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Abstract

As consequences of global warming sea-ice shrinking, permafrost thawing and changes in

fresh water and terrestrial material export have already been reported in the Arctic environ-

ment. These processes impact light penetration and primary production. To reach a better

understanding of the current status and to provide accurate forecasts Arctic biogeochemical

and physical parameters need to be extensively monitored. In this sense, bio-optical proper-

ties are useful to be measured due to the applicability of optical instrumentation to autono-

mous platforms, including satellites. This study characterizes the non-water absorbers and

their coupling to hydrographic conditions in the poorly sampled surface waters of the central

and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter

(CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phyto-

plankton and non-algal particles absorption reproduces the hydrographic variability in this

region of the Arctic Ocean which suggests a subdivision into five major bio-optical prov-

inces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eur-

asian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic

Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-

a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property

model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust esti-

mates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed

for the western Arctic Ocean produced reliable information on the absorption by colored

matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean

color algorithms are able to identify with low uncertainty the distribution of the different opti-

cal water constituents in these high CDOM absorbing waters. In addition, a clustering of the
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Arctic Ocean into bio-optical provinces will help to develop and then select province-specific

ocean color algorithms.

1. Introduction

The Arctic Ocean basin receives 11% of the global freshwater input with its volume repre-

senting only 1% of the global ocean [1]. It obtains the largest amount of freshwater relative

to its volume and therefore is the ocean most influenced by the continents on Earth.

Together with the fresh water, high loads of terrestrial material (organic and inorganic; dis-

solved, colloidal and particulate) are introduced in that basin, in particular through the

wide Siberian continental shelves [2–6]. By this the Arctic Ocean presents a large carbon

reservoir and plays an important role in the planet’s carbon cycle. Besides, the Arctic envi-

ronment has been experiencing the effects of ongoing global warming regarding permafrost

thaw [7], changes in fresh water export [8,9] and decline of sea-ice extent [10,11] and vol-

ume [12]. The permanent loss of sea-ice may lead to an increase in light penetration in the

Arctic surface layer [13] and to changes in the composition of phytoplankton assemblages

[14], the overall primary production in the Arctic Ocean [15,16], and the degradation of ter-

restrial material transported to that basin [17,18].

Recent studies have pointed out regional differences in the Arctic Ocean with respect to

biogeochemical parameters. For instance, shelf and open Arctic seas have shown to diverge in

regards to the fluxes of biogenic matter [4] and export of terrigenous material [3]. Further-

more, while varying between shelf and open water in the Arctic [3,19], colored and fluorescent

dissolved organic matter (CDOM and FDOM, respectively) content also differ between the

western and eastern Arctic seas [6,20–23]. Similarly, geographical differences in primary

[24,25] and net community production [26], as well as in phytoplankton (e.g., dinoflagellates)

and protist distribution [27,28] in the various basins of the Central Arctic Ocean have been

observed. Such biogeographic patterns are likely related to hydrographic and sea-ice condi-

tions within the region [28,29], denoting a strong coupling of physical and biogeochemical

processes within the surface layers of the Arctic Ocean.

With the aforementioned effects of global warming and its impacts on the Arctic environ-

ment, improved monitoring and understanding of the current situation and changes in bio-

geochemical parameters are necessary. The optical properties of dissolved organic matter are

reliable water mass tracers in the Arctic Ocean according to reports based on in situ [22,30]

and remote sensing data [31] and has also been proven to be useful on monitoring small scale

changes in coastal environments [32]. Biogeochemical parameters such as chlorophyll-a (Chl-

a) and CDOM can be determined (and be estimated for primary production) in surface waters

by ocean color remote sensing. Furthermore, the Arctic Ocean is a unique ocean where, even

in pelagic waters, the non-water light absorption in the surface layer being dominated by

CDOM [21] which does not co-vary with Chl-a. Opposed to that, the latter is assumed by

empirical ocean color algorithms. Hence, these algorithms lead to an overestimation of Chl-a
[33–35] and overall poor performance in the Arctic [36]. Improvement of algorithms for the

Arctic Ocean is challenging given the difficulties to sample for validation data in those waters,

in particular, on the remote Siberian shelves [37]. Several studies have addressed the quality of

the estimates from ocean color algorithms in the western Arctic ocean [19,21,33–35,38,39].

Regionally tuned algorithms provided improved estimates related to global algorithms in the

western Arctic [34,38]. In that same region, semi-analytical algorithms obtained even better
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estimates of Chl-a [21,33]. Besides Chl-a, semi-analytical algorithms can also retrieve CDOM

in that region with low uncertainty [19,21,33].

Here, we focus on optical and hydrographic sampling in the central-Eastern Arctic, an area

up to now hardly evaluated [39] for the application of satellite and in situ optical measure-

ments to monitor the surface biogeochemistry of the Arctic Ocean. The objectives of this study

are twofold: first, we aim to obtain a characterization of the non-water absorption constituents

in the surface waters in the Central-Eastern Arctic. Those properties were tested whether they

reproduce hydrographic and geographic patterns (or units). As a second objective, we evaluate

empirical and semi-analytical ocean color algorithms commonly applied to studies in the Arc-

tic Ocean and compare their performances. Given the novelty of the results presented in this

study, it contributes to the growing Arctic remote sensing research, which has been so far

mostly devoted to the western Arctic Ocean. Moreover, as already pointed out [37], the sam-

pling effort for the Arctic Ocean is still very low compared to other ocean basins and more

studies are required to improve the ocean color estimates for that basin. Finally, it is important

to stress that whilst ocean color sensors are not able to monitor under very low (or no) illumi-

nation and cloudy conditions and ice-covered regions, in situ bio-optical measurements in

those regions are crucial for improving biogeochemical models; however, such measurements

are very scarce in the central and eastern Arctic Ocean. Furthermore, results on in situ bio-

optical and biogeochemical properties are important for calibrating sensors coupled to auton-

omous platforms (e.g. satellites; gliders; Autonomous Underwater Vehicles, AUVs; Ice-Teth-

ered Platforms, ITPs; etc.). In the future, those sensors will measure in situ biogeochemical

properties enabling monitoring on high spatial and temporal resolution and coverage in the

Arctic Ocean [e.g., ITPs [40–42]].

2. Methods

2.1. Sampling

The ARK XXVI-3 (PS-78) cruise was conducted in shelf and open waters through the central-

eastern Arctic Ocean from 5th August to 6th October 2011 onboard the R/V Polarstern. Tem-

perature and salinity profiles were acquired with a CTD attached to a rosette system at 110

oceanographic stations [43] (Fig 1A). Surface water samples for analysis of dissolved organic

matter, particulate matter and chlorophyll-a (Chl-a) were taken using Niskin bottles attached

to the rosette system at 62 stations (Fig 1B). As observed in Fig 1C and 1D, most of the sampled

area was covered by sea-ice. No specific permissions were required for these locations/activi-

ties given that sampling was performed out of the 200 Mile zone. Data are available at https://

doi.org/10.1594/PANGAEA.867532.

