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A B S T R A C T

Hyperspectral seafloor surveys using airborne or spaceborne sensors are generally limited to shallow coastal
areas, due to the requirement for target illumination by sunlight. Deeper marine environments devoid of sunlight
cannot be imaged by conventional hyperspectral imagers. Instead, a close-range, sunlight-independent hyper-
spectral survey approach is required. In this study, we present the first hyperspectral image data from the deep
seafloor. The data were acquired in approximately 4200m water depth using a new Underwater Hyperspectral
Imager (UHI) mounted on a remotely operated vehicle (ROV). UHI data were recorded for 112 spectral bands
between 378 nm and 805 nm, with a high spectral (4 nm) and spatial resolution (1mm per image pixel). The
study area was located in a manganese nodule field in the Peru Basin (SE Pacific), close to the DISCOL
(DISturbance and reCOLonization) experimental area. To test whether underwater hyperspectral imaging can be
used for detection and mapping of mineral deposits in potential deep-sea mining areas, we compared two su-
pervised classification methods, the Support Vector Machine (SVM) and the Spectral Angle Mapper (SAM). The
results show that SVM is superior to SAM and is able to accurately detect nodule surfaces. The UHI therefore
represents a promising tool for high-resolution seafloor exploration and characterisation prior to resource ex-
ploitation.

1. Introduction

Hyperspectral imaging is defined as the acquisition of images in
hundreds of contiguous spectral bands so that a full spectrum is re-
corded for each image pixel (Goetz et al., 1985; Goetz, 2009). Each
pixel spectrum contains different spectral components arising not only
from the surface material or vegetation, but also from water, atmo-
sphere, the illumination source (typically the sun), and the hyper-
spectral sensor itself.

Calibrations are required to correct for any external influences and
obtain a reflectance spectrum specific for the objects of interest (OOI)
and representing the percentage of light reflected by the OOI for each
wavelength. Different OOI differ in their reflectance spectra, providing
so-called “optical fingerprints”. By comparing each pixel's reflectance
spectrum to reference spectra obtained from, e.g. a spectral library or
field samples, reflectance spectra can be used to classify OOI and pro-
duce coverage maps based on spectral signatures.

Hyperspectral data are typically acquired by passive hyperspectral
imagers that use the sun as light source and record reflected solar ra-
diation (and other spectral components associated with external influ-
ences) over a wavelength range of 400–2500 nm (e.g. Resmini et al.,
1997; Kruse et al., 2003; Dickey et al., 2006), thus covering the visible
range (400–700 nm) and part of the infrared portions (> 700 nm) of the
solar spectrum. Most passive imagers are either airborne or spaceborne.
In addition, passive hyperspectral imagers or spectroradiometers for
underwater use have been developed over the past two decades to
measure in-situ optical properties of the ocean, e.g. operated at mooring
stations or by divers (Mazel, 1997; Hochberg and Atkinson, 2000; Pons
et al., 2007; Ramírez-Pérez et al., 2015).

Hyperspectral imaging has been used mostly in terrestrial settings,
but has also been applied in the marine environment. Terrestrial ap-
plications include mapping of vegetation (Underwood et al., 2003;
Adam et al., 2010; Landmann et al., 2015), infrastructure (Roessner
et al., 2001; Dell'Acqua et al., 2004; Herold et al., 2004), and surface
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minerals (e.g. Resmini et al., 1997; Bierwirth et al., 1999; Sabins, 1999;
Kruse et al., 2003). The main motivation for hyperspectral mapping of
mineral distribution is the detection of ore deposits for mineral ex-
ploration purposes (Bierwirth et al., 1999; Sabins, 1999; van der Meer
et al., 2012). In marine settings, hyperspectral methods have been used
mainly in oceanographic and biological studies (Chang et al., 2004;
Dickey et al., 2006), including mapping of ocean colour (Dickey et al.,
2006; Dierssen and Randolph, 2013) and seafloor habitats (Klonowski
et al., 2007; Fearns et al., 2011) such as reefs (Hochberg and Atkinson,
2000, 2003; Kutser et al., 2006; Petit et al., 2017), seagrass ecosystems
(Dierssen, 2013; Dierssen et al., 2015), and kelp forests (Volent et al.,
2007). Given that the majority of sunlight penetrates no deeper than
50m into water, the application of passive hyperspectral sensors in
marine settings is limited to coastal areas and shallow water depths
(e.g. Klonowski et al., 2007; Volent et al., 2007; Fearns et al., 2011).

More recently, active hyperspectral imagers for underwater appli-
cations have been developed (Chennu et al., 2013; Johnsen et al., 2013;
Tegdan et al., 2015). Active hyperspectral sensors use their own ex-
ternal light sources for target illumination, thus allowing seafloor stu-
dies in water depths with no natural light penetration. Due to the strong
in-water attenuation of wavelengths in the near-infrared and infrared
part of the spectrum, these underwater hyperspectral sensors are lim-
ited to the visible range of wavelengths.

