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The coasts of the West Antarctic Peninsula are
strongly influenced by glacier meltwater discharge.
The spatial structure and biogeochemical composition
of inshore habitats are shaped by large quantities
of terrigenous particulate material deposited in the
vicinity of the coast, which impacts the pelagic
and benthic ecosystems. We used a multitude of
geochemical and environmental variables to identify
the radius extension of the meltwater impact from the
Fourcade Glacier into the fjord system of Potter Cove,
King George Island. The k-means cluster algorithm,
canonical correspondence analysis, variance analysis
and Tukey’s post hoc multiple comparison tests
were applied to define and cluster coastal meltwater
habitats. A minimum of 10 clusters were needed to
classify the 8km? study area into meltwater fjord
habitats (MFHs), fjord habitats and marine habitats.
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Strontium content in surface sediments is the main geochemical indicator for lithogenic
creek discharge in Potter Cove. Furthermore, bathymetry, glacier distance and geomorphic
positioning are the essential habitats explaining variables. The mean and maximum MFH
extent amounted to 1km and 2km, respectively. Extrapolation of the identified meltwater
impact ranges to King George Island coastlines, which are presently ice-covered bays and fjord
areas, indicated an overall coverage of 200-400 km?> MFH, underpinning the importance of
better understanding the biology and biogeochemistry in terrestrial marine transition zones.

This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula:
status and strategy for progress in a region of rapid change’.

1. Introduction

If greenhouse gas atmospheric concentrations continue to increase at the present rate,
temperatures across the Antarctic continent are projected to increase by several degrees and
sea ice will be reduced by about one-third [1]. Rising air temperatures and upwelling of warm
circumpolar deep waters cause thinning and loss of sea ice and a rapid retreat of tidewater glaciers
that discharge into the warm surface waters in the southwestern Antarctic Peninsula region [2].
Within the northern section of the western Antarctic Peninsula (WAP), including Bransfield Strait
where ocean surface temperatures are cooler, only about 50% of the glaciers are on the retreat,
and frontline changes are less pronounced than further south [3]. The ice caps and tributary
glaciers of the South Shetland Islands in the western Bransfield Strait (figure 1) show rapid
surface melting under the influence of warm and moist air intrusions from South America as
a consequence of more frequent positive Southern Annual Mode phases [4,5]. On King George
Island (KGI), the largest of the South Shetland Islands, most of the glaciers that discharge into
fjords and the coastal ocean are retreating at an unprecedented speed [6]. As a result of glacier
frontline retreat along the scattered KGI coastline (457 km) newly ice-free areas are exposed to the
effects of thawing of permafrost, ice masses and erosion on land. According to the analysis carried
out by Riickamp et al. [7], around 44% of the coast was ice free in 2008. In marine coastal areas,
rising water temperature, turbidity, fast ice timing, ice disturbance and chemical factors, including
nutrient and carbon biogeochemistry and meltwater discharge from the ice cap, alter the abiotic
living conditions in densely colonized benthic habitats. Collectively, these changing factors and
processes influence the bloom dynamics of primary producers and trigger cascading effects
throughout the food web [8-11]. The distribution of benthic fauna is controlled by a combination
of biological and environmental factors. Many species show a particular affinity for certain types
of substrate, which provide a physical habitat or structure that is directly or indirectly suited for
their mode of living [12-18]. Alteration of the habitat availability changes community structure
as species start to expand their habitat and compete on newly opening spaces [19,20], or compete
for the limited remaining space they want to occupy in sediment-impacted zones.

The effects of climate-induced glacier retreat on the biological structures and the
functioning of Antarctic fjord ecosystems are the focus of multi-national research programmes
currently investigating WAP climate change effects. A major focus of the research at the
Argentinian/German Dallmann Laboratory (Carlini Station, Potter Cove, KGI) is to investigate
the influence of the fast retreat of the Fourcade Glacier, which has been exclusively land based
since 2016 [21], on benthic ecosystems. The glacier’s retreat has strongly altered the fjord
ecosystem structure and functioning and will continue to do so while it continues to retreat on
land. A long-term air temperature and hydrographic data series has been running since 1991
[22], accompanying the observations of environmental and ecological change in this area. An
important driver of change is the discharge of suspended particulate matter (SPM) from below
the glacier and from thawing permafrost (and soils) on land into Potter Cove [23]. The SPM limits
light availability, particularly during the summer melt season, and causes increased sediment
accumulation on the sea floor close to the glacier. In coastal areas such as Potter Cove, the
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Figure 1. Potter Cove at King George Island/Isla 25 de Mayo, West Antarctic Peninsula (a). The red polygon in (b) highlights the
extent of the study area. Meltwater and lithogenic suspended matter entry from Fourcade Glacier into Potter Cove is indicated
in (c).

meltwater that discharges as groundwater from land to sea [24] also shapes the geochemistry of
the soft sediments [25,26] with consequences for the redox state, solubility and bioavailability of
important micronutrients in pore waters [25,26]. The immediate ecological effects of this sediment
release comprise impacts on the local biodiversity [27,28], animal energetics and growth rates
[14,29,30] and on benthic community composition and community distribution [27,31,32] within
the cove.

