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ABSTRACT. In this study a powerful tool to investigate the permeabilities and effective diffusion

coefficients of polar firn is presented using a combination of an experimental method for three

dimensional pore structure reconstruction and two models to simulate advective and diffusive transports

of gases through the pore space. The reconstruction follows a semi-automated digital analysis of serial

surface sections. The simulations are based on a three-dimensional lattice Boltzmann formulation. They

separately solve the Navier-Stokes equation and the diffusive transport equations. In a first application

effective diffusion coefficients and permeabilities are calculated from firn samples of a core drilled during

the North-Greenland-Traverse 1993-95. The estimated relationships of diffusivity and permeability to the

open porosity are expressed by power law functions with exponents 2.1 and 3.4, respectively.

INTRODUCTION

A well-known consequence of gas transport within the interconnected pores of polar firn is the difference

in age (∆age) between trapped air and the surrounding ice. The gas transport results in a wide spread of
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air ages within pores of a distinct horizon while the surrounding ice is approximately of uniform age.

(Schwander and Stauffer, 1984; Trudinger and others, 1997). A reliable estimation of ∆age especially on

the longer time scale of glacial and interglacial cycles is of great importance in examining their relation to

climate proxies deduced from the ice itself as e.g. isotopic temperatures or aerosol concentrations. A great

deal of effort has been devoted to deduce ∆age estimates using macroscopic firnification models

(Schwander and others, 1997; Kawamura, 2000). However, it is not evident that the assumed empirical

densification model and the transport properties of recent firn are applicable to different climate

conditions during glacial times. No reliable error bars of ∆age estimates could be specified due to the lack

of knowledge about structure related firn properties and their dependence on temperature, accumulation

rate and impurity content.

The gas transport in firn is mainly controlled by molecular diffusion. The diffusion is forced by the

concentration gradient which is triggered by concentration changes in the atmosphere. The diffusion takes

place through the cramped and tortuous pores of firn. The firn structure effectively lowers the diffusion in

comparison to that in free air. Advective transport by air flow due to windpumping or convection plays

only a minor role within the firn column, because under recent climate conditions both, the permeability

of firn and the driving forces are too small to ventilate more than the uppermost meters, which are

approximately 10 to 20% of the firn column height. Therefore the effective diffusion coefficient and its

relation to firn structure are of primary interest. Previously measured diffusivity-porosity-relationships

done by Schwander and others (1988) and Fabre and others (2000) show only slight variations for firn

sintered at different temperatures. However, the regressions are based on data measured in a small range
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between 0.15 and 0.37 of open porosity (Fabre and others, 2000) and give rise to unreasonable values in

both limits. Above 0.6 the tortuosities of the firn pores tend to values below 1 (lower than for free space

and without physical meaning). Below 0.12 the diffusion vanished totally although even below this limit

connected pores exist. On the other hand firn with low open porosity is of particular importance because

the reduced diffusion in the vicinity of the firn-ice transition affects significantly the ∆age of the isolated

air. Furthermore, the influence of differences in firn structure on diffusion increases with decreasing

porosity. This is evident when e. g. the tortuosity of a bed of spheres is compared with that of a sintered

material. In the porosity range of 0.5 to 1 the tortuosities vary only by a maximum factor of 2 whereas in

the lower part of porosity the differences of the tortuosities tend to a factor of 50 and more. Therefore the

diffusivity-porosity-relationships for firn sintered at different temperatures might be different for low

porosities.

In other studies inverse modeling techniques (Rommelaere and others, 1997, Fabre and others 2000) and

trail-and-error methods (Trudinger and others, 1997) are applied to the diffusion process using measured

atmospheric and firn air compositions to tune the diffusion-porosity-relationships at several location sites.