The first active underwater hyperspectral imagers were mounted on
mechanical sledges or carts operated on the seafloor in shallow water
depths (< 6m), with illumination provided by two halogen lamps
(Chennu et al., 2013; Johnsen et al., 2013; Pettersen et al., 2014). Since
then, scientific Underwater Hyperspectral Imagers (UHIs) developed by
Ecotone AS (Trondheim, Norway) have been deployed on remotely
operated vehicles (ROVs) in water depths of up to 600m. The UHIs
have a spectral range of 378–805 nm, with a spectral resolution of up to
0.5 nm (Johnsen et al., 2013, 2016; Tegdan et al., 2015), and have been
used to study e.g. cold-water corals and kelp forests in the Trond-
heimsfjord (Tegdan et al., 2015; Johnsen et al., 2016), a vertical rock
wall at Haugbergneset (Tegdan et al., 2015), benthic organisms in
Kongsfjorden, Svalbard (Johnsen et al., 2016), and a wreck site at
Trygghamna, Svalbard (Daase, 2016). In addition to ROVs, autonomous
underwater vehicles (AUVs) can also serve as UHI mounting platforms
(Johnsen et al., 2013). A first AUV-based UHI survey was recently
conducted successfully at the Arctic Mid-Ocean Ridge as part of the
MarMine project (Ludvigsen et al., 2016; Sture et al., 2017).

The majority of these underwater hyperspectral studies focused on
biological OOIs, but Johnsen et al. (2013) demonstrated that UHIs can

also be used for mapping of seafloor minerals. As with terrestrial mi-
neral deposits, seafloor mineral deposits may be detected and char-
acterized based on their spectral signatures. Provided a sufficient sensor
depth-rating, underwater hyperspectral imaging may therefore be of
interest for exploration in potential deep-sea mining areas. Although
not yet an active industry, deep-sea mining is predicted to start within
the next decade in areas of prospective seafloor mineral deposits such as
manganese nodules and massive sulphide deposits (Glasby, 2002; Rona,
2003; Gwyther, 2008; Hoagland et al., 2010). A detailed seafloor
mapping and characterisation of mineral deposits, as well as fauna
distribution and understanding of ecosystem functioning in these re-
mote seafloor areas is required prior to exploitation.

Manganese nodules are seafloor mineral deposits that grow con-
centrically around a nucleus, usually at the sediment-water interface. In
addition to Mn and Fe, the nodules typically contain Ni, Cu, Co, and Zn,
which are supplied either by the underlying sediments (diagenetic de-
posits) or by seawater (hydrogenous deposits) (e.g. Glasby, 2000).
Nodule compositions can vary on regional as well as local scales (e.g.
Cronan and Tooms, 1969; Glasby, 1972, 2000), and it is this mixed
composition which has rendered manganese nodules an important po-
tential resource for exploitation. Dimensions are generally between<
3 cm and>10 cm, and growth rates are hypothesised to be
2–100mmMyr−1 (e.g. Glasby, 2000). Manganese nodules are found in
deep-sea basins (> 4000m water depth) characterized by low sedi-
mentation rates (< 5mmkyr−1), with major nodule regions including
the Clarion-Clipperton Zone in the equatorial North Pacific, the Central
Pacific Basin, and the Peru Basin.

Here, we present the first hyperspectral image data of the seafloor in
water depths> 600m. The data were acquired by a new deep-sea UHI
in a manganese nodule field in the Peru Basin (SE Pacific) in 4195m
water depth. We compare two supervised classification methods and
estimate nodule coverage for the surveyed area from the classification
results. We also evaluate the potential of underwater hyperspectral
imaging as an exploration method in prospective deep-sea mining
areas.

2. Study area

The study area was located in a manganese nodule field in the Peru
Basin (SE Pacific Ocean) in about 4195m water depth (Fig. 1a). It was
situated about 700m southeast of the DISCOL (DISturbance and re-
COLonization) experimental area (DEA), which comprises a generally
flat, circular area of 10.8 km2 in 4140–4200m water depth (Thiel and
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Fig. 1. (a) Bathymetric map (50m resolution, courtesy of GEOMAR) showing the location of the study area in (c) and the DISCOL experimental area (DEA) in the Peru Basin. The filled
red circle represents the central DISCOL area (1 km radius), the black circle marks the outer extent of the disturbance experiment (1.877 km radius). (b) Overview map indicating the
location of the DEA offshore Peru (red star). (c) Locations of the main 11 survey tracks (tracks 4–14) to which supervised classification was applied. Bathymetry colour scale is the same as
in (a); the water depth in the study area is about 4195m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Schriever, 1989; Foell et al., 1990; Borowski, 2001). Surface sediments
consist of 7–10 cm of dark brown silicate oozes overlaying lighter-co-
loured clays enriched in biogenic carbonate (Borowski, 2001). Man-
ganese nodules in the area have diameters of up to 15 cm, with a nodule
density estimated to be 5–10 kgm−2, prior to the DISCOL experiment
(Thiel and Schriever, 1989).