The scarcity of complete and consistent datasets in West Antarctic coastal areas that cover
all ecosystem compartments from the cryosphere to the ocean, the sediments and the biology
in sufficient temporal and spatial resolution hampers a clear understanding of the severity of
the ongoing climate-induced coastal change processes. Data analysts are often confronted with
heterogeneous, uneven and sparsely distributed datasets, or with insufficient temporal resolution
of highly varying parameters. Significant resolution is only obtained in long-lasting observations;
and many datasets are limited to the summer seasons. Given these restrictions, it is often a major
challenge to apply robust statistical methods to the available datasets, to provide measures for
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uncertainties and to define larger areas valid for extrapolation of the knowledge acquired from
small-scale investigations.

In the present study, we used a comprehensive data pool of 42 abiotic variables available for
Potter Cove, an 8 km? fjord system, to distinguish meltwater fjord habitats (MFHs) from fjordic
habitats (FHs) and marine habitats (MHs). Habitats and sub-habitats or ‘clusters’ are useful spatial
categories to enable the quantification of biogeochemical processes (e.g. micronutrient budgets
and turnover rates) under the impact of spatially heterogeneous patterns of glacier retreat and
meltwater discharge. Furthermore, such spatial units can be used for the extrapolation of species
abundance and habitat studies to larger areas in support of the optimization of future benthic
surveys and sampling strategies.

The aim of our study was to determine the radius of glacial meltwater impact on the benthic
fjord ecosystems in Potter Cove. Based on the set of environmental variables, the habitats of the
fjord are structured for a representative differentiation between benthic MFHs, non-influenced
benthic FHs and MHs adjacent to the fjord. Based on the MFH distance to Fourcade Glacier, a
first approximation of the KGI coastal areas that are most likely affected by meltwater can be
done.

2. Material and methods

(a) Study area

The South Shetland Islands are a 550 km long mostly ice-capped archipelago located at the
northern tip of the Antarctic Peninsula. KGI (62°23" S, 58°23" W) is the largest of the South
Shetland Islands, located 130km from the northwestern tip of the Antarctic Peninsula. Its
1250 km? ice cap reaches a maximum elevation of around 720m.a.s.]. [6]. Potter Cove is an
approximately 8km? small inlet opening into Maxwell Bay (figure 1a), which is a large fjord
system located between KGI and Nelson Island. Fourcade Glacier descends from the Warzawa
Ice Field and drains from the northeast into the head of the cove. The tidewater glacier tongue
retreated at a mean rate of 20ma~! between 1956 and 2008 [7] and has been entirely land based
since 2016 [21]. The north-eastern coast is confined by ice cliffs, whereas gravel beach ridges
intersected by meltwater streams occupy the southern coast [33]. Moraines, moraine incisions and
glacial lineations on the sea floor in the inner part of the cove and pockmarks, ice scour marks and
channel structures in the outer part reveal glacial recessions, still stands and potential re-advances
during the Late Holocene [34]. The first moraine separates the outer from the inner cove area.
The study area (red polygon in figure 1b) was defined by the distribution of available data and
covers the entire inner cove area (5.21km?) and approx. 1.95 km? of the outer cove. Meltwater
and lithogenic suspended matter entry from Fourcade Glacier into Potter Cove is indicated in
figure 1c.

(b) Environmental data

The analysis accounted for 42 environmental variables assessed mainly at or close to the sea
floor. The majority of the data result from sediment cores taken during the Austral summer
seasons 2010/2011 and 2011/2012 (https:/ /doi.pangaea.de/10.1594/PANGAEA 832335 https:/ /
doi.pangaea.de/10.1594/PANGAEA.815205 and https://doi.pangaea.de/10.1594/PANGAEA.
853593). For sample preparations and geochemical analyses refer to Monien et al. [25]; for
grainsize analysis refer to [35]. The entire sampling period includes the years 1992-2015. Data and
data sources are listed in table 1; the electronic supplementary material, appendix S1, figure S1,
contains the plots of the processed raster data projected in UTM21 coordinates, which are made
accessible from the data archive Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.856971).
The geochemical and sediment texture raster data result from the interpolation of the upper part
of the sediment cores (first 5cm) by using the Geostatistical Analyst ArcGIS 10.4.1 (ESRI). On
this occasion, the statistical mean values (e.g. s.e.m., standardized root mean square error and
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Table 1. Variables included in the k-means cluster analysis in alphabetic order. Geochemical and sediment texture data relate
to the first 5 cm of sediment short core data (surface). The Srand TOC mean over the total core (min 0.5 cm; max 44.5 cm) were
also included (mean). The BPI provides an indication of the geomorphic features such as depressions or slopes [36]. Processed
data are downloadable as 5 m x 5 m raster datasets (https://doi.pangaea.de/10.1594/PANGAEA.856971) and are presented in
the electronic supplementary material, appendix S1; figure S1.