2.2. Particulate absorption analysis

Water samples for particulate absorption analysis were filtered on GF/F filters (0.7 μm pore

size), shock-frozen in liquid nitrogen and stored at –80˚C until laboratory analysis at the

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Measurements

were carried out on a dual-beam UV/VIS spectrophotometer (Cary 4000, Varian Inc.)

equipped with a 150 mm integrating sphere (external DRA-900, Varian, Inc. and Labsphere

Inc., made from SpectralonTM) using a quantitative filterpad technique [46]. The filters were

placed inside and at the center of the integrating sphere using a center-mount filter holder per-

pendicular to the light beam. A wavelength scan from 300 to 850 nm with a resolution of 1 nm

(slit width 2 nm, scan rate 150 nm min−1) was performed, when the reflectance ports were cov-

ered with SpectralonTM reflectance standards. The baseline was recorded beforehand with a

clean, dry filter, and a filter, which was soaked for more than 30 min in freshly produced Milli-
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Q water, was taken as a reference. The absorption coefficient was calculated from the transmit-

tance [T(λ)], which is derived from the optical density (OD) measurements, using a path

Fig 1. Study region and sea-ice conditions. ODV maps [44] showing the sampling stations occupied during the ARK-XXVI/3 (PS-78) cruise where CTD

casts (a), water sampling and hyperspectral radiometric measurements (b) were performed. Arrows in (a) represent the main surface circulation patterns in

the Arctic Ocean colored as follows: major rivers (green); inflowing currents (red); out flowing currents (blue) [45]. AMRSR-2 sea-ice concentration (http://

meereisportal.de) for August (c) and September (d) 2011.

https://doi.org/10.1371/journal.pone.0190838.g001
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length amplification factor of 4.5 (β = 1/4.5) [47] following the equation:

apðlÞ½m
� 1� ¼ � ln½TðlÞ � A� b� V � 1�; ð1Þ

TðlÞ ¼ exp½� ODðlÞ�; ð2Þ

where V is the filtrated sample volume in m3 and A the filter clearance area in m2. Results

from the original filter gave total particulate absorption, ap. The algal pigments were bleached

with NaOCl [48,49] to determine the absorption by detrital material (or non-algal particles),

hereafter referred to as non-algal particles (aNAP). The bleached filters were measured follow-

ing the procedure described above. The particulate absorption of phytoplankton at each wave-

length (λ) [aph(λ)] was obtained by subtracting aNAP from ap.

2.3. Dissolved organic matter absorption analysis

Water samples for DOM analysis were filtered through prerinsed 0.2 μm filters immediately

after sampling and stored in amber glass vials in dark at 4˚C until analysis in laboratory at the

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research after the cruise.

CDOM was analyzed with an Aqualog1 fluorescence spectrometer (HORIBA Jobin Yvon,

Germany) using freshly produced Milli-Q water as reference. CDOM absorbance spectra mea-

surements (260–600 nm) were blank-corrected and a baseline correction was applied at 600

nm, assuming negligible CDOM absorption at that wavelength. CDOM absorbance was fur-

ther converted into Napierian absorption coefficient [aCDOM(λ)], obtained from the given

equation:

aCDOM lð Þ m� 1½ � ¼
½2:303� AðlÞ�

L
; ð3Þ

where A(λ) is the absorbance at specific wavelength and L is the cuvette path length in meters.

a is generally adopted as a proxy for assessing the CDOM content in a given water sample

and in this study it is presented in the visible [440 nm—aCDOM(440)] and UV [350 nm—

aCDOM(350)] bands. aCDOM(440) was chosen given its application to ocean color remote sens-

ing [50,51] and to make it comparable with the particulate matter absorption coefficients [52].

The UV band aCDOM(350) was determined in this study due to its correlations to DOC and lig-

nin concentrations and to permit comparison with earlier results [6,20,53].

2.4. Chlorophyll-a analysis

For measuring the photosynthetic pigment Chl-a one liter of seawater samples were taken

from Niskin bottles, immediately filtered on GF/F filters, frozen in liquid nitrogen, and stored

at -80˚C until further analyses by high-performance liquid chromatography (HPLC) at the

home laboratory of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine

Research after the cruise. The samples were measured using a Waters 600 controller equipped

with an auto sampler (717 plus), a photodiode array detector (2996) and the EMPOWER soft-

ware. Chl-a was analyzed by reverse-phase HPLC using a VARIAN Microsorb-MV3 C8 col-

umn (4.6 3 100 mm) and HPLC-grade solvents (Merck). The solvents gradient and routine of

analysis are fully described in Taylor et al. [54]. Chl-a concentrations were quantified based on

peak area of the external standard, which was spectrophotometrically calibrated using extinc-

tion coefficients published in Jeffrey et al. [55].
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2.5. Radiometric measurements

Underwater optical light fields were assessed through radiance and irradiance profiles

obtained with hyperspectral radiometers (RAMSES, ARC-VIS and ACC-VIS, respectively,

TriOS GmbH, Germany). The instruments cover a wavelength range of 320 nm to 950 nm

with an optical resolution of 3.3 nm and a spectral accuracy of 0.3 nm. Measurements were

collected with sensor-specific automatically adjusted integration times (between 4 ms and 8 s).

16 radiometric profiles (Fig 1B) were collected simultaneously with the CTD profiles down to

a maximum depth of 100 m. At each profile, measurements of upwelling radiance (Lu) and

downwelling irradiance (Ed) were performed. One of the in-water sensors was equipped with

inclination and pressure sensors. To avoid ship shadow, the ship was oriented such that the

sun was illuminating the side where the measurements have taken place.

The radiometric measurements were performed out of the ship’s shadow and during clear

sky or nearly clear sky conditions; this was checked based on the ship’s global radiation sensor

data ensuring low variation of the incoming sunlight. For the in-water data, the inclination in

either dimensions was smaller than 14˚ [35]. During the acquisition of the profiles, stops (vary-

ing from 30 to 60 s) were performed within a 10 m depth interval. These data were then aver-

aged in discrete intervals of 5 and 10 m for 0–30 m and below, respectively, and were further

processed following the NASA protocols [56]. As surface waves strongly affect measurements

in the upper few meters, deeper measurements that are more reliable to be used can be further

extrapolated to the sea surface [56]. Analogously to Stramski et al. [57] a depth interval was

defined (z’ = 10 to 30 m) to calculate the vertical attenuation coefficients for downwelling irra-

diance and upwelling radiance, [i.e. Kd(λ,z’) and Ku(λ,z’), respectively]. With Kd(λ,z’) and

Ku(λ,z’), the subsurface irradiance Ed
−(λ, 0 m) and radiance Lu

−(λ,0 m) were extrapolated from

the profiles of Ed(λ,z) and Lu(λ,z).

For the calculation of the remote sensing reflectance [Rrs(λ)], the subsurface Lu
−(λ, 0 m)

and Ed
−(λ, 0 m) were propagated through the water-air interface by applying a transfer coeffi-

cient of 0.519 [57]. Rrs(λ) was then calculated:

Rrs lð Þ ¼
½0:519� L�u ðl; 0 mÞ�

E�d ðlÞ
: ð4Þ

2.6. Ocean color algorithms

In this study we evaluated the performance of ocean color algorithms to derive Chl-a,

aCDOM(λ), adg(λ) [the sum of aCDOM(λ) and aNAP(λ)] and aph(λ). Firstly, we tested different

empirical algorithms, which are used to derive Chl-a from band ratios of Rrs. These algorithms

are frequently applied to the Arctic Ocean. Here their Chl-a retrievals were obtained using Rrs

from the 16 stations as input and then compared with in situ measured Chl-a. The MODIS

OC3M is a global algorithm, which is determined as a function of three Rrs band ratios [58].