The DISCOL experiment was conducted in 1989 in order to simulate
potential effects of deep-sea mining equipment and monitor the impact
of these on benthic communities (Thiel and Schriever, 1989; Foell et al.,
1990). Within the DEA, the seafloor was disturbed by a “plough-
harrow” device towed along 78 straight tracks that crossed the centre of
the DEA (Thiel and Schriever, 1989; Foell et al., 1990; Borowski and
Thiel, 1998). Besides the direct disturbance of the seabed, the experi-
mental plough harrow buried the manganese nodules within the
ploughtracks into the sediments, and produced a sediment plume that
later settled out across both ploughed and unploughed areas (Foell
et al., 1990; Schriever, 1995).

Since 1989, the DEA has been revisited several times to monitor the
recolonization process via video surveys and physical sampling. After a
strong reduction in abundance of all faunal taxa immediately after the
experiment, recolonization started rapidly but had not reached pre-
impact conditions even seven years after the experiment (Schriever,
1995; Borowski and Thiel, 1998; Borowski, 2001). In 2015, 26 years
after the experiment, the area was revisited by the RV SONNE cruises
SO242/1 and SO242/2. Detailed mapping and sampling campaigns,
including ROV and AUV surveys, revealed that the disturbance tracks
were still visible after 26 years, manganese nodules within and near the
DEA were either partly covered by sediment or completely buried, and
from preliminary results currently being analysed, faunal communities
remain distinct from those present within the DEA prior to the dis-
turbance (Greinert, 2015; Boetius, 2015).

3. Methods

3.1. Data acquisition

Hyperspectral data were acquired in 2015 during the RV SONNE
cruise SO242/2 with a new UHI (UHI #4) developed by Ecotone AS
(Trondheim, Norway). The UHI is depth-rated to 6000m and was tested
in this study for the first time. It is a push-broom scanner with beam-
widths of 60° (transverse) and 0.4° (longitudinal) and is mounted
looking vertically downwards to record lines of 1600 pixels perpendi-
cular to the track direction. Intensities of reflected light can be mea-
sured for up to 896 spectral bands between 378 and 805 nm, with re-
cording frequencies of up to 100 Hz. In this study, data were recorded at
20 Hz with spectral binning of 8, resulting in 112 spectral bands with a
spectral resolution of 4 nm.

The KIEL6000 ROV (GEOMAR) was used as the sensor platform for
the UHI. For data acquisition, the UHI was mounted on the fully out-
stretched manipulator arm of the ROV. With this setup, it was not
possible to accommodate UHI-dedicated light sources on either side of
the sensor, as is normally preferred (Johnsen et al., 2013, 2016; Tegdan
et al., 2015). Seafloor illumination was instead provided by the ten ROV
light sources, which included an LED, seven halogen lamps (five Deep
Multi-SeaLite lamps and two Sea Arc 5000 lamps), and two HMI lamps
(SeaArc2). This illumination from behind and above the UHI was not
optimal, and resulted in two kinds of shadows in the recorded data: a
constant dark shading across half of the swath, due to the manipulator
arm blocking part of the light, and shadows on nodule sides facing away
from the ROV, caused by the illumination source positioned behind the
UHI.

A total of 15 tracks with constant speed (0.05 m s−1) and heading
were acquired within a 20×40 m2 area containing manganese nodules
and different benthic fauna (ROV dive SO242/2_191-1; Boetius, 2015).
Track length ranged between 1.7m and 4.9 m except for two tracks
with lengths of 20m (Fig. 1c). ROV altitude was approximately

1–1.2m, resulting in a track width of 1–1.2m and an across-track re-
solution of about 1mm per pixel.

ROV navigation was provided by POSIDONIA ultra-short baseline
(USBL) positioning with an accuracy of about 0.02% of the water depth.
Position data were recorded at< 0.25 Hz and ROV attitude data (ve-
locity and orientation) were logged at 1 Hz. In addition to the UHI data,
SD and HD video data were acquired on all tracks. The video data were
used to identify larger seabed fauna (Dumke et al., in prep.), and frame
grabs from the HD and SD video data served as a basis for upsampling
of the navigation data (see Section 3.2.3 and Nornes et al. (in prep.)).

3.2. Data processing

Processing of the hyperspectral images consisted of three steps: (1)
calibration of the raw data (digital counts) to radiance data (in
Wm−2 sr−1 nm−1) by correcting for sensor-specific influences, (2)
conversion of radiance to reflectance by correcting for external influ-
ences from illumination sources and the inherent optical properties of
the water column, and (3) geocorrection. The desired output is re-
flectance data that only depends on the seafloor material and OOI.