parameter source parameter source
aluminium oxide (wt%), Al,03, surface  [25] sodium oxide (wt%), Na,0, surface [25]

3© [2013] DigitalGlobe, Inc., provided by European Space Imaging.

averaged standard error) resulting from different interpolation methods (e.g. inverse distance
weighted, Indicator, Bayesian, Ordinary and Co-Kriging) and iteratively changing settings
(e.g. lag size, range, neighbour type, anisotropy) have been evaluated to decide on the raster
dataset used for further analysis (electronic supplementary material, appendix S1; table S1). The
bathymetry served to generate more detailed information about the benthic environment by slope
and the benthic positioning index (BPI) [36,39]. The BPI is a measure of site depth relative to the
mean depth of a defined surrounding area (e.g. [40]). For this study, a fine BPI surrounding radius
was defined as 0-15m, and a broad BPI as 15-250 m. The BPI values are positive for depressions,
negative for ridges and valleys, and near or equal to zero for constant slopes and flat areas.

(c) Habitat identification by k-means clustering

Owing to the large number of objects (here: raster cells) that needed to be clustered, the non-
hierarchical clustering method k-means was applied in R version 2.2.2 [41]. For the full list of
packages used and for citations refer to the electronic supplementary material, appendix S1, tables
54 and S5. k-means requires the in-advance specification of the overall number of clusters to be
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Figure 2. Examination of the optimum cluster numbers for k-means clustering application by means of the BSS, which is an
index of cluster validity developed by Zhao & Franti [46].

detected. By either randomly choosing or defining the first set of cluster centres, the k-means
algorithm assigns all objects to one of these centres. This aims at minimizing the internal multi-
variate cluster dissimilarity. The resulting cluster means are then calculated and the clusters are
recalculated in the same way. This is done as many times as needed to reach a given iteration
goal (e.g. no differences between cluster centres). In this way, optimal internal homogeneity is
achieved in the resulting groups [42,43].

The ideal determination of k will balance between the maximum compression of the data using
a single cluster and the maximum accuracy by assigning each datum point to its own cluster.
Different types of optimization criteria to calculate clusters with a minimized total intra-cluster
variation are available, such as the within-cluster sum of squares, the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) (or total within-cluster sum of squares (WSS)).
The total WSS measures the compactness of the clustering and should be as small as possible.
A corresponding method to identify the optimum number of clusters called the ‘elbow method’
plots the WWS according to the number of clusters k. The location of a bend (a so-called ‘elbow”)
in the curve is considered to be an indicator of the appropriate number of clusters. Furthermore,
a number of statistical testing methods consist in comparing evidence against the null hypothesis
(e.g. gap statistics).

Because of the existence of a multitude of indices, 23 different methods were applied in this
study and their results were compared to determine the optimum number of clusters. The R
package NbClust [44] was used to apply 21 indices and to propose the best clustering scheme
from the different results; this was obtained by varying all combinations of numbers of clusters,
distance measures and clustering methods. Additionally, the gap statistic method proposed by
Tibshirani et al. [45] and applied with the R function ‘ClusGap’ (R package ‘cluster”) was used to
calculate a measure of the goodness of clustering by comparing the total intra-cluster variation
for different values of k with their expected values under a null reference distribution of the data,
i.e. a distribution with no obvious clustering. The method X-means refines cluster assignments by
repeatedly attempting subdivision and keeping the best resulting splits until a criterion such as
the AIC or the BIC is reached. Moreover, the between-cluster sum of squares (BSS) is an index of
cluster validity developed by Zhao & Franti [46] that is a function of the median increments in
the BSS (500 runs) and the number of clusters. The first local maximum described the point where
the BSS was no longer increasing, indicating the optimal number of clusters.

The results of the different methods applied give no definite answer and recommend different
optimum cluster numbers. As an example, the result of the BSS is given in figure 2 and suggests an
optimum number of 4 or 12 clusters by visual inspection, and optionally 10. To reduce subjectivity
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Figure 3. Order of the 42 environmental variables influencing four suggested classification options. The variable order of the
four cluster options differs significantly from the alternative option ones.

in decision-making the four most frequently chosen clusters over all indices (4, 7, 10 and 12) were
used for further k-means clustering.

The entire dataset was kept for further analysis. A Spearman correlation matrix over the 42
variables revealed a higher intercorrelation than 0.9 for only 16 of the 840 analysis pairs (electronic
supplementary material, appendix S2) that could cause a bias in the respective cluster result. Five
of these correlations concern soil fraction variables and can be explained by compositional data
(data describing relative quantities which sum to 100%) [47]. More sand necessarily means less
silt and clay. However, all particle size fractions are ecologically relevant and should be kept in
the analysis. If a statistical method suggests deleting a variable, preference should be given to
ecological and geochemical variables because we do not yet know which of the predictors are
important. Omitting a variable may result in a significantly different clustering and is highly
affected by pre-selection of variables [48]. Furthermore, large sample sizes (1 > 10000, this study
n=287387) are less prone to bias [49], and the correlation coefficient itself can miss important
information such as the level or intensity of difference.