The global SeaWiFS OC4V6 [58,59] and the regional Arctic OC4L [38] algorithms, neverthe-

less, use a four-band ratio approach. These algorithms are expressed as follows:

ChlðOC3MÞ ¼ 10ðaþbR’þcR’2þdR’3þeR’4Þ

R’ ¼ log½Rrsð443 > 488=551Þ�

a ¼ 0:2830; b ¼ � 2:753; c ¼ 1:457; d ¼ 0:659; e ¼ � 1:403;

ð5Þ
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ChlðOC4V6Þ ¼ 10ða1þb1Rþc1R2þd1R3þe1R4Þ

R ¼ log½Rrsð443 > 490 > 510=555Þ�

a1 ¼ 0:366; b1 ¼ � 3:067; c1 ¼ 1:930; d1 ¼ 0:649; e1 ¼ � 1:532;

ð6Þ

ChlðOC4LÞ ¼ 10ða2þb2RÞ

R ¼ log½Rrsð443 > 490 > 510=555Þ�

a2 ¼ 0:592; b2 ¼ � 3:607;

ð7Þ

where R is the base 10 logarithm of the maximum band ratio, whichever is the greatest of

Rrs(443)/Rrs(555), Rrs(490)/Rrs(555), and Rrs(510)/Rrs(555); R’ is the same as R but it considers

the greater of the two band ratios Rrs(443)/Rrs(551) and Rrs(488)/Rrs(551); and the coefficients

a, b, c, d, e, a1, b1, c1, d1, e1, a2, and b2 are empirically derived values. Additionally, the perfor-

mance of modifications to the global OC3M and OC4V6 algorithms developed for the western

Arctic Ocean [34] hereafter OC3M-mod and OC4V6-mod, respectively, was evaluated. The

coefficients for those regional algorithms are given below:

• OC3M-mod: a3 = –0.32, b3 = –2.33, c3 = 4.02, d3 = –31.64, e3 = 48.54;

• OC4V6-mod: a4 = –0.35, b4 = –1.52, c4 = –2.44, d4 = –12.80, e4 = 30.48.

Apart from the empirical ocean color algorithms, two semi-analytical algorithms (SAA)

were tested. First, we used the Generalized Inherent Optical Property model (GIOP) [60,61],

for simplicity further named GIOP, using settings applied for the western Arctic [33] to allow

comparison with the results from that study. In short, GIOP is a spectral matching inversion

model, which applies non-linear least square methods to retrieve three eigenvalues [aph(443),

adg(443) and the particles spectral backscattering coefficient–bbp(555)]. GIOP can also estimate

Chl-a from aph(443), by using the factor 0.055. As in Chaves et al. [33], we used the GIOP

applied to in situ Rrs(λ) at the SeaWiFS/MODIS-Aqua operational wavelengths (412, 443, 490,

510, 555 and 670 nm). Besides the GIOP, a modification of the Garver-Siegel-Maritorena

(GSM) SAA [62,63] for retrieving aCDOM(λ) in the Arctic Ocean [19] was used. This algorithm

was developed based on a parametrization of absorption properties using data from the west-

ern Arctic. In short, it enables the separation of aNAP(λ), and therefore aCDOM(λ), from adg(λ)

by applying the parametrization of aNAP(λ) related to the particle backscatter at 555 nm

[bbp(555)] [35].

To summarize, in this study we evaluate the following retrievals from ocean color

algorithms:

• Chl-aOC3M [58];

• Chl-aOC4V6 [58,59];

• Chl-aOC3M-mod and Chl-aOC4V6-mod [34];

• Chl-aOC4L [38];

• aph(λ)GIOP, adg(λ)GIOP, and Chl-aGIOP [60,61];

• adg(λ)Mat and aCDOM(λ)Mat [19].
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2.7. Statistical analysis

Hierarchical cluster analysis using simple average linkage and Euclidean distance method was

applied to classify both, a matrix containing hydrographic and inherent optical properties

(IOPs) bulk properties (hereafter environmental matrix) and a matrix consisting of hyperspec-

tral apparent optical properties (AOPs), into hydrographically (and geographically) coherent

groups [64]. The purpose of applying such an approach was to test whether the AOPs, or a

combination of hydrography and IOPs, are capable to trace the origin of waters masses as pre-

viously suggested in other regions of the Arctic Ocean [22,31]. The first matrix, named envi-

ronmental matrix, consisted of surface measurements of temperature, salinity, aCDOM(443),

aNAP(443) and aph(443), which were normalized prior to analysis, by subtracting the mean

value and then dividing by the standard deviation. The environmental matrix consisted of

parameters, which in future can be derived from sensors mounted together on autonomous

platforms. The hyperspectral AOP matrix consisted of the second derivative of Rrs(λ)/Rrs(555)

that computes the changes in curvature of a given spectrum over a sampling interval or band

separation [65]. For that, Rrs spectra were interpolated to the optimal range for band separa-

tion (435–510 nm), and a smoothing filter window of 27 nm was used for the derivative calcu-

lations [65]. Given that bio-optical parameters are generally log-normally distributed in

natural environments [66] and also in this study, power functions were applied to evaluate the

correlation between pairs of bio-optical parameters [67,68].

Kruskal-Wallis H tests were applied to compare variables between pairs of clusters, after

being normality-tested with the Kolmogorov-Smirnov test. To evaluate the performance of the

ocean color algorithms, r2, slope, intercept, root mean square error (RMSE), mean absolute

error (MAE) and bias for each pair of variables were determined. The RMSE, MAE and bias

were calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1
½log10Y � log10X�2

N

s

; ð8Þ

MAE ¼
PN

n¼1
jYn � Xnj

N
; ð9Þ

BIAS ¼
PN

n¼1
Yn � Xn

N
; ð10Þ

where Y is the retrieved parameter (e.g. Chl-a, adg, aph) and X is the correspondent in situ mea-

sured parameter.

