.5 (�0.03

to 0.33)

0.28 0.27

05-13 MYI 3.7 3.7 3.2 (3.0–4.1) 3.6 (3.2–4.3) 0.44 (0.31–0.68) 0.41 (0.22–0.6) 0.22 (0.0–0.36) 0.33 (0.16–0.48) 0.30 0.40

06-13 MYI 2.6 2.9 2.5 (2.1–2.9) 3.2 (2.5–3.3) 0.26 (0.1–0.43) 0.28 (0.2–0.42) 0.22 (0.04–0.35) 0.23 (0.15–0.34) 0.26 0.27

07-13 MYI 2.6 2.5 2.6 (2.4–2.8) 2.5 (2.1–2.8) 0.28 (0.21–0.35) 0.4 (0.31–0.53) 0.25 (0.16–0.32) 0.17 (0.07–0.27) 0.22 0.31

08-13 MYI 2.1 2.1 1.9 (1.7–2.5) 2.0 (1.8–2.5) 0.35 (0.27–0.42) 0.27 (0.21–0.43) 0.8 (0.05–0.14) 0.13 (0.06–0.19) 0.15 0.19

“rms” refers to the root-mean-square.
aBold values correspond to significant differences (p < .05) and italics correspond to differences with 0.05 < p < .1, based on t tests comparing the WE

and NS perpendicular transects.

TABLE 4 Correlation matrix between the snow and ice survey-
derived properties: snow depth (hs), ice thickness (hi), ice freeboard
(fb) and log-transformed calculated transmittance (T)

Ice type Variable hs fb hi

Lead ice hs –

fb �0.56* –

hi �0.13 0.34* –

ln[T] �0.99* 0.57* 0.11

FYI hs –

fb �0.69* –

hi �0.37* 0.57* –

ln[T] �0.97* 0.56* 0.21*

MYI hs –

fb �0.73* –

hi �0.27* 0.66* –

ln[T] �0.92* 0.50* �0.06*

*Indicates significant correlations (p < .05), and bold indicates strong

correlations (r ≥ .5).

F IGURE 7 Piecewise “hockey stick” regression analysis plot. Red
solid line segments are the two fitted piecewise regressions. Dashed
vertical line indicates the threshold value (aka: change point) of the
natural log-transmittance identified by the regression analysis. Grey
shaded area indicates the 95% confidence interval for the threshold
value. Blue open circle corresponds to core 06-13-RP located
adjacent (~5 m) to a hummock
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uncertainty of this approach. The threshold T value and CI95 was

applied to the T values calculated for our snow and ice survey as the

first step of the hockey stick habitat classification system.

Taking a block-model habitat classification approach using the

survey median values for habitat classes 4: FYI-Thin and 5: FYI-

Young would result in 100% suitable ice-algal habitat coverage,

which is similar to what was determined taking into account the spa-

tial variability of the entire surveys (Table 1). The CI95 for the FYI-

Thin-Snow surveys, however, had a large range indicating that

assigning only one value to this ice type is not an appropriate

approach. On the other hand, FYI-Young ice had CI95 between 93

and 100%, suggesting that this ice type may be classified as 100%

suitable ice-algal habitat with high confidence.

The habitat classes with thick snow packs (FYI-Thick-Snow, MYI-

Thin and MYI-Thick) would all be classified as 0% suitable ice-algal

habitat using the block-model approach, whereas the actual

observed coverage of suitable habitat was between 7 and 40% and

upper ranges of the CI95 between 16 and 71% (Table 1). Iacozza and

Barber (1999) showed a similar assessment of different ice types in

terms of light transmittance and determined that accounting for the

spatial variability of snow depth is crucial due to the nonlinear rela-

tionship between light transmittance and snow depth. This means

F IGURE 8 Maps of the Arctic Ocean showing: (a) CryoSat-2 derived sea ice thickness for April 2013 (Ricker et al., 2014), (b) snow depth
for April 2013 based on the modified Warren snow climatology (Warren et al., 1999) and (c) hockey stick habitat classification criteria applied
to sea ice thickness and snow depth from a) and b); and d) block-model habitat classification applied to sea ice thickness and snow depth from
a) and b). Percentages shown in parentheses represent the per cent coverage of suitable habitat for the corresponding habitat class. Only sea
ice thickness and snow depth data within the “Mask” (delineated by the thick black line) were used in our analyses, as the data outside this
regions are not reliable (Ricker et al., 2014). CryoSat-2 data products were acquired from www.meereisportal.de
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that site-summarized snow depths (e.g., mean or median values) are