3.2.1. Radiance processing
Calibration of raw data to radiance data was done through radio-

metric correction using the Hypermap software tool (Ecotone). The
radiance data were then loaded into MATLAB (MathWorks Inc.) and
formatted as a 3-dimensional array A(m,n,i) of m lines (number of lines
along the track), n samples (number of pixels of the UHI slit, or across
the track), and i spectral bands. As the outer bands (< 400 nm and>
710 nm) were rather noisy, spectral subsetting was done to reduce the
data to the 83 bands between 400 nm and 710 nm. In addition, spatial
subsetting was performed to remove redundant lines at the track ends
caused by the time lag between the end of the ROV track and the end of
UHI data recording.

3.2.2. (Pseudo-) reflectance processing
Following radiance processing, the next step was the correction for

external influences on the spectral characteristics of the reflected light.
The main external influence was the illumination, which was relatively
consistent along the track but varied laterally due to the setup-induced
shadow. As the combined spectral characteristics of the ten ROV lamps
could not be determined, the illumination influence was approximated
by a reference spectrum calculated from the data collected during each
track. For each sample n along the UHI slit, a reference spectrum sref(n)
was calculated as the median spectrum of all radiance spectra srad(m,n)
recorded for sample n over all lines m along a particular survey track.
For each image pixel (m,n), the radiance spectrum was then divided by
its respective reference spectrum:

=s m n s m n
s n

( , ) ( , )
( )corr

rad

ref (1)

where scorr(m,n) is the corrected spectrum for the image pixel (m,n). The
spectra were then smoothed by a moving average filter with a window
of 11 bands.

While this method worked well in general and removed effects that
were constant in along-track direction, it did not take into account al-
titude variations, which change the light field occasionally along the
track. However, most tracks were run at a relatively constant altitude of
1m, and altitude effects were therefore considered to be negligible.

Correction by median spectra also takes into account the inherent
optical properties of the water column, which were unknown for the
area but were assumed to be constant during the period of study. Based
on the high water depth and the video data, which showed that the
sediment remained undisturbed during the survey period, we assumed
optically clear waters with a likely negligible influence on the recorded
spectral intensities.
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3.2.3. Geocorrection via photomosaic-based navigation data
Due to the small scale of the imaged areas, some of which covered

only 2m2, georeferencing of the UHI data required very high-resolution
navigation data. The ROV's POSIDONIA USBL navigation had an ac-
curacy of approximately 0.02% of the water depth, which thus
amounted to±10m in the study area. As the ROV navigation data
contained frequent jumps of several metres and the recording fre-
quencies (1 Hz for ROV velocity and orientation,< 0.25 Hz for position
data) were generally too low for combination with the 20 Hz UHI data,
the ROV navigation data did not provide satisfactory geocorrection of
the UHI data.

In order to acquire navigation data of sufficient quality, the velocity
and orientation data of the ROV were integrated to create a smooth
relative position trajectory for each track, a process known as Dead
Reckoning (DR; Fossen, 2011). The average USBL position recorded
during the track was used to globally position the DR-derived track line.
Using the photogrammetry and photomosaic software Agisoft Photo-
Scan, the DR-derived navigation was then combined with frame grabs
from the HD and SD videos to produce upsampled and refined 5 Hz
navigation data. This procedure is further detailed in Nornes et al. (in
prep.).

The photomosaic-based navigation was corrected for a time shift
between the navigation and the UHI data. Time shifts varied between
0 s (no shift) and −0.9 s. As the navigation data contained a few out-
liers, probably arising from noise introduced during image processing
in Agisoft PhotoScan, a moving average filter with a window of 5 data
points was applied to smooth the navigation data. Georeferencing, in-
cluding correction for vehicle attitude influences, was done using the
Hypermap software and the corrected data were output with a pixel size
of 1mm.

The correction by median spectra and subsequent geocorrection
were able to remove most of the undesired external influences, in-
cluding the setup-induced dark shading across the track. However,
some residual influences, mostly from illumination, likely remain. The
corrected data are therefore not true reflectance data, and are referred
to as pseudo-reflectance data in the following.

3.3. Spectral classification

Based on the processing results, 11 of the tracks (Fig. 1c) were se-
lected for spectral classification and further analyses. Classification was
done using the ENVI software (v. 5.3; Exelis VIS) and two supervised
classification methods, the Support Vector Machine (SVM) and the
Spectral Angle Mapper (SAM), were applied. Both methods required
training data as input for the classification. In the absence of an existing
spectral library applicable to our study setting, training data were de-
rived from the UHI data through user-defined regions of interest (ROIs).
ROIs were defined manually for each track based on visual identifica-
tion in the UHI “pseudo”-RGB data, which was composed of the three
bands 645 nm (R), 571 nm (G), and 473 nm (B). In addition, visual
comparisons of pixel spectra as well as the ROV video data were used to
define ROIs.