Each of the 42 environmental variables influences the habitat location and extent to a different
degree. The curves in figure 3 visualize their order of importance for the four suggested options.
According to its curve, the four-cluster option substantially deviates from the alternative options,
which is evident from the variable Al,O3 onwards (position 8 in the ranking). The deviation was
interpreted as a too intense compression of the data; as a consequence, the four-cluster option was
excluded from further analysis.

(d) Habitat distinctions

The combination of canonical correlation analysis (CCA) and variance analysis (ANOVA), both
implemented in the R package ‘vegan’, as well as Tukey’s post hoc multiple comparison testing
(Tukey’s honest significant difference (HSD) test; R package ‘agricolae’) was applied to explain
statistically significant differences between habitats in Potter Cove and to identify the influencing
factors based on the variables involved.

CCA is a multi-variate method initially used to elucidate the relationships between species
assemblages and their environment. Here, we applied CCA exclusively to environmental
datasets, thereby benefiting from the specific design of the method that allows synthetic
environmental gradients be extracted from ecological datasets. The gradients are the basis for
succinctly describing and visualizing the differential characteristics of habitats in an ordination
diagram. In short, CCA is based on Chi-squared distances and performs weighted linear
mapping. CCA, first introduced by Hotelling [50], is applied here to test whether some
variables explain habitat distribution better than others. CCA identifies correlations in an
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ordination system based on x2-distances and finds linear combinations of two random vectors
X; and Y; which have maximum correlation with each other [51,52]. CCA was applied to
10000 subsamples (out of a total of 286010 raster cells). Subsampling considered the original
distribution of sampling across clusters and included 999 permutations per subsample. The
differences between the habitats were tested by ANOVA statistics: for each variable and each
habitat, a mean value was calculated and compared with the mean value for each habitat.
Significant differences between the mean values comparing the habitats were determined
by t-tests to see whether at least two means were significantly different from each other.
Additionally, Tukey’s HSD test was applied to test for specific habitat differences. Tukey’s
HSD test compares all possible pairs of means, and identifies any differences between two
means that are greater than the expected standard error. It creates confidence intervals for all
pairwise differences of habitats while controlling the mean error rate at the specified significance
level (o« =0.05).

3. Results

(a) Clustering of meltwater fjord habitats, fjord habitats and marine-influenced habitats

For Potter Cove 4, 7, 10 and 12 clusters were suggested by direct and statistical testing methods
for a k-means clustering of 42 abiotic variables (figure 2c). When applying k-means clustering by
means of the R package ‘cluster’, the optimal number of clusters is to a certain extent subjective
and depends on the methods used to determine similarities and on the parameters used for
cluster partitioning. Validating the clusters with respect to the overall question (in our case:
how to best cluster different habitats under melt impact) is therefore essential. The four-cluster
option was rejected based on the results from the CCA (figure 3), which showed a divergent
order of importance of influencing environmental variables for this option compared with a
concordant order of importance for the three remaining options. This deviation was interpreted as
inaccuracy resulting from too coarse generalization of the variables (figure 2c). The environmental
input raster data as well as the results of the three classification options are available from the
data archive Pangaea (https://doi.pangaea.de/10.1594/ PANGAEA.856971). A summary of area
coverage, depth and distance to the glacier per habitat is given in table 2.

Visual inspection of the 7-, 10- and 12-cluster options (figure 4a—c) revealed spatial differences
between the 7- and 10- (and 12-, respectively) cluster options but no significant difference
between the 10- and 12-cluster options in the outer part of the cove. Enclosing habitats H1-H5
(10-cluster option) and H1-H7 (12-cluster option) covers almost the same benthic area in the
inner cove (figure 4d). This indicates that a minimum of 10 clusters is required to identify the
maximum extent of the Fourcade Glacier meltwater influence. The 10-cluster option was hence
identified as the optimum number of clusters for the analysis of meltwater-influenced habitats in
Potter Cove.

The comparison of the three options further revealed absolutely no spatial change in the
area beyond moraine M1 (figure 4b) in the outer cove (clusters with the highest number for
each option (H7, H10 and H12, figure 4a—)). Therefore, this area was determined as meltwater-
unaffected MH. Likewise, unaffected FHs can be distinguished from MFHs through observing
similarities between the results of the 10- and the 12-cluster options. The four habitats H6-H9
(10-cluster option) and H8-H11 (12-cluster option) are congruent with each other; neither the
area nor the number of clusters changes. These habitats are combined and defined to be the
FH. Exclusively, the area across the red line in figure 4b,c is broken down into more detail with
increasing numbers of clusters and therefore is specified as the MFH. The MFHs derived from
the 10-cluster option cover about two-thirds of the investigated Potter Cove area, amounting to
3.18km? (figure 4d), with a maximum, minimum and mean water depth of 54.8 m, 0m and 17.7 m
and a maximum, minimum and mean distance to Fourcade Glacier of 2269 m, 0 m and 1033 m,
respectively.
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Table 2. Area, depth and glacier distance characteristics for all cluster options assigned to MFH, FH and MH.

glacier distance (m)

7 habitats area (km?)