3. Results and discussion

3.1. Hydrography

Based on the temperature and salinity profiles five water masses were identified within the sur-

face layer (0−200 m) of the sampled area, which are in agreement with previous studies in the

region [45,69]: Upper Halocline Water (UHW), Barents Sea Branch Water (BSBW) and Lap-

tev Sea Shelf Water (LSSW) at the surface; and Lower Halocline Water (LHW) and Atlantic

Water (AW) in the beneath layer (Fig 2A). Surface waters of the central Arctic were occupied

by the UHW, whereas BSBW and LSSW were observed at surface in pelagic and shelf waters in

the Laptev Sea, respectively. Most of the Arctic surface waters are of Atlantic origin and are

progressively modified at higher latitudes by heat exchange with the atmosphere, river runoff,

melt water in summer and salt rejection in winter [70]. The UHW was observed within the
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upper polar mixed layer (PML, ~40 m) and was characterized by subzero temperatures and a

thin upper mixed layer (10–20 m) due to dilution from sea-ice melt. This water mass can be fur-

ther divided into two origins, given differences in the salinity ranges [45]: the UHW from the

Canadian Basin with the Beaufort Gyre (cUHW, with salinity<32.5), and the UHW from the

Eurasian Basin (eUHW, with salinity between 32 and 34). The BSBW observed in the surface

waters of the Laptev Sea is transported from the Kara Sea through the Vilkitsky Strait by the

Vilkitsky Strait Current [69,71,72]. High temperatures and low salinity characterize the LSSW

which is strongly influenced by the Lena River outflow [73]. The highest temperature (3.67˚C)

and lowest salinity (23.8) values were observed within LSSW. The lowest temperature (−1.86˚C),

on the other hand, was associated with LHW whereas the highest salinity (34.9) was observed

within AW located in the deepest sampled layer, generally below 100 m (Fig 2B and 2C).

3.2. Absorption coefficients of water constituents

Phytoplankton absorption coefficients [aph(443)] were highly correlated with the absorption

coefficients of NAP [aNAP(443)] (r2 = 0.95; p<0.0001; n = 62). aph(443) ranged from 0.01 to

0.06 m-1 whereas the aNAP(443) varied between 0.0004 and 0.04 m-1. The highest aNAP(443)

values were associated with sites close to the shelf break, denoting the continent as its main

source, reaching its maximum within the LSSW, in similar ranges as previously reported [21].

Relatively high values of aph(443) were observed close to the Laptev Sea shelf break, as for

aNAP(443), however, the highest aph(443) values were obtained for the Nansen Basin. Further

discussion on the spatial variability of those parameters is presented in Section 3.3.

To investigate the correlation of aph(443) and ap(443) with Chl-a a power function was

applied [67,68]. Both aph(443) (Fig 3D) and ap(443) were highly correlated to Chl-a, however,

as expected, the correlations for aph(443) were higher. The power functions for aph(443) and

ap(443) in relation to Chl-a concentration obtained in this study are given below:

aphð443Þ ¼ 0:0513½Chl � a�0:6675
ðr2 ¼ 0:85Þ; ð11Þ

apð443Þ ¼ 0:0595½Chl � a�0:5603
ðr2 ¼ 0:73Þ: ð12Þ

Fig 2. Hydrography in the surface central and eastern Arctic Ocean. (a) T-S diagram with depth (m) as color bar. Surface distribution of temperature

(˚C) (b) and salinity (c) with the approximate occupation of the water masses with the PML within the study region. Produced with Ocean Data View [44].

https://doi.org/10.1371/journal.pone.0190838.g002
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As shown in Fig 3D, the correlation between aph(443) and Chl-a was comparable to the one

found by Bricaud et al. [68], and to other expeditions conducted in the Fram Strait and adjoin-

ing seas [74–76]. The consistency between these results thus, reiterates the applicability of such

absorption measurements in the VIS-range as a proxy to retrieve Chl-a concentrations. The

correlation between aph(443) and Chl-a observed in this study presents, in turn, a slight devia-

tion from the trends reported for the Canadian Basin [35]. Since the authors claim that their

deviation from the global average is caused by a different pigment packaging effect and/or pig-

ment composition, in their specific region: this would in turn mean that for our data set the

phytoplankton composition and light adaptations follow more the global average.

CDOM absorption coefficients in the visible and UV wavelength ranges [aCDOM(443) and

aCDOM(350), respectively] were highly correlated (r2 = 0.99, p<0.0001) and ranged from 0.02

and 0.19 m-1 to 1.14 and 4.42 m-1, respectively (Fig 3A). The highest aCDOM(443) values

[aCDOM(443)>1 m-1] were observed in the Laptev Sea associated to the LSSW, with values in

similar ranges as previously reported for those waters [21,50,53]. High aCDOM values [~0.5 m-1

for aCDOM(443)] were observed in the central Arctic, which have been shown to have a high

terrestrial signal [77], likely associated to transport of high-DOM Siberian Shelf waters [2]

within the Transpolar Drift. That high-DOM signal can be traced even after significant

removal during the transport of those waters to the central Arctic [20] and in the Fram Strait

[22,23,30,74–76,78,79]. The lowest aCDOM values [<0.2 m-1 for aCDOM(443)] were observed in

the Beaufort Gyre and Amundsen and Nansen basins which is related to the influence of

waters from the Norwegian and Barents Sea [45] that have a very low DOM content [78,80].

The low aCDOM(443) observed in the Beaufort Gyre corroborates the well-known DOM

decrease towards the center of oligotrophic oceanic basins and gyres, where aCDOM(443) values

tend to be close to zero [81,82]. Furthermore, aCDOM(443) differed significantly (p<0.001)

between pelagic samples from the Central Arctic and Beaufort Gyre. Likewise, a recent study

reported higher aCDOM(443) values in shelf waters of Eurasian basin in comparison to the

Canadian basin [21]. Such a difference in the DOM background between the two basins is

likely a reflection of the higher loads of DOM from Siberian Rivers [6,20]. Moreover, the dif-

ferences between DOM from Eurasian and Canadian basins can be also detected in the inten-

sity of visible DOM fluorescence, which can further distinguish the origins of fresh water

exiting the Arctic Ocean [22].

We computed the total non-water coefficient absorption spectra [aCDM(λ)] as follows:

atwðlÞ ¼ aphðlÞ þ aNAPðlÞ þ aCDOMðlÞ: ð13Þ

atw(λ) was strongly correlated with aCDOM(λ) (p<0.0001) in the UV and VIS (violet-blue,

mostly) wavelength ranges, suggesting CDOM as the major absorber component of the surface

waters in that spectral regions through the entire sampling area (Fig 3C). Such dominance of

CDOM is also clear when looking at the relative proportion of the non-water absorbers

[aph(443), aNAP(443) and aCDOM(443)] to atw(443) (Fig 3B), which shows that all sampled sta-

tions are classified as CDOM-dominated [52]. The proportion of aCDOM(443) was high

(Table 1), with it contributing to over 50% at all sampled stations, reaching a maximum contri-

bution of 99% to atw(443). Similar averaged values (0.85 ± 0.07) for the aCDOM(443) contribu-

tion to atw(443) was observed in a recent study conducted in the Eurasian Basin [21]. Nearly as

high contributions of CDOM were also reported for the Canadian Basin (Chukchi Sea: 0.74

±0.14; Western Arctic: 0.76±0.11) in that same study [21]. Our study shows that CDOM is

not only the major non-water absorber in the western Arctic and shelf seas of the eastern Arc-

tic [21,35], it also strongly dominates the non-water absorption in the central Arctic. Domi-

nance of CDOM to the total non-water absorption has been primarily reported to coastal
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Fig 3. Absorption coefficients in the surface waters of central and eastern Arctic Ocean. (a) Surface distribution of aCDOM(443) (m-1) and correlation

between aCDOM(443) and aCDOM(350) (inset graph); produced with Ocean Data View [44]. (b) Ternary plot denoting the contribution of the non-water

absorbers [aCDOM(443), aph(443), aNAP(443)] to total non-water absorption [atw(443)] at surface; color bar indicates salinity. (c) Station 207 (indicated by the

arrow in a) as example of atw(λ), aCDOM(λ), aph(λ) and aNAP(λ) spectra (m-1). Dashed line indicates the position of 443 nm. (d) Correlation between Chl-a (mg

m-3) and aph(443) (m-1); for the colors, please refer to Fig 4.

https://doi.org/10.1371/journal.pone.0190838.g003

Table 1. Relative absorption of non-water absorbers. Averaged contribution of the absorption coefficients for each of the non-water absorbers (at 443

nm) to atw(443) in this and other studies carried out in different regions.