not appropriate to assess the influence of the overall snow pack on

light transmittance (Iacozza & Barber, 1999). Together with our

results, this emphasizes that block-model classification systems or

modelling applications of sea ice algae growth and primary produc-

tion (Dunne et al., 2012; Dupont, 2012; Vancoppenolle, Meiners

et al., 2013) have a high probability of underestimating the potential

of ice-algal habitats, which is largely due to the spatial variability of

snow on the different sea ice types.

Spatial heterogeneity of sea ice-algal biomass is related to the

distribution of snow on FYI during spring, due to the large influence

of snow on light transmission, with snow patch sizes reported

between 10 and 90 m (Gosselin et al., 1986; Mundy, Barber, &

Michel, 2005). Similarly, our spatial autocorrelation analyses demon-

strated snow patch sizes, Ps, between 30 and 45 m for snow on FYI.

Our results also showed that the variability of suitable habitat on

FYI was largely controlled by the snow pack, which is spatially redis-

tributed by wind creating the wave-like snow drifts with peaks (high

snow) and troughs (low snow). Gosselin et al. (1986) suggested

wind-induced drifting resulted in short-term variability of the snow

pack, which also influenced the distribution and perhaps redistribu-

tion or recolonization of bottom-ice-algal communities. This supports

our proposition that FYI-algal biomass growth and accumulation may

be limited based on the short-term temporal variability of the snow

pack and hence available light for bottom-ice-algal communities.

Snow distribution also had a large influence on the spatial cover-

age of suitable ice-algal habitat for MYI. There were distinct differ-

ences, however, between FYI and MYI as a result of the different

mechanisms and features controlling the distribution of snow on

MYI. Contrary to FYI, which has a snow pack in a continuous state of

change due to wind-driven redistribution, the snow distribution on

MYI is strongly influenced by the highly undulating ice surface topog-

raphy where snow accumulates in topographic lows or regions adja-

cent to hummocks and is removed or has substantially less

accumulation on the surface of hummocks (Iacozza & Barber, 1999;

Perovich et al., 2003; Sturm et al., 2002). This relationship between

snow and ice surface is apparent from the MYI snow and ice survey

(Figure 3b) and was a consistent feature observed at all MYI sites

TABLE 5 Summary of the pan-Arctic suitable ice algae habitat area derived by applying the “hockey stick regression” and “block model”
classification approaches to the April 2013 CryoSat-2 ice thickness and snow depth data

Classification
approach

Habitat class/
Ice type Class criteria

% suitable habitat
per ice class/
type (CI)

Areal coverage per
ice class/type
[106 km2]

Areal coverage of
suitable habitat
[106 km2] (CI)

Per cent
suitable habitat
of total ice
area % (CI)

Hockey stick 1:MYI-thick MYI ≥ 3.25 m 7 (2–16) 0.45 0.02 (0.00–0.04) 0.3 (0.1–0.6)

2:MYI-thin MYI < 3.25 m 33 (17–54) 1.39 0.53 (0.27–0.87) 8.2 (4.2–13.4)

3:FYI-thick-snow FYI ≥ 1.1 m and

snow ≥ 0.17

40 (8–71) 1.31 0.53 (0.11–0.93) 8.2 (1.6–14.5)

4:FYI-thin-snow FYI ≥ 1.1 m and

snow < 0.17

94 (65–100) 2.99 2.81 (1.94–2.99) 43.6 (30.1–46.4)

5:FYI-Young Ice < 1.1 m 100 (93–100) 0.31 0.31 (0.28–0.31) 4.7 (4.4–4.7)