The output of the spectral classification is a classification image
showing the distribution of the different spectral classes on a pixel
basis. In the following, we use the term “category” rather than “class” in
order to differentiate it from the taxonomic rank “class” used in bio-
logical classification of organisms.

3.3.1. Support Vector Machine (SVM)
SVM is widely used in supervised classification and is based on

statistical learning theory. Categories are separated by decision surfaces
(hyperplanes) maximizing the margin between categories, with support
vectors from the training data defining the points closest to the hy-
perplanes (Camps-Valls et al., 2004; Melgani and Bruzzone, 2004;
Mountrakis et al., 2011, and references therein). SVM is often superior
to other supervised classification methods (Melgani and Bruzzone,

2004; Bioucas-Dias et al., 2013) and also works well for noisy and
complex data (Camps-Valls et al., 2004).

SVM classification was applied to the 11 tracks shown in Fig. 1c.
The SVM results were compared to the UHI pseudo-RGB images for
accuracy, as an alternative ground-truthing image did not exist. If ne-
cessary, SVM was rerun with improved ROIs. The SVM result was then
smoothed using ENVI's classification aggregation tool to integrate
smaller pixel clusters into the surrounding category. A pixel cluster
threshold of 25–35 pixels was found to give the best balance between
removing potential noise and loss of information.

3.3.2. Spectral Angle Mapper (SAM)
SAM is also a standard supervised classification method and is

simpler and faster than SVM. Pixel spectra and endmember spectra
from training data are treated as vectors in n-D space, where n corre-
sponds to the number of spectral bands. Spectral similarity between a
pixel spectrum and an endmember spectrum is determined from the
angle between the two spectra and categories are assigned based on a
defined maximum angle threshold (Kruse et al., 1993; Sohn and
Rebello, 2002).

SAM was applied to only four tracks, as visual comparisons dis-
tinctly showed that the results were inferior to those of SVM. The same
ROIs as for SVM were used. Initially, the maximum angle was set to the
default value of 0.1 rad for all categories, but angles were adjusted after
the first SAM run in order to improve the classification result. The de-
fault angle of 0.1 rad worked well for the background sediment. For the
other categories, angles were either increased to up to 0.15 rad to in-
crease classification sensitivity (e.g. for nodules, shadows, and most of
the fauna), or decreased to 0.05 rad to reduce sensitivity and the
number of false positives. The SAM results were smoothed via classi-
fication aggregation with a pixel cluster threshold of 25–30 pixels.

3.3.3. Relative classification accuracy
To determine the accuracy of a classification result, the classifica-

tion image is normally compared to a ground-truthing image. However,
no ground-truthing information, aside from the video data, was avail-
able. Therefore, this approach was used to compare the SAM results
against the SVM results to determine the classification accuracy of SAM
relative to SVM. The comparison was performed using ENVI's confusion
matrix tool, which conducts a pixel-by-pixel comparison of a classifi-
cation image (here: the SAM result) against a ground-truthing image
(here: the SVM result). For each pixel in the SVM image, the location
and category were compared to the corresponding location and cate-
gory in the SAM image. The confusion matrix then output an overall
accuracy, i.e., the number of pixels classified in the same way by both
methods divided by the total number of pixels, as well as percentages of
correctly classified pixels for each category.

3.4. Estimation of areal nodule density

The areal nodule density, or number of nodules per m2, was de-
termined from the amount of nodules identified in the UHI pseudo-RGB
images of the nine shorter tracks (up to 5m length) and verified by the
video data. Manual nodule counting was not done for the two 20m long
tracks due to their length and associated high number of nodules, and
because nodule distribution appeared to be similar to that of the shorter
tracks.

In addition, we also tested if the areal nodule density can be esti-
mated from quantitative analysis of the SVM classification images
through automatic counting of nodule category areas. However, as
shown below, the nodules appeared as very fragmented patches in the
classification image, rather than one connected area per nodule.
Automatic counting of nodule objects in the SVM image would conse-
quently interpret each fragment as a separate nodule object and thus
strongly overestimate the areal nodule density.

To obtain a better estimation, therefore, the classification image was
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first smoothed by a classification aggregation of 300 pixels to remove
the influence from very small pixel clusters. We then used ENVI's clump
tool to grow and merge category areas belonging to the same nodule, as
indicated by the UHI pseudo-RGB data. The clump tool clumps adjacent
areas of the same category together by applying a dilate operation
followed by an erode operation, both of which are controlled by a
kernel of a user-defined size. Kernel sizes were 17–38 pixels for the
dilate operation and 3–9 pixels for the erode operation. The clumping
process was done in two ways. In case 1, clumping was applied only to
the nodule category, while all other categories were merged into one
background category. In case 2, clumping was done for both the nodule
and the shadow category. The reason for case 2 was that some nodules
were more conspicuous by their shadow than by nodule category pixels.