10 habitats

Q102107 9L ¥ 205§ supi] 7iyg BioBuysigndiaaposieforens:

12 habitats

MFH 1 0.2113 —40 0 -8 0 978 226
e i R s S . i
e G R g T e
e Gy G T e e
g T S e TR Gy e e
e e S T g S —
e e e e o s o

FH8 ............... 06805 ................... _41 ................. 0 .............. _10 ................. 2 018 ................ 3685 ............... 2831 ......
g G T T oo o
e T e - St
e e S e e o e

MH12 ............. 08184 .................... _73 ................. 0_“ ................. 2316 ................. 3747 ............... 3 079 ......

(b) Abiotic distinctions between meltwater fjord habitats, fjord habitats and marine-
influenced habitats

Descriptive statistical measures over all abiotic variables within groups were calculated to
characterize the difference between MFHs near the Fourcade Glacier, meltwater-unaffected FHs
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Figure 4. Fjord habitats in Potter Cove resulting from k-means cluster analysis of 42 environmental variables realized for 7 (a),
10 (b) and 12 (c) predetermined clusters. The glacier front lines are labelled by years [7]. Extent of meltwater fjord habitats (MFH),
ford habitats (FH) and marine habitats (MH) in Potter Cove based on the preclassification of 10 clusters (d). The overlay of the
three alternative MFHs (red, black and red lines) reveals a high match between the 10- and 12-cluster options.

and MHs under higher impact in the outer cove. Selected influencing variables enable statistical
differentiation of the habitat characteristics. The habitat-conditional triplot based on a CCA in
figure 5 simultaneously visualizes habitats and variables. The CCA eigenvector analysis (axes 1
and 2, figure 5a) explains 90.0% of the variance (a combination of the inertia in the magnitude and
variance in the weighted averages). The ordination diagram summarizes the main correlation
structure between the three habitats (MFH, FH and MH) with respect to the 10 most important
variables (figure 54) and all 42 environmental variables (figure 5b). Quantitative environmental
variables are displayed by their correlations with the axes, and qualitative environmental
variables by the centroids of the habitats. The CCA plots (figure 5a,b) and table 3 show that MFH
seems to be associated with low levels of Sr (mgkg™!) and CaO (wt%) as well as high contents
of CuO (mg kg_l), K70 (wt%) and clay (%) in surface sediments, high SPM contents in the water
column and a shallow water depth (mean —22m). The mean glacier distance is 1134 m. An FH is
positively correlated with CaO (wt%), Sr (mg kg_1 ), larger glacier distance (mean 2930 m) and also
a shallow water depth (mean —24 m). Both types of fjord habitats (MFH and FH) are characterized
by positive BPI resulting from glacial excavations. MH is especially characterized by deeper
water depth (greater than 112m). For the full list of statistical mean values of environmental
variables comparing MFH, FH and MH refer to the electronic supplementary material, appendix
S1, table S2.

Further ANOVA showed that the full model is statistically significant (p < 0.001) and the Tukey
HSD test revealed that the environmental variables are significantly different in all three habitat
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Figure 5. Habitat-conditional triplot for the 10 most important (a) and all (b) variables based on a CCA displaying inertia (i.e.
weighted variance) in the abundances and variance in the weighted averages of 10 000 subsamples (Mt = 286 010) with
respect to the environmental variables. Quantitative environmental variables are indicated by arrows. The scale marks along
the axes apply to the quantitative environmental variables. Importance of influence (c) ordered for the classification between
MFH, FH and MH.

types (boxplots assigned to different letters in figure 6). The blue letters in figure 6 indicate
the degree of similarity between the habitats. A considerable variance effect is visible in the
content and concentrations of geochemical elements such as Na, K, Ca of MFH and FH in surface
sediments compared with MH. The environment of MFH clearly distinguishes from FH and MH;
for instance the contents of Sr and sand in surficial sediments are significantly lower in MFH
than in FH or in MH, while mean values of KO and clay contents are considerably higher. For
comparisons between further statistical mean values of MH, FH and MFH, the full details of
all the variables are available in the electronic supplementary material, appendix S1, table S2.
Clearly, the CCA applied in this paper to environmental data provided useful habitat knowledge
by guaranteeing a maximum dispersion of the weighted variance and variable centroids. Tukey’s
HSD revealed which habitats are more alike according to the variables (figure 6) and therefore
provided additional insight into the ecological differentiation of the habitats. Distinct bathymetry
differences occur between MFH and MH (assigned to letters a and ¢, figure 6), whereas the main
differences regarding clay exist between MFH and FH. The mean values for bathymetry and
Al,O3 clearly separate MH from FH and from MFH.