Study Sampling area Layer aphð443Þ

atw ð443Þ

aNAP ð443Þ

atw ð443Þ

aCDOMð443Þ

atw ð443Þ
n

This study Central & E Arctic surface 0.12 ± 0.11 0.03 ± 0.02 0.85 ± 0.13 62

Matsuoka et al. (2014) East Siberian and Laptev Seas euphotic layer 0.08 ± 0.04 0.08 ± 0.02 0.85 ± 0.07 18

Matsuoka et al. (2014) Chukchi Sea euphotic layer 0.18 ± 0.12 0.08 ± 0.05 0.74 ± 0.14 179

Matsuoka et al. (2007) Beaufort and Chukchi Seas <90 m 0.16 ± 0.09 0.08 ± 0.03 0.76 ± 0.11 94

Kowalczuk et al. (2017) North off Svalbard <30 m 0.55 ± 0.2 0.04 ± 0.04 0.41 ± 0.22 19

Babin et al. (2003) [87] Coastal Europe surface 0.36 ± 0.14 0.22 ± 0.13 0.41 ± 0.14 317

https://doi.org/10.1371/journal.pone.0190838.t001
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environments, classified as “Case-2 waters” because CDOM (and also NAP) does not covary

with Chl-a [83,84]. Oligotrophic pelagic systems (as the Central Arctic), on the other hand, are

generally characterized as “Case-1 waters”, where Chl-a is thought to be the dominant

absorber and covaries with CDOM [83,84]. That assumption, however, is not applicable to the

pelagic Arctic Ocean, whose non-water absorption is clearly dominated by CDOM that, in

turn, does not covary with Chl-a (r2 = 0.01). Such an absence of covariance between CDOM

and Chl-a has been already reported for the Labrador Sea [85] and Western Arctic Ocean

[35,86]. The correlation observed in this study (r2 = 0.01) was, nevertheless, the weakest

observed for the entire Arctic Ocean, and could be related to the greater contribution and vari-

ability of CDOM to the total non-water absorption in our investigated waters. Finally,

aNAP(443) contribution to atw(443) was the lowest found for the Arctic waters, being likely

negligible compared to aCDOM(443) contributions (Table 1).

3.3. Geographic clustering

Hierarchical cluster analysis was applied to the environmental matrix [temperature, salinity,

aCDOM(443), aNAP(443) and aph(443)] to classify the sampling sites according to coherent

groups with respect to hydrography and non-water absorption. A total of seven major clusters

were identified and those were used to divide the study area into five distinct geographic zones

(Fig 4): Laptev Sea Shelf, Laptev Sea (pelagic), Central Arctic/Transpolar Drift, Beaufort Gyre

and Nansen Basin. Those zones were easily discriminated based on the surface values of the

environmental matrix. The average and standard deviation of the analyzed parameters for

each cluster are presented in Table 2. In short, cluster 1 characterized the surface Laptev Sea

shelf waters, influenced by the Lena River outflow, with high temperature, low salinity, moder-

ate aph(443) and the highest values of CDOM and NAP, in agreement with previous reports

for that region [2,5,21,53,88]. Cluster 6 was composed by stations located in the pelagic and

western domain of the Laptev Sea, with influence of shelf waters from the Kara Sea [71,72].

Those waters presented high temperatures, relatively low salinity and moderate values of

aCDOM(443), aph(443) and aNAP(443). Clusters 2 and 5 united the stations located in the Cen-

tral Arctic, over the Transpolar Drift stream [45], where the Arctic shelf waters with relatively

low salinity and high aCDOM(443) are transported along the Arctic Basin [20]; however cluster

5 seems to be a transitional zone, with less influence of Arctic shelf waters, exhibiting lower

aCDOM(443) and higher aph(443) compared to cluster 2. Cluster 3 grouped the stations located

in the Beaufort Gyre. Those lower salinity waters [89] presented near freezing temperature and

very low non-water absorption was observed, with aCDOM(443) and aph(443) exhibiting the

lowest values among the seven clusters. These results corroborate previous findings showing

Canadian Basin water with low Chl-a and primary production [16,25], as well as lower DOM

content [6,20–22], in comparison to the Eurasian Basin. Finally, the clusters 4 and 7 grouped

the stations located in the Nansen and Amundsen basins, with influence of waters advected

from the North Atlantic Ocean and Norwegian Sea. Those waters were characterized by the

lowest temperatures, the highest salinity, low aCDOM(443) and aNAP(443), as reported for the

waters of the Atlantic inflow to the Arctic in the Fram Strait [79]. On the other hand, aph(443)

(and Chl-a) values within that cluster were the highest, likely explained by the advection of

nutrient rich Atlantic water [90] that stimulates phytoplankton growth. Clusters 4 and 7 dif-

fered from each other only regarding the aph(443) (and Chl-a) values, with the highest values

being observed in cluster 7. High aph(443) (and Chl-a) observed in the Nansen and Amundsen

basins can be attributed to the high transmittance of light in those waters primarily due to the

development of melt ponds in the sea-ice [13], which increases primary production in those

areas [24].
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To test whether hyperspectral remote sensing information is capable of detecting hydro-

graphic and bio-optical variability we have also applied hierarchical cluster analysis to hyper-

spectral Rrs [in this case, the 2nd derivative of Rrs(λ)/Rrs(555); see section 2.7]. Despite the low

Fig 4. Clustering based on environmental matrix. (top) Dendogram (cophenetic correlation coefficient: c = 0.91) for

sampling stations based on surface normalized values of an environmental matrix containing hydrographic and IOP

parameters: temperature, salinity, aCDOM(443), aNAP(443) and aph(443). (bottom) ODV map [44] showing the position of

each station according to the classification based on the hierarchical clustering. Inset graph shows the correlation

between aCDOM(443) and salinity colored with respect to the clusters; black line indicates the best fit (p<0.01).

https://doi.org/10.1371/journal.pone.0190838.g004
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number of sampled stations (n = 16), the analysis yielded satisfactory results (cophenetic corre-

lation coefficient: c = 0.87) and two main clusters were isolated (Fig 5). The partition based on

hyperspectral data shows some similarities with the one provided by clustering the environ-

mental matrix (see Fig 4). Cluster I comprised the Rrs spectra (i.e. stations) with lower

aCDOM(443), located mainly in the Nansen and Amundsen basins and North Laptev Sea,

under influence of waters from the North Atlantic, Norwegian Sea and also from Kara Sea.