The resulting clump images were loaded into MATLAB and nodule
objects were counted using a method by Reddy (2010) based on a
foreground-background separation. The areal nodule density, which
was calculated from the count results and imaged areas, was then
compared to the reference density determined from the UHI pseudo-
RGB images and video data.

4. Results

4.1. Quality of pseudo-reflectance data

The UHI pseudo-reflectance data are of generally good quality. For
all tracks, the division by along-track median spectra completely re-
moved the dark shading (Fig. 2a) caused by the influence of the ROV's
manipulator arm on illumination, as shown by the example in Fig. 2b.
Both manganese nodules and larger megafauna, e.g. the stalked sponge
in Fig. 2b, are easy to distinguish from the relatively uniform back-
ground sediment. The data also show that most nodule surfaces are not
fully exposed, but are partly or almost completely covered by sediment.

Most nodules exhibit prominent shadows on the side facing away from
the ROV lamps (Fig. 2a, b).

4.2. Supervised classification results

The same ROIs were used for the SVM and SAM classifications. In
total, 20 categories were defined, three of which were common to all
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user-defined ROIs. Track location is shown in Fig. 1c.
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tracks: nodule, sediment, and shadow. Mean spectra for these three
categories are shown in Fig. 3. Although the shadows represented an
illumination effect rather than seafloor material or fauna, it was ne-
cessary to include them as ROIs to avoid misclassification of the shadow
areas. The sediment category represented the background sediment,
i.e., the brown silicate oozes that typically constituted the surface se-
diment (Borowski, 2001). In addition, brighter sediment patches asso-
ciated with light-coloured clays exposed from beneath the surface layer
(Borowski, 2001) occurred on some tracks and were assigned to a se-
parate category termed “deeper sediment”.

Based on taxa identification in the video data and the spectral
characteristics, 16 spectral categories were defined for the megafauna,
including sponges, corals, crustaceans, ophiuroids and dead salps.
Further information is given in Dumke et al. (in prep.). Not all of these
categories were present on each track; the number of fauna categories
per track varied between one and six, with an average of 3.5.

In addition, one category was defined for distinct green spots in the
UHI image. The associated spectra showed a minimum around 675 nm
(Dumke et al., in prep.), which is characteristic for in vivo absorption of
chlorophyll-a (e.g. Hakvoort et al., 1997). These spots may potentially
represent increased concentrations of chlorophyll-a or degraded pro-
ducts associated with biomass that sank down to the seafloor from
shallow waters (Dumke et al., in prep.).

4.2.1. SVM results
Comparison with the UHI pseudo-RGB images showed that the SVM

classification results were relatively accurate. The exposed nodule
surfaces were generally well classified, as were the larger types of
megafauna (Figs. 2c, 4b, f). The nodules were commonly characterized
by a combination of the nodule category and the shadow category, but
they did not appear as connected nodule-shadow objects. Instead, they
consisted of several small patches that belong to the nodule or shadow
category and are surrounded by the background sediment category
(Figs. 2c, 4b, f). In between the larger nodules, many small nodule and
also shadow category patches were apparent even after classification
aggregation of 25–35 pixels.

With a coverage of 94.7–97.5%, the background sediment category
was by far the most dominant material category in the study area. Only
0.9–3.4% of the imaged surface areas were associated with nodules,
while shadow areas constituted 1.0–2.6% (Fig. 5a). Combining the 16
fauna categories detailed in Dumke et al. (in prep.) resulted in a fauna
coverage of< 0.5% of the seafloor. Both the green spots and deeper
exposed sediment category had a maximum coverage of about 0.2%
(Fig. 5a), with the deeper, light coloured sediment exposed on only five
of the 11 tracks.

4.2.2. SAM results
The SAM results were generally inferior to those produced using the

SVM method. While SAM was able to distinguish the larger nodules
from the background sediment category, they were not always classi-
fied well, and many non-sediment pixels remained unclassified (Fig. 4c,
g). Also, small megafauna and green spots were often not classified
correctly. For example, in the lower left of Fig. 4g, SAM classified pixels
as green spots whereas SVM classified these pixels as nodule or sedi-
ment (Fig. 4f), which appears to be supported by the pseudo-reflectance
data (Fig. 4e). Larger megafauna such as the coral in Fig. 4g were
generally classified well by SAM.

Due to the differences between the SVM and SAM classifications, the
areal coverage estimations also varied by category. For the four tracks
classified by SAM, the mean coverages for the nodule category
(0.5–1.6%) and the shadow category (0.3–0.7%) were lower estima-
tions than those determined by the SVM results (Fig. 5a). In contrast,
coverage for the combined 16 fauna categories and the green spot ca-
tegory was estimated to be higher via the SAM method than the SVM
method. Roughly 1% of the image pixels remained unclassified by SAM
(Fig. 5a).