The determination of MFH in Potter Cove is strongly related to the geochemical properties
of the terrestrial sediments and soils originating from the Barton and Potter Peninsulas [53],
the glacier distance and the bathymetry (figure 5c). Furthermore, the seabed morphology
(represented by the broad BPI) and sediment texture (e.g. clay or sand) correlate with the
sedimentation processes and are therefore positioned in the upper part of the ranking list.

4. Discussion

Inshore ecosystems at the WAP area are currently changing at an unprecedented speed owing to
the rapid melting of coastal glaciers and ice caps. Notwithstanding the overall climatic trends in

St i i b



rsta.royalsocietypublishing.org Phil. Trans. R. Soc. A 376: 20170178

14} € 8l 0'8¢ 90zt ge,ee L0 /1 8uUl—  88I8E OlH HW
B LS LN 0B SE seu v 00 8T T EUoeE 84
eapWAN eRPDSY | | e G AT L T T Jooy X0 . 9F . E%EC..o%EE WM
‘BIA[RAIG ‘BRDR|NJRUUDY 7l LY 68 473 91el gue o €¢ r8e—  1'999¢ [H
‘e13jlioq ‘aebje abejquuasse paxiw 14 8y S08 0°9¢ [4}} olee 00 L€ €0L—  8'9E8C 9H H4
13ne|b
woysepew Lo LAS 688 S8 sal St Vo ¥y8  yu— g M.
papuadsns 9l 0¥ 9% 6'ty Sost Swe €0 8t vie— €8yl vH
nuaboyy

eaploJa1sy ‘eaploaniydp
‘edeIpSY ‘eade|njeuusy
UOIJRUILOP S13Pa3) 13|y

(96) 0B (%Im) 0®) (B bw) (6 bw) WdS  Ayregu

m 04

DIINIE) sieligey

“Janew ayenained papuadsns ‘W ds ‘(W) Anawkyyeq ueaw ‘Ayregu ‘(w) uelsip 1a1e|H
ueAW ‘|9 “1LNGRY-GNS ‘HYNS “Ie3qRY ‘H “YeNgey auLiew ‘Hiy egey piol} ‘H4 “1evgey piol sutiew ‘H4W *9A0) 433104 18 SYelgey-gNs pue syeligey J1YIuaq 3y} BuiqLSIp SHNSUIIRIEYD PalIdfas “€ djqe)



SR mean Fe,0, Cu ALO,
4 . . 2 ) : a b

b c c a b a J b
432 - 9 b 127 ¢ 18 c
400 ¢ ) — 3 17 =
] —
364 7 o8 16 I
15
3197 40063 34631 4259 6 7.8 8.1 7.9 63 5.7 98.0 719 17.1 17.1 17.6
FH MFH  MH FH MFH  MH FH MFH  MH FH MFH  MH
olac bpi broad std ;
b N xllllxl glac 1 . b a MnO \ Dp1 ””C“ St s a ¢ b“d-()
4214 = 96 )
_ 50 | 4
1995 . 42 R —
-1 20310 11336 38188 0 ol 0.1 0.1 190 350 36 1108 2 38 32 37
FH MFH  MH FH MFH  MH FH MFH  MH FH MFH  MH
b a béxlh} 2 . \o';i sand b ¢ a V b \ ¢ K,0
1 212 2
0! ey
i 201 —_—
-55 o [E— _
-87 I 179 b —
_ 157 I
7 36 18 -i28 %1 oe 02 05 1925 189.9 198.4 Vs 1.6 1.4
FH MFH  MH FH MFH  MH FH MFH  MH FH MFH  MH
spm avsurf sed clay TOC mean CaO
b A c c a b a c b b a c
1 1 7
2
6
e
13 , Nl ———— | -
6 | = e ! 4 ==
07 32 75 1.7 0 o 02 0.1 0 04 03 0.4 3 s 42 53
FH MFH MH FH MFH  MH FH MFH MH FH MFH  MH

Figure 6. Data distribution (skewness, spread and outlying points) of selected variables within the habitats according to the
probability of mean differences (ANOVA, «-level 0.5) and pair-wise confidence level from Tukey’s HSD (95%). Black and red
lines are the median and mean values. Red numbers are the mean values; the order of the blue letters represents the degree
of similarity between the habitats. Habitats assigned to the same letter would not be significantly different. For the location of
the habitats, refer to figure 4d. For variable units, refer to table 1.