MYI 30 (15–51) 1.83 0.54 (0.28–0.90) 8.5 (4.3–14)

FYI 78 (48–91) 4.30 3.3 (2.1–3.9) 52 (32–60)

FYI-young 100 (93–100) 0.31 0.31 (0.28–0.31) 4.7 (4.4–4.7)

Total 65 (40–80) 6.44 4.2 (2.6–5.1) 65 (40–80)

Classification
approach

Habitat class/
Ice type Class criteria

% suitable habitat
per ice class/type
(CI)

Areal coverage per
ice class/type
[106 km2] (CI) –

Per cent of total
ice area % (CI)

Block model 1: Not-Suitable Algae

Habitat

T > 0.014 (CI) % 0%

MYI 1.81 (1.68–1.83) 28.2 (26.1–28.5)

FYI 0.31 (0.02–2.98) 4.9 (0.38–46.3)

FYI-Young 0.00 (0.00–0.004) 0.00 (0.00–0.07)

Total 2.1 (1.7–4.8) 33.1 (26.5–74.8)

2: Suitable Algae

Habitat

T < 0.014 (CI) % 100%

MYI 0.02 (0.00–0.15) 0.31 (0.00–2.4)

FYI 3.99 (1.32–4.28) 61.9 (20.5–66.4)

FYI-Young 0.30 (0.30–0.30) 4.7 (4.6–4.7)

Total 4.3 (1.6–4.7) 66.9 (25.2–73.5)
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(Figs S1, S4–S8). Spatial autocorrelation analyses for MYI sites

showed surface topography patch sizes mostly between 6 and 10 m;

however, ~25 m patches were observed at two sites. The surface

topography patch sizes were interpreted as the size of hummocks.

The 6–10 m hummock size range was obvious from the snow and ice

surveys and was the most obvious size range for the undulating sur-

face features in all surveys with only a few larger hummocks ~25 m

(Figure 3b and Figs S1–S16). The observed distribution of snow in

relation to the highly undulating MYI surface indicates that the hori-

zontal variability of snow on MYI is also a relatively constant feature

with more snow at low points (e.g., refrozen melt ponds) and adjacent

to hummocks (or ridges) but no or little snow accumulation on hum-

mocks. This is an important distinction from FYI, as MYI hummocks

represent a constant low-snow environment, which are not subject

to rapid changes in snow depth and bottom-ice light availability, and

thus can be considered a more stable habitat for sea ice algae.

The quantification of typical MYI hummock sizes and FYI snow

drift sizes also has important implications for airborne and satellite

remote sensing of snow and subsequently the potential for develop-

ing sea ice-algal habitat classification systems from such large-scale

pan-Arctic observations. The common size range of snow-free/low-

snow hummocks between 6 and 10 m suggests that airborne or satel-

lite sensors would need to have at least the same spatial resolution in

order to capture the variability of the snow on these features. This is

also the case for FYI with our observed snow drifts ranging between

30 and 45 m and other studies between 10 and 90 m (e.g., Gosselin

et al., 1986; Iacozza & Barber, 1999; Mundy et al., 2005). Therefore,

in order to observe the multiscale variability (e.g., floe scale, regional,

pan-Arctic) of snow on MYI and FYI, without the current requirement

of extensive ground surveys, there is a need for improved satellite

and airborne sensors that can resolve these spatial scales. At present,

even the best airborne snow radar measurements have too coarse of

a spatial resolution and large uncertainties to be useful for character-

izing the spatial variability of snow depths at the required scale, and

further improvements in snow depth observations are needed (Kurtz

& Farrell, 2011; Kwok & Haas, 2015; Newman et al., 2014).

Suitable sea ice-algal habitat for MYI had high variability

between sites, which was related to overall mean site ice thickness.

MYI-Thick sites (mean ice thickness >3.25 m) had substantially less

suitable habitat than MYI-Thin sites, which was the result of thicker

hummock ice with T values smaller than the threshold value. Under

snow-free conditions, a T value of 0.014% corresponds to an ice

thickness of ~5 m. This means that MYI sites with mean ice thick-

nesses >3.25 m had a high proportional coverage of hummocks

thicker than ~5 m, which did not represent suitable ice-algal habitat

even under snow-free conditions.