This cluster corresponds to the clusters 6 and 7 (and two stations of the transition cluster 5),

with relatively low aCDOM(443) and influence of waters advected from the abovementioned

regions. Additionally, the only station from the Beaufort Gyre, which also presented low

aCDOM(443), was included in this same cluster I. Here we speculate that given the low number

of stations performed, the multivariate analysis may not be able to solve such variability and

grouped all the low CDOM spectra into one unique cluster. However, with an increased num-

ber of sampling stations, such variability would be easier to be detected in Rrs spectra. Cluster

II isolated Rrs spectra from stations with high aCDOM(443) and lower Rrs (Fig 5 and Table 3),

located in the central Arctic and close to the Laptev Sea shelf (Fig 5). Its corresponding envi-

ronmental clusters are mainly the clusters 2 and 5, which were under influence of the shelf

waters transported within the Transpolar Drift [45]. No stations of clusters 3 and 4 were sam-

pled for hyperspectral remote sensing information.

3.4. Arctic bio-optical provinces

The results provided by hierarchical cluster analyses in this study (see Figs 4 and 5 and Tables

2 and 3) show that hydrographic data and non-water absorption, but also hyperspectral AOPs

(e.g. Rrs spectra) are applicable tools for characterizing surface waters (geographic zones) with

differing surface biogeochemical properties, even in waters where non-water absorption is

strongly dominated by CDOM, such as the Arctic Ocean [21]. Similarly, a recent study applied

hierarchical cluster analysis to the spectral particulate backscattering-to-absorption ratio in the

western Arctic allowing the partitioning of optically-distinct clusters of particles assemblages,

which, in turn, reflect difference in the characteristics of particle concentration, composition,

and phytoplankton taxonomic composition and size [91]. Furthermore, given the coupling

between hydrographic and bio-optical properties, one can further suggest those clusters as

bio-optical units or provinces. Bio-optical provinces based on HCA applied to IOPs and AOPs

have shown to be reliable describers of Longhurst provinces [92] in the Atlantic Ocean [54].

On the other hand, almost the entire Arctic Ocean is classified as a unique ecological province,

the Boreal Polar Province (BPLR), within the Polar Biome [92]. That same author suggested

that there might be spatial variability between shelf and pelagic ecosystems (as well as in the

marginal ice zones) within the BPLR, however it is very difficult to sustain an adequate

Table 2. Average of parameters for the geographic clusters based on the environmental matrix. Averaged values ± standard deviation of hydro-

graphic/IOP parameters and geographic region for each of the clusters presented in Fig 4. Geographic regions acronyms: BG (Beaufort Gyre); EB (Eurasian

Basin–Amundsen and Nansen basins); LS (Laptev Sea); LSS (Laptev Sea Shelf–Lena river influenced); TPD (Transpolar Drift).

Cluster Temperature (˚C) Salinity aCDOM(443) (m-1) aNAP(443) (m-1) aph(443) (m-1) n Area

1 2.95 ± 0.15 25.2 ± 2.1 1.04 ± 0.15 0.04 ± 0.001 0.02 ± 0.001 2 LSS

2 -1.54 ± 0.05 29.2 ± 1.0 0.45 ± 0.08 0.003 ± 0.002 0.01 ±0.002 10 TPD

3 -1.47 ± 0.03 28.9 ± 0.1 0.09 ± 0.05 0.002 ± 0.0004 0.006 ± 0.001 6 BG

4 -1.71 ± 0.03 32.9 ± 0.4 0.16 ± 0.12 0.001 ± 0.001 0.01 ± 0.004 5 EB

5 -1.55 ± 0.23 31.0 ± 0.5 0.19 ± 0.11 0.005 ± 0.002 0.02 ± 0.004 16 TPD

6 0.99 ± 0.80 30.7 ± 0.2 0.23 ± 0.13 0.01 ± 0.003 0.02 ± 0.005 11 LS

7 -1.66 ± 0.14 32.4 ± 0.5 0.09 ± 0.06 0.005 ± 0.003 0.04 ± 0.01 12 EB

https://doi.org/10.1371/journal.pone.0190838.t002
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Fig 5. Hyperspectral AOP clustering. (a) Dendogram (cophenetic correlation coefficient: c = 0.87) for sampling stations based on hierarchical cluster

analysis applied to the 2nd derivative of Rrs(λ)/Rrs(555) (following Torrecilla et al., 2011). (b) ODV map [44] showing the position of each station according to

the classification based on the hierarchical clustering. (c) 2nd derivative of normalized hyperspectral remote sensing reflectance, Rrs(λ)/Rrs(555), with respect

to the wavelength range of 435–510 nm (following Torrecilla et al. [65]). (d) Normalized hyperspectral remote sensing reflectance, Rrs(λ)/Rrs(555) in the

visible wavelength range. Colored circles in (a) refer to the environmental clusters presented in Fig 4. Colors in (c) and (d) are in accordance with the clusters

presented in (a) and (b).

https://doi.org/10.1371/journal.pone.0190838.g005

Table 3. Hydrographic and IOP parameters for the geographic clusters based on hyperspectral AOP measurements. Averaged values ± standard

deviation of geophysical parameters for each of the clusters presented in Fig 5.

Cluster Temperature (˚C) Salinity aCDOM(443) (m-1) aNAP(443) (m-1) aph(443) (m-1) N

I -1.03 ± 0.86 31.1 ± 1.2 0.11 ± 0.03 0.01 ± 0.0002 0.02 ± 0.01 7

II -1.30 ± 0.88 30.9 ± 0.9 0.31 ± 0.19 0.01 ± 0.003 0.02 ± 0.01 9

https://doi.org/10.1371/journal.pone.0190838.t003
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description of smaller units, given the difficulty to access the northern seas. Along with that,

differences among the Arctic Seas have been already reported, for instance, with respect to

export of biogenic matter [4], number of dinoflagellates species [27], protist diversity [28,29],

and primary production [24,25,93]. Those studies, therefore, reinforce the existence of distinct

biogeographic units in the Arctic Ocean and further implementation of a biogeographic char-

acterization in the region is of great importance to improve the current understanding about

the Arctic environment. The determination of such biogeographic zones would guide future

strategies for Arctic monitoring and ecosystem modeling, leading to a more accurate under-

standing of the ecosystem functioning and biogeochemical stocks, as well as on the prediction

of future scenarios with regards to climate change. Finally, to build on that, based on the

results presented by our quasi-synoptic sampling through the central-eastern Arctic Ocean, we

therefore propose an overall classification of the sampling sites into five major bio-optical

provinces. Those sites were defined based on a combination of hydrographic characteristics

and IOPs, but also considering the outcome of the hyperspectral AOP matrix clustering. They

are classified as follows (Fig 6):

1. Laptev Sea Shelf: strongly influenced by the Lena River outflow, is primarily characterized

by low salinity, high temperature and aNAP(443), moderate aph(443), Chl-a and very high

aCDOM(443);

2. Laptev Sea: low influence of Lena River outflow, however with contributions of waters

advected from the Kara Sea; presents relatively low salinity, relatively high temperature and

moderate levels of aCDOM(443), aph(443), Chl-a and aNAP(443);

3. Central Arctic/Transpolar Drift: characterized by shelf waters transported within the Trans-

polar Drift, it has very low temperatures and relatively low salinity, aph(443) and Chl-a;

however with high aCDOM(443) and very low aNAP(443);

4. Beaufort Gyre: the waters with lower non-water absorption; they present low temperature

and salinity, together with very low values of aCDOM(443), aph(443), Chl-a and aNAP(443);

5. Eurasian/Nansen Basin: region influenced by waters advected from the Atlantic Ocean and

Norwegian Sea, those waters present the highest salinity and near freezing temperature,

with very low aCDOM(443) and aNAP(443), and the highest aph(443) and Chl-a levels due to

high transmittance through sea-ice.