4.2.3. Accuracy of SAM relative to SVM
Based on the pseudo-reflectance images (Fig. 4a, e), SVM yielded a

good classification of the nodule and shadow areas, as well as of most
megafauna such as the crustacean and isopod in Fig. 4b and the coral in
Fig. 4f. SAM also distinguished these areas from the background
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Fig. 4. Comparison of the SVM and SAM classification results for two examples (locations are shown in Fig. 1c). (a) and (e): pseudo-reflectance data (in pseudo-RGB with R: 645 nm, G:
571 nm, B: 473 nm), showing manganese nodules with a crustacean (Decapoda, Parapaguridae, Probeebei mirabilis) and an isopod (Isopoda, Munnopsidae) in (a) and manganese nodules
with a glass sponge in (e). (b) and (f): SVM classification result after classification aggregation of 35 in (b) and 30 in (f). (c) and (g): SAM classification result after classification
aggregation of 25 in (c) and 30 in (g). (d) and (h): total error of SAM relative to the SVM classification result.
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sediment, and the coral, crustacean and parts of the nodule areas were
classified in agreement with SVM (Fig. 4c, g). However, other non-se-
diment areas were assigned a different category, and many pixels, e.g.
shadow pixels, were not classified at all.

The overall accuracy of SAM relative to SVM varied between 94.7%
and 97.2%, as determined from direct comparison of the classification
images via ENVI's confusion matrix tool. However, these high values
were mostly due to the high accuracy for the background sediment
category (98.8–99.4%; Fig. 5b), which constituted>94% of the image
pixels. For the other categories, the relative accuracy was much lower,
with 12.3–75.9% for the nodule category and 16.7–33.1% for the
shadow category (Fig. 5b). This discrepancy is further illustrated by the
total error of the SAM classification as inferred from the confusion
matrix (Fig. 4d, h). The pixels for which the SAM classification agreed
with the SVM result mostly belonged to the background sediment ca-
tegory, whereas pixels of categories different from those assigned by
SVM generally belonged to the non-sediment categories. Hence, while

the SAM method was able to distinguish these non-sediment pixels from
the background sediment, it was often not able to classify them in the
same way as SVM.

4.3. Areal nodule density

On all tracks, case 1 resulted in less nodule objects being identified
than the true number of nodules (Table 1). In contrast, the amount of
nodules suggested by case 2 was overestimations of the numbers ac-
tually present on the seafloor. Therefore, using only the nodule cate-
gory for the clumping method underestimated the number of nodules,
while also taking into account the shadow category overestimated the
amount.

Comparison with the UHI pseudo-RGB images showed that not all of
the clumped objects were confirmed nodules. For case 1, on average
86.9% of the clumped objects were confirmed nodules, while for case 2,
76.0% of all objects represented nodules (Table 1). The remaining ob-
jects were false positive identifications, i.e., other anomalies not asso-
ciated with nodules. For example, larger megafauna also caused sha-
dows that were included in the case 2 objects.

In addition, some confirmed nodules were not included in the
clumped objects and thus represented false negatives. Only 62.1% of
the confirmed nodules corresponded to the clumped objects of case 1,
whereas 86.5% were detected in case 2 (Table 1). Case 2 therefore
included less false negatives but more false positives than case 1. Some
tracks also exhibited double counts, i.e., two separate objects belonging
to the same nodule, which further influenced the nodule count.

The different success rates of the nodule counts based on the two
clumping methods are indicated in Fig. 6. The manual nodule count in
the pseudo-reflectance data (Fig. 6a) and the video data revealed 17
nodules, which are generally also apparent in the SVM classification
image (Fig. 6b). Case 1 detected 11 of these, with the remaining six
representing false negatives (Fig. 6c, Table 1). In case 2 (Fig. 6d), the
number of counted objects equals that of the manual count (17), but
only 14 of these are confirmed nodules. The other three are two false
positives and one double count where a nodule object and a shadow
object belonging to the same nodule are not connected (Fig. 6d,
Table 1). Three confirmed nodules were not detected by case 2 (false
negatives). Note that in case 2, three nodules were detected that were
not recognized by case 1.

Based on the number of confirmed nodules and the dimensions of
the imaged areas, the reference nodule density varied between 6.9 and
11 nodules per m2, with an average of 9.4m−2. The areal nodule
density inferred from case 1 was generally lower (3.4–10.3 m−2,
average 7.0 m−2); for case 2, it was higher (8.4–12.4 m−2, average
10.7 m−2). For the example in Fig. 6, the true areal nodule density is
8.4 m−2, but the nodule count of case 1 resulted in a lower nodule
density of 5.4 m−2. Case 2 arrived at the correct density of 8.4 m−2,
though this is a result of the false positives numerically equalling the
false negatives.