One exception to this pattern was site 05-12 (Table 1), which

was conducted in only one direction and covered a shorter survey

length (130 m) than the others sites. Comparison between the per-

pendicular west–east and south–north surveys at each site indicated

significant differences between all physical parameters at most sites,

suggesting site 05-12 may not be representative of the surveyed

ice floe. Gosselin et al. (1986) also showed that the orientation of

survey transects was critical in identifying the spatial variability of

snow on FYI and the resulting influence on the spatial distribution

of bottom-ice-algal biomass. On level FYI, snow drift patterns are

wave-like undulations of snow depth with uniform snow features

(e.g., snow drifts or valleys) forming perpendicular to the wind

direction. Therefore, it is possible to conduct single linear surveys

oriented parallel to a snow drift that do not cross the snow drift.

On MYI, the snow (re-) distribution pattern is less likely to have a

similar influence on the representativeness of the sampling because

the ice surface topography primarily controls snow distribution.

Though hummocks may not have a direct relationship to wind

direction, it would still be possible to survey a single profile line,

which predominantly covers the “valley” between hummocks and

does not representatively capture the undulating surface topogra-

phy and snow distribution on MYI. This sampling bias is eliminated

or significantly minimized when conducting perpendicular survey

transects. A single direction survey was conducted for FYI-Young

ice; however, due to the typical uniform distribution of snow and

ice on this ice type, perpendicular transects are not necessary to

capture this small variability.

For MYI, we demonstrated a reliable observation-based habitat

classification system, which was possible due to the relatively stable

pattern of snow distribution on MYI (thin-snow on hummocks, thick

snow on refrozen ponds), which was independent of median snow

depth. This also implies that upscaling such a habitat classification

system to larger-scale satellite or airborne remote sensing observa-

tions would be more robust for MYI. This is due to the fact that

observation systems and modelling of sea ice thickness are much

more reliable and established than observations and forecasts of

snow depth on sea ice (Kurtz & Farrell, 2011; Kwok & Haas, 2015;

Newman et al., 2014). Modelling a relatively static system, such as

the distribution of hummocks, can be assumed to be more reliable

than a dynamic system, such as wind-driven snow distribution.

We surveyed fewer FYI sites and observed high variability in

snow depth at the surveyed sites. With no constant sea ice surface

features on FYI, the snow surface and suitable habitat can vary on

short time scales in an unpredictable manner. Nonetheless, we did

observe a relationship between suitable habitat coverage and median

snow depth. Using these criteria, we were able to classify FYI into

two classes based on the amount of snow accumulation. However,

there remains a strong need for more ground-truthing of snow

depths on FYI in order to assess the reliability of applying the habi-

tat classification to larger scales.

4.3 | Pan-Arctic habitat classification

Overall, MYI accounted for nearly one-third of the total ice area,

with an associated suitable habitat coverage corresponding to 8.5%

of the total ice area. Accounting for the variability of the MYI snow

and ice properties using the hockey stick habitat classification sys-

tem resulted in suitable habitat coverage estimates 27 times greater

than the block-model-based approach. These findings indicate MYI is

an overlooked region in terms of potential for ice-algal growth,
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which likely has a significant and underestimated contribution to the

total algal biomass and carbon budget of the Arctic Ocean.

We must also consider that these estimates for hummocks are

likely an underestimate due to the potential influence of horizontal

light scattering around hummocks, which we observed to extend to a

distance of ~5 m from the hummock edge. This emphasizes that suit-

able habitat around hummocks is even greater than we have shown.

The potential implications of horizontal light scattering around hum-

mocks require further investigation in order to quantify these regions.

Suitable FYI habitat largely comes from the thin-snow FYI class,

which indicates that snow depth over FYI is of high importance. This

means the accuracy of suitable habitat estimates for FYI is highly

dependent on the accuracy of the snow depth measurements, which

are currently derived from the modified Warren climatology.