3.5. Evaluation of ocean color algorithms

Fig 7 shows the evaluation of the current global empirical ocean color algorithms OC3M and

OC4V6 (and their regional adaptations for the western Arctic, OC3M-mod and OC4V6-mod)

frequently applied to the Arctic Ocean, as well as the Arctic OC4L algorithm, which is designed

to be applicable to high northern latitudes. When considering all sampled stations, the five

empirical algorithms failed in retrieving Chl-a from Rrs bands, and a general inverse correla-

tion with in situ Chl-a was observed (Fig 7 and Table 4). Furthermore, despite the relatively

low RMSE observed for OC4V6-mod and OC3M-mod, all the band-ratio algorithms applied

in this study appeared to attribute CDOM absorption to phytoplankton absorption (Fig 7D

and Table 4). Such CDOM-biased retrievals from empirical Chl-a ocean color algorithms have

already been reported for the western Arctic [33–35]. This is attributed to the fact that CDOM

is the greatest absorber at 443 nm over the entire sampled region (see Fig 3 and Table 1). As

pointed out by Chaves et al. [33], excess aCDOM(λ)–that is assumed to co-vary with Chl-a–pro-

duces lower maximum band ratios [Rrs(443>490>510/555)], thus resulting in overestimation

of Chl-a (see Fig 7C).
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A study in the western Arctic obtained good Chl-a retrievals applied to in situ Rrs measure-

ments from CDOM-dominated waters (where Chl-a does not covary with CDOM), when tur-

bid waters [Rrs(676)>0.00042] were excluded [35]. This could be one of the reasons attributed

to the poor performance of those algorithms in our study, given that all the sampling stations

were classified as turbid. This is supported by the fact that the most overestimated Chl-a
retrievals were especially related to the high CDOM cluster (see Fig 7). When looking only at

the stations grouped in Cluster I, i.e. with lower aCDOM(443) (although still with relatively high

turbidity), the retrievals were significantly improved (strong reduction in RMSE), primarily

for OC4V6-mod and OC3M-mod (RMSE = 0.08 and 0.10, respectively), and positively corre-

lated to in situ Chl-a (Table 5). Estimates were less variable (r2>0.62) compared to previously

reported for the western Arctic [35]. Since there are no specific empirical algorithms to derive

CDOM in the Arctic, we have applied to our data set the algorithm developed by Belanger

et al. [39] for the Western Arctic to obtain the ratio of aCDOM to adg in optically complex

waters. However, we also did not obtain robust results using this method.

Besides, the SAA GIOP was applied to retrieve Chl-a, as well as aph(443) and adg(443). This

provided robust estimates (Fig 8) for the entire sampling area (Fig 8 and Table 6). Such an

improvement probably is caused by that GIOP, like other SAAs, does not assume Chl-a and

CDOM absorption as covariant. Even better estimates from GIOP were obtained for aph(443)

Fig 6. Arctic bio-optical provinces. Distribution of the five Arctic bio-optical provinces defined in this study

based on HCA applied to surface hydrographical, IOP bulk and hyperspectral AOP data.

https://doi.org/10.1371/journal.pone.0190838.g006
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(Fig 8 and Table 6). This is probably due to the fact that GIOP uses the spectral shape of Chl-a-

specific absorption coefficient from Bricaud et al. [68] as basis vector. As pointed out before

(Fig 3), our dataset exhibited similar spectral shape for aph(λ) and correlations between Chl-a
and aph(443) as observed in that study. Moreover, the performance of GIOP to retrieve

aph(443) in our study (Table 6) was much better than recently observed in the western Arctic

(r2 = 0.85; Slope = 1.18; RMSE = 0.20) [33]. With regards to Chl-a, that same study reported

fairly similar results (r2 = 0.72; Slope = 0.73; overestimation of Chl-a), however with lower

errors (RMSE = 0.24) in comparison to our results (RMSE = 0.40, see Table 6).

Finally, adg(443) was also retrieved in this study using GIOP and GSM-Matsuoka. Here we

assume that adg(443) is a direct estimate from of aCDOM(443), given the least contribution of

aNAP(443) to total non-water absorption (generally <1%) in comparison to aCDOM(443) (Fig

3). In general, GIOP and GSM-Matsuoka retrievals were very similar and the retrieved

adg(443) compared very well to direct measurements of adg(443). Most of the data points

located are within the 50% error intervals (Fig 8 and Table 6). Although with similar error

(RMSE = 0.08), GIOP seems to provide more robust correlation (slope = 1.05) and less variable

Fig 7. Evaluation of empirical ocean color algorithms frequently applied to the Arctic Ocean. (a) Chl-a estimated by empirical algorithms (mg m-3;

indicated by different colors) versus in situ Chl-a (mg m-3). Stations belonging to the low aCDOM(443) cluster (Cluster 1) are presented as circles, whereas

stars represent stations grouped in the high aCDOM(443) cluster (Cluster 2; Fig 5). (b) Chl-a estimated by empirical algorithms (mg m-3; indicated by

different symbols) versus in situ Chl-a (mg m-3), with aCDOM(443) (m-1) as colorbar. (c) In situ Chl-a (mg m-3) versus maximum band ratio [MBR;

Rrs(443>490>510/555)]. (d) Chl-a estimated by empirical algorithms relative error (%) versus the ratio between aCDOM(443) and atw(443).

https://doi.org/10.1371/journal.pone.0190838.g007
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(r2 = 0.91) adg(443) estimates for the western Arctic, as observed for aph(443) [33]. As being

highly correlated to adg(443), aCDOM(443) retrieved with GSM-Matsuoka provided very simi-

lar statistics related to adg(443) using that same model, thus resembling the observed with our

in situ sampling (see Table 1). Compared to our study, better performance for retrieving

aCDOM(443) using GSM-Matsuoka (r2 = 0.87; Slope = 0.97; RMSE = 0.07), was reported for the

western Arctic using a much larger dataset [21]. Although the aCDOM(443) GSM-Matsuoka

retrievals were not as good in our study, results show that SAAs in general have a high poten-

tial for obtaining reliable Chl-a estimates than empirical algorithms in high CDOM containing

waters, besides the advantages of also providing other reliable retrievals such as adg(λ), aph(λ)

and aCDOM(λ). Thus, products from SAAs are more suitable for application to biogeochemical

studies in the Arctic Ocean, although improvement of the current algorithms is still requested,

given the persistence of embedded errors to those retrievals, as demonstrated in this study.