These studies resulted in markedly different curves at different locations. Interpreting these differences is

difficult, because all model errors, such as uncertainties of the density parameterization by ignoring

density fluctuations or melting layers are "mapped" into the reconstructed diffusivity values. So far, the

relationship between effective diffusion coefficients and open porosity over the whole range of open

porosity remains unclear even for recent firn.
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Considering firn in glacial times, measurements of δ15N2, reflecting the gravitational separation of

isotopes dependent on the diffusion column height (DCH), at the Dome Fuji deep ice core, Antarctica,

indicate unexpected changes of the DCH during the glacial cycles: the DCH decreases during glacial

times whereas the close-off depth is increasing (Kawamura, 2000). If the estimated DCH is correct, the

influence of the colder glacial climate on firn structure, diffusivity-porosity relationship and on the whole

process of densification would lead to lower diffusion column heights and hence would require new

explanations. Sowers and others (1992) postulate non-diffusive zones above the firn-ice-transition.

Furthermore, the occurrence of thin impermeable zones in the upper firn column such as melting layers

could lead to a significant lowering of diffusion (Trudinger and others, 1997). Until now, the formation of

such non-diffusive zones and the condition that controls their thickness are not understood. All aspects

mentioned above reveal a lack of knowledge about firn structure for present, and even more, for glacial

climate conditions.

The overall aim of this contribution is to provide a method to investigate specific features of firn

structures on the pore space scale which allows the estimation of relevant parameters for gas transport

such as permeabilitiy and effective diffusion coefficients. In the following, the method will be presented

in detail and applied in a pilot study to firn samples of an ice core drilled in North-Greenland. The

deduced permeability-porosity and diffusivity-porosity relationships are discussed in the context of

previous, experimentally derived estimates. Further applications of this method with respect to gas

transport in the firn column will be presented elsewhere.
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RECONSTRUCTION METHOD (3DRM)

The reconstruction of pore space in firn is based on a serial sectioning method. The experimental set up is

placed in a cold room at temperatures of about –20°C. Samples are successively cut by shaving off thin

horizontal ice slices with a microtome. Subsequently, the planar surfaces are photographed by a CCD

camera (Hamamatsu C3077, CCD: Charge Coupled Device). The camera is mounted on top of the stage

with light sources on both sides. During processing the distance between camera and ice surfaces remains

constant. The images are taken when the sledge has reached the final position of the microtome track.

Before each cut the pore spaces are filled with a white colored mixture of Titanium dioxide powder in oil

to enhance the contrast between ice and pore space. The dimension of an ice specimen is approximately

30 mm x 40 mm x 40 mm. The lateral resolution of the digital surface images is 0.074 mm per pixel. The

distance of two sequentially photographed surface sections is set to 0.200 mm. However, a single

microtome cut reduces the ice thickness by 0.040 mm or less. In the last cut, between pore filling and

imaging, only 0.01 mm ice is microtomed off. A set of approximately 200 images are combined to a three

dimensional ice-pore-matrix by using well-known tools of digital image processing (Russ, 1995;

Gonzalez and Wintz, 1987). The digital images consist of 768 x 512 pixels. The brightness is digitized to

256 levels of grey values.

In a first step the relative position of serial surfaces are tested. Already slight displacements during the

imaging process would significantly change the connectivity of the three dimensional structure. To

correct the displacements the two dimensional cross correlation functions between adjacent digital images

are calculated. The position of the local maximum of each correlation function indicates the necessary
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displacement in x- and y-direction (Gonzalez and Wintz, 1987). The images are successively correlated

and relocated using windows of 256 x 256 pixels in the center part of the images.

In a second step, the grey level images are analyzed by a segmentation algorithm using two thresholds to

obtain binary representations of solid ice and pore regions. The segmentation is a common process in

digital imaging to subdivide an image into its constituent regions (Gonzalez and Wintz, 1987).

Thresholding is one of the most important approaches to image segmentation. In case of objects with grey

levels grouped into two clearly distinguished modes the selection of one threshold is sufficient to separate

these modes. Surface images of firn show this bimodal distribution function in grey levels (Figure 1). The

maximum grey value maxpore in the lower part of the histogram corresponds to predominantly pore

representing pixel; the maximum maxice in the upper part corresponds to ice representing pixel. However,

a separation by only one threshold between the two maxima would overestimate the pore region because

the grey levels of marked regions beneath the surface overlap with the wide area of pore representing

values. Therefore a set of two thresholds are defined. The first threshold T1  is defined as