the region, the extent to which different inshore systems respond to this change is not uniform.
Rapidly changing systems, such as the smaller ice caps of the South Shetland Islands, are early
indicators for processes predicted to affect the larger ice masses on the mainland WAP in the
future. Spatial analysis of a multitude of variables is required to understand how glacial retreat
affects local inshore and regional offshore ecosystems. The statistical ecosystem models applied
here are valuable tools that exploit multi-layered datasets, combining diverse parameters of
abiotic and biotic factors (descriptors), in order to classify different states of system change and
to delineate the best environmental descriptors characterizing ‘transitional” or ‘final states’ of
system change. In the present paper, we used the multi-layered dataset from Potter Cove to
characterize the transitional state of meltwater-influenced habitats (MFH) and distinguish them
from a final state of now exclusively marine habitats (MH) in Potter Cove. These benthic habitats
have passed through the same melt-influenced state within the recent 10000 years [54], during
which the frontline of the Fourcade Glacier retreated, albeit discontinuously, towards its present
position on land [7]. More than only describing the momentary spatial compartmentalization
of different meltwater and marine clusters or zones in Potter Cove, our analysis reveals a set
of environmental variables that can be used to distinguish the recently melt-influenced zones
from mature marine habitats in the inshore systems of KGI, and potentially the whole South
Shetland archipelago. Most of the variables are easy to measure and are correlated (electronic
supplementary material, appendix S2) with shallow bathymetry and the presence of geochemical
indicators for lithogenic creek discharge and subglacial sediments. They are therefore positioned
in the upper part of the ranking list and include glacier distance to habitats, bathymetry and
BPI [36], in addition to selected geochemical elements related to the surrounding terrestrial host
rock (figure 5c).
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(a) Topological, sedimentological and biogeochemical interpretation of factorial cluster
differentiation

A minimum number of 10 sub-habitats were required to identify the maximum extent of
meltwater influence in Potter Cove. This was derived from non-hierarchical k-means clustering
of 42 abiotic variables (see figure 32 and table 1). For the full list of statistical mean values
of environmental variables comparing H1-H10, refer to the electronic supplementary material,
appendix S1; table S3. Of these 10 clusters, five sub-habitats (clusters H1-H5) can be combined
to form the overall zone of MFHs. MFHs are strongly discriminated by low Sr (346 mgkg™')
and CaO (4.2wt%) values from FHs and the surrounding terrestrial host rocks. MFHs have a
maximum glacier distance of about 2270m, and their seabed morphology is characterized by
a positive BPI from glacial depressions that function as catchment areas for soft sediments,
explaining the clay-dominated sediment texture of the MFHs. MFH sediments further contain
relatively low TOC concentrations (figure 6) due to sparse colonization by macroalgae in these
newly ice-free areas [23,55]. Furthermore, high sediment accumulation rates closer to the glacier
lead to further dilution of the low organic fraction contained in these sediments.

Four of the 10 clusters were combined to form the FH (H6-H9, mean water depth —24m),
which occupies a similar water depth to the MFH (mean —22m). The FH is more distant from
the glacier (mean/max distance 2930 m), with reduced meltwater influence indicated by higher
Sr (mean 400 mg kg_l) and CaO (mean 5.1 wt%) concentrations, as well as a higher proportion of
sand (mean ca 65%) in surface sediments. The strictly MH far from glacial influence (cluster 10)
is clearly separated from the FH and MFH by bathymetry (mean water depth —112m, figure 6).
Some factors decrease gradually between the glacier front (MFH) and MHs, such as the wave
energy in shallow water depths [38]. Additionally, fine sediments and clay undergo progressive
washout by resuspension as surface sediments ‘mature’ in areas more remote from the glacier
(table 3).

An incremental depletion of CaO associated with a slight depletion of Sr in sediments from
MFH to MH (table 3) is one of the main distinguishing criteria in our study. It should be noted
that the mean Sr (346 mg kgfl) and CaO concentrations (4.2 wt%) in MFH sediments are lower
than would be expected based on geochemical data of local bedrock (Ca: 7.1-9.3 wt%, Sr: 527—
609mg kg_1 [56-59]). A similar phenomenon was observed by Lee et al. [53], who investigated
soils and bedrock on the nearby Barton Peninsula. These authors proposed lower CaO and Sr
concentrations in soils compared with the underlying bedrock to be the result of plagioclase
alteration. They suggested that CaO depletion in feldspar is caused by chelating agents excreted
by lichens covering local soils and rock debris [53]. It is therefore quite likely that lower mean Sr
and CaO concentrations found in MFH sediments are the result of biochemical weathering of soils
and terrestrial sediments, mainly from Potter Peninsula, due to earlier deglaciation than Barton
Peninsula [54].

The combination of low TOC content and high concentrations of iron and manganese in
sediments and pore water has been reported in several recent studies in coastal Arctic and
Antarctic regions [25,60]. Elevated concentrations of Mn and Fe in pore water close to the
glacier front [25] indicate that dissimilatory metal reduction is the main driver of organic matter
degradation in these sediments. While only a small amount of Fe and Mn released by these
sediments will be complexed in the water column, the major part of these transition metals is
re-oxidized and re-deposited, explaining the relative increase in sedimentary Fe and Mn in the
sediment surface of the MFH [26]. By contrast, in FH areas where TOC concentrations are higher
(figure 6, only in the central deeper parts), organic matter oxidation is predominantly based on
sulfate reduction rather than on Fe reduction [25], so that Fe accumulation in surface sediments
is not enhanced.