4. Summary and outlook

Based on a quasi-synoptic sampling strategy over the surface Central-Eastern Arctic Ocean we

reiterate the dominance of CDOM related to total non-water absorption through the entire

region under study. As CDOM and DOC are strongly correlated in the Arctic Ocean [6,20,53],

one can assume CDOM as a very reliable proxy for retrieving carbon concentrations in that

basin. This can provide additional insight into the Arctic biogeochemical cycles. Our results

show that aCDOM(443) and aph(443), together with temperature and salinity, are useful

Table 4. Evaluation of empirical ocean color algorithms. Regression statistics (including the bias and the mean absolute error–MAE) for retrieved Chl-a

from in situ Rrs compared to direct measurements of Chl-a using the correspondent algorithms versus in situ measured parameters. r2 and slope were calcu-

lated using log-transformed data for each of the correspondent parameters.

Retrieved Chl-a vs. in situ Chl-a

Algorithm N r2 Slope RMSE MAE BIAS

OC3M 16 0.45 –0.14 0.62 1.06 1.06

OC4V6 16 0.38 –0.09 0.49 0.95 0.95

Arctic OC4L 16 0.29 –0.18 1.18 0.83 0.83

OC3M-mod 16 0.14 –0.01 0.13 0.08 0.08

OC4V6-mod 16 0.14 –0.01 0.12 0.03 0.03

Retrieved Chl-a vs. aCDOM(443)

Algorithm N r2 Slope RMSE MAE BIAS

OC3M 15 0.83 0.49 0.49 1.06 1.06

OC4V6 15 0.82 0.44 0.36 0.96 0.96

Arctic OC4L 15 0.80 1.48 1.00 0.88 0.88

OC3M-mod 15 0.77 0.40 0.10 0.12 0.12

OC4V6-mod 15 0.78 0.44 0.09 0.07 0.07

https://doi.org/10.1371/journal.pone.0190838.t004

Table 5. Comparison of Chl-a retrieved from empirical ocean color algorithms versus direct measurements of Chl-a, for low aCDOM(443) sites.

Same as Table IV but for the low aCDOM(443) stations.

Retrieved Chl-a vs. in situ Chl-a

Algorithm N r2 Slope RMSE MAE BIAS

OC3M 7 0.62 0.18 0.34 0.83 0.83

OC4V6 7 0.62 0.17 0.30 0.77 0.77

Arctic OC4L 7 0.66 0.75 0.35 0.25 0.25

OC3M-mod 7 0.70 0.28 0.10 0.01 –0.01

OC4V6-mod 7 0.70 0.29 0.08 0.08 –0.08

https://doi.org/10.1371/journal.pone.0190838.t005
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parameters for distinguishing hydrographic regimes within the Central Arctic. Despite the

reduced number of sampling sites, hyperspectral AOPs retrieved from under water

Fig 8. Evaluation of semi-analytical algorithms. Modeled geophysical parameters calculated from in situ Rrs versus in situ measured parameters:

aph(443) (a); Chl-a (b); adg(443) (c) and aCDOM(443) (d). Red points refer to the GIOP [60,61] retrievals, whereas blue points to the retrievals from the

GSM model adapted to the Arctic [19].

https://doi.org/10.1371/journal.pone.0190838.g008

Table 6. Evaluation of the semi-analytical ocean color algorithms. Regression statistics for modeled geophysical parameters calculated used in situ Rrs

versus in situ measured parameters. r2 and Slope were calculated using log-transformed data for each of the correspondent parameters.

N r2 Slope RMSE MAE BIAS

GIOP

aph(443) 11 0.86 0.89 0.02 0.02 0.02

Chl-a 12 0.79 0.64 0.40 0.35 0.35

adg(443) 15 0.56 0.25 0.08 0.08 –0.08

GSM-Mat

adg(443) 15 0.59 0.29 0.09 0.07 –0.07

aCDOM(443) 15 0.57 0.28 0.09 0.08 –0.08

https://doi.org/10.1371/journal.pone.0190838.t006
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radiometric measurements were able to reproduce the major bio-optical features at the surface

by differentiating between sites with low and high CDOM. As demonstrated for the Eastern

Atlantic [54], bio-optical provinces efficiently reflected the ecosystem variability/biogeography

proposed by Longhurst [92] and thus are a valuable tool for biogeochemical modeling. How-

ever, currently, practically the entire Arctic Ocean is still classified as a unique ecosystem unit,

despite the reports of clear geographic patterns in different aspects [4,24,29,93,94]. Moreover,

to our understanding, no study has proposed such a sub-division of the Boreal Polar Province

(BPLR) into bio-optical units. Based on our findings we, therefore, propose a geographical

characterization of the sampling regions into bio-optical provinces, which reflect hydrographic

characteristics of the region with regard to the non-water absorption: Laptev Sea Shelf, Laptev

Sea, Central Arctic/Transpolar Drift, Beaufort Gyre, and Eurasian/Nansen Basin. Moreover, it

becomes clear that the characterization of provinces, in particular, in the highly seasonal vari-

able Arctic Ocean, cannot hold true for every season and every year. Thus, although here we

present a first, simple bio-optical classification, we recall that such variability has been

observed along the Arctic and integrative biogeochemical studies would benefit from the

advances in Arctic Ecosystem monitoring and management by improving the delimitation of

such geographic units. Future perspectives using automated platforms (e.g., floats, ITP, gliders)

with bio-optical (e.g., Chl-a and DOM fluorescence, and hyperspectral radiometry) and salin-

ity sensors will allow to monitor the spatial and temporal variability within those biogeo-

graphic provinces.

The evaluation of empirical ocean color algorithms (including the regionally tuned ones)

applied to our in situ Rrs(λ) measurements showed that those algorithms are inappropriate to

estimate Chl-a in the Central-Eastern Arctic Ocean, exhibiting an overall inverse correlation

with in situ Chl-a and a positive correlation with aCDOM(443). This reinforces the existence of

a persuasive positive bias by CDOM absorption on empirical Chl-a estimates for the Arctic

Ocean. The semi-analytical ocean color algorithm GIOP, on the other hand, retrieved reliable

and less variable Chl-a estimates related to the empirical algorithms, as well as very good esti-

mates for aph(443) and considerably well estimates of adg(443), as also reported to the western

Arctic [33]. Fairly similar retrievals were obtained within the GSM model with the modifica-

tions for the Arctic Ocean [19] for adg(443). The better performance by SAAs is mainly attrib-

uted to the fact that these algorithms do not consider Chl-a and CDOM as covariant.

Finally, with the ongoing pressure of climate change over the Arctic environment, a better

understanding on the dynamics of carbon stocks has been sought. Ocean color remote sensing

appears to be a key tool on improving both the spatial and temporal monitoring of these

stocks. However, accurate ocean color retrievals are required to get to a real estimate of stocks

and processes involving organic and inorganic carbon in the Arctic Ocean. Thus, we recall

that additional spectral bands would improve the performance of ocean color algorithms, as

demonstrated for the GIOP in the western Arctic [33]. In addition, the coverage of ocean color

remote sensing data in the Polar Regions needs to be increased (for our cruise we obtained no

match-ups with satellite data) by investing in developing efficient atmospheric correction for

adjacency effects and low illumination conditions.
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