T1 := maxpore + 2σ, whereas the standard deviation σ  is derived by fitting a Gaussian function onto the

lower part of grey levels (Figure 1). T1  usually varies between 5 and 50 and separates only the narrow

region of grey levels that is assumed as explicit pore representing pixels. In addition a fraction of mixed

pixels at the ice-pore-interface has to be added to the pore representing pixels. A mixed pixel represents

an area covered by both ice and pores with a mean grey value that is weighted by their fraction of

coverage. Due to the small-scale structures the images consist of a large amount of mixed pixels. To

separate pore representing mixed pixels a second threshold T2  is defined as a mean grey value of the two

maxima given by T2 := (maxpore + maxice )/2. T2 varies between 100 and 128. A mixed pixel is classified as
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a pore, if its grey value gv  is less than T2  and if at least one adjacent pixel representing a pore with a grey

value gv < T1 (to make sure that the considered pixel is at the ice-pore-interface). All residual pixels are

assigned to the ice phase.

The total porosity n of the reconstructed firn cube is simply given by the ratio of pore representing pixels

to the sum of ice and pore representing pixels. Pores which are via the pore phase connected to two

opposite sites of the firn cube are defined as open pores. Then the open porosity nop is given by the ratio

of open pore representing pixels to the whole number of ice and pore representing pixels. In the models

described below the open pores are estimated with respect to the cube sites in direction of the imposed

pressure and concentration gradients.

MODELS OF GAS TRANSPORT

Two independent models for advective and diffusive transport are developed. Both models are based on

the lattice Boltzmann formalism. In recent years lattice Boltzmann models (LBM) are applied to various

problems described by partial differential equations, for example to hydrodynamics in three dimensions,

flow through porous media, immiscible fluids and diffusion-reaction problems (Wolf-Gladrow, 2000).

The LBMs are ‘bottom-up‘ approaches, where the starting point is a discrete microscopic grid model

which by construction conserves the desired quantities. However, the derivation of the corresponding

macroscopic equations requires lengthy calculation by multi-scale analysis and goes beyond the scope of

this paper. The next section outlines the specific model constructions with focus on the handling of the

boundary conditions. For more detailed derivations of LBMs see Wolf-Gladrow (2000).
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The advection-model

The advection-model solves the Navier-Stokes-equations for an incompressible fluid with Reynolds

numbers less than 1 to simulate laminar flow through the reconstructed pore space. In the following we

use advection to mean fluid movement within the pores of firn whereas others use it to describe the

downward movement of air with the surrounding firn layers, due to snow accumulation at the surface

what is not addressed in this paper. From the flow field simulation on the pore scale the structure related

permeability k of porous firn is calculated. k is defined in Darcy’s law

ud = −k
1

∇p (1)

with permeability k [m2], specific discharge ud [m s-1], pressure gradient along main flow direction p

[N m-3] and fluid viscosity  [kg m-1 s-1].

For the advection-model a cubic lattice with 19 velocities on each grid point in combination with the

BGK (after Bhatnagar, Gross and Krook, 1954) collision term is used. The BGK collision term was

originally introduced by d’Humieres and others (1986) for hydrodynamic simulations. The normalized

velocities of this lattice allow a mass and momentum exchange to the next 18 neighbored nodes. In

cartesian coordinates they read

c0  =  (0,0,0)

c1,2, c3,4, c5,6  =  (±1,0,0), (0, ±1,0), (0,0, ±1) (2a,b,c)

c7,8,9,10, c11,12,13,14, c15,16,17,18  =  (±1, ±1,0), (±1,0, ±1), (0, ±1, ±1).

The local equilibrium distributions (Fi
eq) of the mass density on the grid can be written as

    F0
eq =

1

3
(1−

3

2
u2 )
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Fi
eq =

1

18
(1+ 3c iu +

9

2
(c iu)2 −

3

2
u2 ) for i=1,...,6 (3a,b,c)

Fi
eq =

1

36
(1+ 3c iu +

9

2
(c iu)2 −

3

2
u2) for i=7,...,18

with density  and velocity u. The kinetic equation, that described the time development of the

distribution functions (Qian and others, 1992) reads:

Fi(x + ci ,t +1) = (1− )Fi(x,t) + Fi
eq(x,t) (4)

where i is the index for the lattice velocities and ω the collision frequency. The mass and momentum

densities (x,t) and j(x,t) at the grid point x are defined as mean values of Fi(x,u,t) over velocity space:

(x,t) = Fi(x,t)
i

∑   j(x,t) = (x,t)u(x,t) = ciFi (x,t)
i

∑ (5a,b)

It can be shown that (x,t) and j(x,t) obey the Navier-Stokes equation whereby the kinematic shear

viscosity ν depends on ω. For proper choice of ω in the range between 0 and 2 the viscosity can be

adjusted to the viscosity of any desired fluid:

ν =
2 − ω
6ω

(6)

The pressure p(x,t) is defined up to an arbitrary additive constant p0 and given by the density field as:

p(x, t )=
1

3
ρ(x, t )− p0 (7)

The non-equilibrium distribution functions Fi  have to be calculated at each new time step t+1. The Fi

propagate from the grid point (x-ci) to the point (x). For the grid points on the boundaries not all Fi are

known, because some points from which propagation starts are outside of the domain and some Fi are

propagating out of the domain. Boundary conditions which can be used in this work must conserve mass

and fulfill the no-slip conditions between the fluid (gas phase) and the solid phase. Therefore the halfway

bounce-back scheme (HBS, see He and others, 1997) is applied: For two neighboring nodes – one ‚wet‘
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node (gas phase) and one ‚dry‘ node (solid phase) – the boundary is located halfway between these two

nodes. Particle distributions propagate from wet to dry nodes and vice versa. On the dry nodes no

collision or forcing takes place. If a distribution propagates from a wet node to a dry node the distribution

oriented reverse direction of the dry node is set equal to that ‚wet‘ distribution. Thus the original

distribution is bounced back from the dry node to the original wet node in the next time-step. It depends

on the relative position of wet and dry nodes which distributions are reflected. Complete changing of all

contrary oriented distributions fulfills the HBS for all positions. Along the open boundaries at x = (x,y,0)

and x = (x,y,zmax) the gradient of the velocities in direction of the main flow (z-direction) must vanish.

This requires that Fi (x,y,0) propagates to Fi (x,y,1) for i = 5, 11, 12, 15, 17 and Fi (x,y,zmax) propagates to

Fi (x,y,zmax-1) for i = 6, 13, 14, 16, 18. The forcing of the LBM is implemented by an imposed pressure

difference between the model boundaries in the direction of the main flow at x = (x,y,0) and x = (x,y,zmax).

In the notation of the LBM it is equivalent to a density difference (equation 7). The density difference is

distributed symmetrically on both boundaries so that the arithmetic average is equal to the density 0 of

the internal nodes at the time t = 0. The model starts always with j(x,t=0) = 0 and 0= (x,t=0) = 1. The

imposed pressure difference is kept constant during all model iterations.

The model calculates the local pressure (density) and velocity vectors. Using relation (1) the macroscopic

permeability of the firn cube is calculated by

k =
∆L

∆p
ud =

∆L

∆p

q z(xm ,tend)
m

CS

∑
A

(8)

where L is the distance of two vertically oriented cross sections with pressure difference p. A is the

total surface cross section area. ud is the specific discharge in z-direction and can be expressed as the sum
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of the local velocities in z-direction qz in an arbitrary cross section devided by A. m is the index for the

‚wet‘ nodes in the cross section CS.

The diffusion-model

The diffusion-model solves the diffusion equation within the complex pore structure excluding all kinds

of adsorption processes. It simulates diffusion paths and enables to calculate the effective diffusion

coefficient Deff of firn. Deff  of porous media is defined in Fick’s law:

j = −Deff∇C (9)

with effective diffusion coefficient Deff [m
2 s-1], flux j [mol m-2 s-1] and concentration gradient C

[mol m–4]. The relation to the diffusion coefficient D is given as

Deff =
nop D (10)

with a constant diffusion coefficient D of a specific gas in free air [m2 s-1], the open porosity nop and its

tortuosity  of the porous structure. The dependency of D on temperature and pressure is not included.