The habitat mapping approach introduced in this paper is mainly data driven and does not
directly depend on a mechanistic understanding of the underlying geochemical processes. It is
mostly automatic and allows the classification to be refined at certain stages, based on visual
inspections of the analytical results (e.g. decision-making for the best cluster number). All in all,
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Figure 7. Properties of the KGI coast assigned to the inferred MFH are the mean and maximum distance to the glacier
experienced at Potter Cove as well as glaciers adjacent to the coast and the coast shape (fjords or bays). AG, Anna Glacier; BD,
Bellinghausen Dome; (G, Crystal Glacier; DG, Drake Glacier; DoG, Domeyko Glacier; EG, Eldred Glacier; FG, Fourcade Glacier; HI,
Hektors Icefall; MDI, Moby Dick Icefall; MG, Moczydlowski Glacier; PFG, Polar Friendship Glacier; PG, Poetry Glacier; UG, Sher
Glacier; CH, Collins Harbour; EC, Esmerald Cove; MC, Marian Cove; PC, Potter Cove; El, Ezcurra Inlet; Mal, Mackellar Inlet; MI,
Martel Inlet. (Data derived from Riickamp et al. [7].)

our study is a purely statistical approach to the data, which has both strengths and weaknesses.
However, the results presented in this study are repeatable and with a resolution and precision
limited only by the data input [61]. In the optimal case, the results from a cluster analysis can
be interpreted based on the state of scientific knowledge with respect to biogeochemistry and
ecology (see above).

(b) Missing information that would add to the analytical output

The cluster analytical results could be improved by including hydrodynamics and wind data
for the Potter Cove area. Tides, meltwater run-off and ice scouring influence mixing intensity
and hence the resuspension and deposition patterns of lithogenic SPM. These processes cause
fractionation of sediments and minerals and decrease benthic biodiversity [55], respectively.
Including the cyclonic surface circulation pattern into the present analysis would facilitate
the interpretation of biochemical patterns and help to explain differences between southern
and northern clusters within the three fjord habitat zones (MFH, FH, MH). Analysis of the
mineralogical composition on the Barton and Potter Peninsulas (N.T. Manograsso-Czalbowski
2017, unpublished data and personal communication) needs to be combined with a geochemical
element analysis in surface sediments on both sides of the cove for a better understanding of
lithogenic fluxes and provenance (clay mineral composition) compared with the distribution of
markers for biogenic productivity (carbonate, biogenic opal, TOC).

(c) Upscaling the ecological consequences of glacier melt

Rapid glacier retreat in Potter Cove has caused shifts in benthic assemblages [27] that can
be associated with the identified meltwater habitats (table 3). The use of data from recent
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sediments in the upper 5cm surface layer, equalling approximately 5-10 years of sediment
deposition, implies that we can link the resulting habitat patterns to the most recent ecological
shifts occurring in the cove [10,26,28,29,62]. The next step would then be to quantify the
extent of coastal areas affected by meltwater input and sedimentation, potentially resulting in
similar effects on marine communities. Here, we estimate for the first time the impact radius
of glacial discharge by defining the extent of the MFH for a model cove on KGI. Riickamp
et al. [7] published the retreating tidewater glacier front lines for KGI derived from satellite
imagery between 1956 and 2008. From these lines, we calculated the amount of newly ice-free
marine areas to approx. 75km? along KGI. The share of Potter Cove amounts to an area of
1.4km?2. With this knowledge, a first approximation of the total extent of meltwater-impacted
habitats along KGI can be provided. This estimate is derived for 200 km of coastline currently
occupied by tidewater glaciers and located inside the geomorphological features of inshore fjords
and bays (figure 7) of the island (approx. 40% of the overall ice-covered island coastline of
457km). To these manually identified sections of the KGI coastline, a Euclidean buffering of
1000m and 2000 m (mean and maximum MFH distance in Potter Cove) MFH was applied and
projected in UTM21 coordinates in ArcGIS 10.4.1 (ESRI). The resulting estimation amounts to
between 200 km? (conservative approximation) and 400km? (maximum extension) of present
MFH extension.

This paper is the first algorithmic approach to approximate meltwater-impacted coastal
inshore areas based on abiotic data from an ecosystem study in a ‘model cove’. It reveals
the extent to which coastal inshore areas at KGI are currently impacted and can further be
applied more widely on the WAP [3] to approximate the extent of potential future melt-impacted
habitats (figure 7). These terrestrial marine transition areas are of major importance for coastal
biogeochemistry and marine biodiversity and the rapid changes happening here are bound to
affect larger shelf and open ocean areas.
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