The application of this habitat classification does not account for

the presence of sea ice ridges, which can make-up a substantial por-

tion of the overall ice pack (Haas, Hendricks, Eicken, & Herber,

2010). Since we did not conduct snow and ice surveys or sea ice

coring on ridged ice, we cannot include these features in our analy-

ses. When travelling on sea ice, it is common to see ridged sea ice

regions with large, vertical snow-free ice chunks. Snow-free ridges

and hummocks have been previously document from other studies

(Iacozza & Barber, 1999; Perovich et al., 2003; Sturm et al., 2002).

Therefore, we could also speculate that light transmittance under

snow-free ridges may also produce a suitable habitat in much the

same way hummocks are considered a suitable habitat. Based on this

premise, our habitat classification would be an underestimate of the

suitable habitat for both ice types. The study of sea ice ridges is

logistically demanding, even more so than 4 m hummock ice. Never-

theless, we strongly recommend physical and biological sampling of

sea ice ridges in order to assess the potential of sea ice ridges as

another overlooked region of suitable ice-algal habitat, which could

become even more important as MYI continues to decline.

4.4 | Implications of MYI loss

Most of the thick MYI with low suitable habitat coverage is in the

region north of the Canadian Arctic Archipelago and Greenland

where the thickest sea ice in the Arctic is located (Haas, Hendricks, &

Doble, 2006; Haas et al., 2010). Submarine sonar ice thickness mea-

surements conducted during the period 1958–1976 had mean ice

thicknesses well over 3 m in all regions of the Arctic Ocean except

the Beaufort and Chukchi Seas. Basinwide Arctic sea ice thickness

observations during winter 1980 had a mean of 3.64 m (Kwok &

Rothrock, 2009). Since the early 1990s mean ice thicknesses for all

regions have been well below 3.25 m (Kwok & Rothrock, 2009).

Based on our established MYI thickness threshold of 3.25 m, we

speculate that this shift from thick MYI, which dominated the Arctic

Ocean up until the 1980s, to thin MYI in the 1990s was accompanied

by an increase in the suitable ice-algal habitat coverage.

As MYI continues to thin and be replaced by FYI, our findings

suggest that the spatial coverage of suitable ice-algal habitat will lar-

gely depend on the temporal and spatial distribution of snow on sea

ice, which will be influenced by continued warming of the Arctic

ocean and atmosphere. Our findings for FYI suggest that with pro-

jections for an overall increase in snow precipitation (IPCC, 2013),

there would be similar or decreased spatial coverage of suitable ice-

algal habitat. Conversely, if snow precipitation remains the same or

decreases, as projected for the spring season by Hezel, Zhang, Bitz,

Kelly, and Massonnet (2012), our findings suggest increased spatial

coverage of suitable habitat. Regardless of the future snow situation,

there will be one inevitable difference: the permanent and reliable

ice-algal habitat found under springtime MYI will be replaced by a

continuously varying habitat under springtime FYI.

The underestimation of the potential for MYI to host ice algae

implies that the baseline for future predictions of ecosystem produc-

tivity and structure may be considerably higher than commonly

assumed. Hence, relative increases in primary and secondary produc-

tion due to a replacement of MYI by FYI may be lower than expected

or even zero. Shifts in the timing of ice algae blooms caused by the

different bloom dynamics in MYI vs. FYI, in addition to the presence

of reliable ice-algal habitat in the form of MYI hummocks, however,

may affect species which have adapted their life cycles to survival in

hitherto MYI-dominated regions. Many key Arctic species (e.g., cope-

pods, amphipods, polar cod and seals) have demonstrated a high

dependency on ice algae derived carbon in almost all regions of the

Arctic Ocean (e.g., Budge et al., 2008; Kohlbach et al., 2016, 2017;

Søreide et al., 2013; Wang et al., 2015, 2016). Therefore, we suggest

that the disappearance of MYI will have profound pan-Arctic ecologi-

cal consequences yet to be fully understood and requires more exten-

sive research efforts in the MYI-covered central Arctic Ocean.
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