For the diffusion-model a cubic lattice with 6 lattice velocities on each grid point is sufficient (Toffoli and

Margulos (1990) in Wolf-Gladrow, 1995). The lattice velocities read c0,, c2,3, c4,5  =  (±1,0,0), (0, ±1,0),

(0,0, ±1). The kinetic equation with the BKG collision term looks like the one in the advection model.

Here, the concentration C(x,t) is given as the sum over the distribution functions Ci(x,t). The local

equilibrium distributions Ci
eq(x,t) can be written as

Ci
eq =

C(x ,t)

6
for i=0,...,5 (11)
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C(x,t) obeys the diffusion equation (Wolf-Gladrow, 1995) where the free air diffusion coefficient D

depends on ω as

D =
2 −
6

(12)

The boundary conditions are expressed by the half-way-bounce-back scheme like in the advection-model.

The scheme conserves the mass within the gas phase. No absorption takes place at the pore-ice surfaces.

To prevent diffusion to the outside the cube surfaces are sealed by a solid grid point layer.

The forcing is implemented by an imposed concentration difference between two opposite model

boundaries at x = (x,y,1) and x = (x,y,zmax-1). The values at the boundaries are kept constant during the

model iterations. The model starts with a linear concentration profile which is the solution in case of free

diffusion.

The effective diffusion coefficient Deff of the firn cube results from the calculated total fluxes in direction

of the imposed concentration gradient C/ L using relation (9):

Deff =
− jz(xm ,tend )

m

CS

∑
∆C
∆L

 (13)

whereby the total concentration flux in z-direction is the sum over the local fluxes (jz)m in an arbitrary

vertical cross section. The local flux in z-direction at node xm is given by the mean value of the local

propagated distribution functions C4(xm,t) and C5(xm,t). m is the index for the ‚wet‘ nodes in the cross

section CS.

METHODOLOGICAL ASPECTS
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The three dimensional reconstruction (3DRM) of firn encloses several potential sources of errors.

Foremost, they could occur during sample preparation when pores only partially filled or the marker is

smeared over the ice after microtoming. To avoid inaccurate preparations several ice surfaces marked by

different mixtures were analyzed under microscope. It turned out that a mixture of Titanium dioxide in oil

with a weight ratio of 3 to 4 is most suitable. In comparison to the favored resolution of 0.1 mm the error

is negligible. During imaging a uniform and sufficient illumination without over- or underexposures

prevents additional errors. However, the segmentation algorithm has problems to distinguish between

marked pores at the ice-surface and beneath it when the marked pores underneath the ice have horizontal

oriented pore-ice-interfaces. For this reason the segmentation tends to overestimate pore regions.

Furthermore, the finite vertical and lateral resolution causes errors. The thickness of the microtome cut

directly after pore filling and before imaging defines the lower limit of pore detection. All pore cuts with

a vertical dimension of 0.01 mm or less are ignored and lead to an underestimation of pore regions. The

limitation of the lateral resolution to 0.1 mm implies a relative high number of mixed pixels. Assuming

circular pores of 1 mm in diameter approximately 20% of the pore representing pixels are mixed pixels.

To handle this the second threshold was introduced in the segmentation algorithm. As far as mixed pixels

are independently recorded no systematic deviations in the calculated pore and ice fractions are expected.

To validate the 3DRM the total porosity is measured independently by gamma-absorption

(Wilhelms, 1996). Figure 2 displays the porosity of a firn core, 98 mm in diameter, measured by gamma

absorption with a resolution of 1 mm. In comparison to that the porosity of the same firn horizon is

plotted measured by the 3DRM with a vertical resolution of 0.2 mm on a cube segment of 24 mm length.

The mean values of both porosity curves are in good agreement. The porosity measured by 3DRM has
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better resolution and shows more variations with depth. The porosity measured by gamma absorption is

always used as a control parameter for the 3DRM.

The model algorithms are tested on simplified geometries with well-known analytical solutions. For the

verification of the advection-model we simulated Hagen-Poiseuille-flow in a short cylindrical pipe with

radius of 2.45 mm, length of 10.2 mm and a pixel resolution of 0.1 mm. The flow is forced with a

pressure difference of 0.005 mbar. That results in a Reynolds number of approximately Re = 0.4 if using

water as model fluid. The small Re-number ensures laminar flow and stable solutions. Convergent

behavior of the absolute value of momentum in the model system indicates the convergence towards a

stable solution during the iteration process. For this specific geometry the stable stage was reached

already after 4000 iterations. The deviations between the modeled and analytical solution for the radial

velocity field and the pressure gradients are in the range of 1%. Up to 2% is obtained for the calculated

permeability. The diffusion-model is validated with the diffusion in free air. That leads to deviations of

less than 1% between modeled concentration profiles and the analytical solutions.

Furthermore the effect of reduced number of grid points in presenting flat channel geometries is

investigated. In a series of simulations the channel height is continuously reduced from 10 to 2 grid

points. Width and length are fixed to 180 and 100 grid points, respectively. The model results are

compared with the analytical solution of two dimensional channel flow. A channel with a height of only

two grid points leads to reduced simulated permeability of 80% of the analytical solution and only

slightly reduced diffusion of 99%. Already for channels represented by 5 or more grid points, the

simulated and analytical solutions yield the same value. The low grid point resolution enables the
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application of our models to complex pore structures without the need of a large number of grid points.

The resolution of the 3DRM is set to the upper limit of 0.1 mm and result in a representation of typical

pore sizes in real firn structures by 5 or more grid points. Additionally, when the models are applied to

polar firn, the necessary size of the ice specimen to provide characteristic values for diffusivity and

permeability has to be determined. For that the hydraulic properties are modeled for a firn cube as a

whole and for several subsections of different length. Figure 3 displays the different diffusion profiles for

single subsections and the composition of all subsections to the whole cube. The effective diffusion

coefficients of the composites are derived using the equation

Deff =
L
∆Li

(Deff )ii

m

∑
(14)

with a total cube length L composed by m layers of height Li and effective diffusion coefficient (Deff)i .

The composites of sections with length smaller than 6 mm overestimates the hydraulic properties because

the tortuosity of firn is not completely developed on this scale. Only when the cube length exceeds

12 mm the composites result in the same total diffusivity than the simulated one of the whole cube.

Therefore all model runs are done on firn cubes with a length size of at least 12 mm. Using a SUN work

station Ultra 10 approximately 10 hours of CPU time is needed for one simulation.

APPLICATION TO GREENLAND FIRN

Reconstruction and model simulations are performed on Greenland firn samples from an ice core (B27)

drilled at N76°39‘ W46°29‘ in 1995. 12 samples were selected from 57 m, 45 m and 16 m depth. On each

horizon a group of four serial cubes were analyzed which cover a depth interval of 19 cm. Assuming an
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accumulation rate of 18 cm water equivalent per year and mean porosities of 0.16, 0.21 and 0.45 the

reconstructed intervals represent 60% to 90% of an annual layer.

Figure 4a shows a typical three dimensional reconstruction of firn with a cube length of 12 mm. Imposing

a constant pressure difference the simulation of the advection-model yields a flow field that is plotted in

figure 4b. The flow concentrates on dominant paths which are uniformly distributed over the whole cube.

An impression of diffusion through the pores forced by a constant concentration difference at opposite

sites gives figure 4c. Already the visualized uniform permeation and diffusion suggest a high degree of

isotropy on the pore scale. Model runs in all three dimensions on the same firn cubes are performed. A

direct comparison of lateral and vertical components reveals almost isotropy in diffusivity as well as in

permeability with slightly reduced lateral components. The ratio between lateral and vertical oriented

permeability varies between 0.3 and 1.3; the ratio for the effective diffusion coefficients varies between

0.6 and 1.2.

In figure 5 the dependence of the transport properties (k, Deff /D) on open porosity nop are plotted. nop

varies between 0.05 and 0.45. Both the Deff /D versus nop- and k versus nop-relation are described by power

law functions with different exponents:

Deff

D
= nop

2.1 and k = 10−7.7m 2nop
3.4 (15a,b)

Independent estimates of the Deff /D versus nop-relationship were made by Schwander et al. (1988,

regression 2) and Fabre et al. (2000, regression 4). They determined effective diffusion coefficients in

analyzing the shape of an elution peak of a given gas pushed through the firn sample by a carrier gas.
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Fabre et al. (2000) pointed out that for nop < 0.15 the experimental technique is no longer valid. For

nop > 0.15 the model data fit fairly well in the range of their calculated regression curves. Below nop = 0.15

the trends diverge. The diffusion disappears at nop = 0.12 when using the regression curves of Schwander

and others (1988) and Fabre and others (2000). Although Fabre and others (2000) explicitly refer to open

porosity (and not total porosity!), it is not reasonable to assume that any gas transport stops for nop < 0.12

although connected pores exist. Therefore, the derived power law function with exponent 2.1 seems to be

a more realistic description of Deff /D versus nop -relation in polar firn.

The estimated k versus nop -relation for polar firn follows a power law function with exponent 3.4 what is

much higher than for diffusion. It results in a higher sensitivity of advection against slight variations in

open porosity. Both relationships illustrate the specific change of transport properties during densification

of polar firn by the sintering process. Other sintered materials show comparable k versus nop -relations

like sandstone with exponent 3 (Doyen, 1988) or hot pressed calcite aggregates with exponent 3.8 (Zhang

and others, 1994). Permeability measurements of the top meter of polar firn performed by Albert and

others (2000) validate the absolute values of model data for high porosities. The estimated k versus nop -

relation shows only slight data spreading. A reason could be that the simulations are carried out on

samples of smallest possible size where variations of porosity are minimized.

It should point out, that applying both the Deff /D versus nop- and k versus nop-relation to polar firn a profile

of open porosity is required. In the context of the whole firn column only pores with contact to

atmosphere are open pores. A scale of tens of meters is involved in estimating open porosity within the

firn column having in mind that seasonal density fluctuations or impermeable layers near the firn-ice
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transition could separate pore clusters on a scale of meter without any connection to the open pores.

Consequently the open porosity of the reconstructed firn cubes could differ from the open porosity of its

firn layer within the firn column. However, for the estimation of the effective diffusion coefficients (and

permeability) the size of the reconstructed firn cubes is large enough to reflect the characteristic tortuosity

of the pore structure as it is shown by reaching constant coefficients for cube sizes larger than 12 mm

(Figure 3).

SUMMARY

In this study we presented a new method for the estimation of transport properties of porous media using

three-dimensional reconstructions in combination with model simulations on the pore scale. Its

application to the complex pore structure of polar firn was demonstrated. It was shown that promising

modeling on three dimensional firn reconstructions did not exceed the contemporary computer capacities.

The method was applied to Greenland firn ice. It provides realistic Deff /D versus nop - and k versus nop -

relationships following power law functions with exponents 2.1 and 3.4 over the wide range of one order

of magnitude in open porosity. The investigation of lateral and vertical components reveals almost

isotropy in the transport properties with slightly reduced lateral values.

In future the presented method could be helpful for plenty of questions which are linked to firn structure.

Further information about structure like the pore-size and ice-cluster distributions, the amount of free

surfaces and the pore connectivity can be easily derived from the three dimensional reconstructions using
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standard image analysis software. An interesting topic, that has to be solved on the pore scale, is to

investigate the evolution of stratigraphical characteristics during densification, especially the development

of impermeable layers.
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Figure 1: Bimodal grey value histogram of a surface image (grey curve) including a Gaussian fit of the pore region (black
curve) and the estimates of both thresholds T1 and T2 that are used for segmentation.
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Figure 2: Porosity profiles estimated from the 3DRM and by Gamma absorption for an arbitrary depth interval.
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Figure 3: Diffusion profiles of the same firn cube devided into different subsection lengths. The dashed lines represent the
calculated diffusivity of their composites in serial order.
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Figure 4: (a) Example of a reconstructed firn cube (12 mm x 12 mm x 12 mm) from 45 m depth with n = 0.22, pore space in
white. (b) Simulated flow field forced by a vertical pressure gradient, in white the contour of the velocity isosurface with
v > (0.1vmax) which indicates the dominant flow paths. (c) Simulated concentration field forced by a vertical concentration
gradient. Three isosurfaces of different concentration are plotted.

 a b c
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Figure 5: Modeled Deff/D versus nop- and k versus nop -relationships in comparison to measured estimates.