5. Discussion

In this study, we presented hyperspectral image data acquired in
4195m water depth, using a UHI on an ROV. As it was the first time a
hyperspectral imaging study of this kind was conducted in the deep sea,
we first evaluate the acquisition setup used, before discussing the re-
sults of the supervised classifications as well as their implications.

5.1. Evaluation of the acquisition setup and suggestions for improvement

Acquisition of UHI data can be challenging, because several re-
quirements have to be fulfilled by the underwater vehicle used as the
mounting platform for the UHI. These requirements include the main-
tenance of constant velocity, heading and altitude, as well as high-re-
solution (about 5 kHz) navigation and vehicle attitude data (Johnsen
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et al., 2013, 2016; Tegdan et al., 2015). In addition, sufficiently even
illumination is necessary. While the ROV used in this study met most of
these requirements, the USBL navigation data was of too low accuracy,
due to the great water depth, so the use of video-based navigation data
(Nornes et al. (in prep.)) for geocorrection of the UHI data was a re-
quired additional processing step.

Issues with seafloor illumination were also encountered. As de-
monstrated by the radiance data (Fig. 2a), the acquisition setup was not
optimal in terms of illumination. As a result, a prominent shadow
caused by the manipulator arm holding the UHI was present in the data,
which could not be avoided, as the UHI could not be mounted on the
ROV in any more appropriate configuration. Smaller shadows occurring
behind nodules and other elevated features were due to the positioning
of the illumination source above and behind the UHI. If it had been
possible to mount dedicated lamps on either side of the UHI, as has
been done for shallow-water UHI surveys using ROVs (Johnsen et al.,
2013, 2016; Tegdan et al., 2015), illumination would have been di-
rectly from above, which would have reduced the occurrence of sha-
dows behind nodules. Moreover, the manipulator arm would not have
influenced illumination. Fortunately, it was possible to remove the
setup-induced shadow completely during post-processing, but we re-
commend that such a setup should be avoided in the future.

Due to the lack of dedicated lighting with a known spectrum, as well
as lack of knowledge of the inherent optical properties of the water
column, it was not possible to obtain an optimal illumination reference
for reflectance processing. The applied reference spectra derived from
the median-spectra approach resulted in generally good processing re-
sults, but they could not correct for all external influences and therefore
resulted in pseudo-reflectance data rather than true reflectance data.
Obtaining true reflectance data would have required more extensive
processing, e.g. involving radiative transfer modelling to determine an
accurate illumination reference for the light field of the combined ROV
lamps, which was outside the scope of this study.

To provide a spectral classification of OOI, which was the aim of this
study, true reflectance data were not necessarily required. However, for
comparison of spectral signatures with spectra from existing spectral
databases, as well as with spectral responses acquired in other areas or
on different platforms, obtaining true reflectance data would be es-
sential. Moreover, with true reflectance data a spectral database for
endmember spectra could be set up. Such a database would facilitate
supervised classification of potential future hyperspectral image data

from the study area, as manual definition of ROIs to obtain endmember
spectra would no longer be required if an OOI's reflectance spectrum is
already contained in the database.

5.2. Relative accuracy of the classification methods

Our results show that the SVM method provided a more accurate
classification than the SAM method. While the SVM results are inter-
preted as a good approximation of ground-truthing images, the SAM
results contain unclassified pixels, and additionally, non-sediment
pixels were often classified differently than by SVM. Visual comparison
with the pseudo-reflectance data suggests that the SVM results appear
generally correct, while the SAM results are likely erroneous when they
differ from the SVM results. The discrepancies in estimations of seafloor
coverage by the different categories between the two methods (Fig. 5a)
are therefore thought to be largely due to misclassifications by the SAM
method.

Although the SVM method is more accurate than SAM, it did not
perform perfectly, as misclassification of pixels did occur. However, in
the absence of suitable ground-truthing data, the true accuracy of the
SVM method cannot be determined. Generally, visual comparison with
the UHI pseudo-RGB images suggested that most of the exposed nodule
surfaces, larger megafauna and shadows were classified accurately.
However, very small patches classified as nodule or shadow often re-
mained in between the larger features after classification aggregation
(25–35 pixels) was applied. It is unclear whether these small pixels
clusters were classified correctly. They could represent classification
noise where the classification did not work well, but the UHI pseudo-
RGB data are not conclusive in this regard, and potential features would
be too small to be clearly resolved in the video data. Alternatively, at
least the larger of these patches could represent small outcrops of no-
dules that have been almost completely buried, e.g. by re-sedimentation
of the sediment plume produced by the 78 plough trawls comprising the
DISCOL experiment. Another explanation could be small-scale terrain
roughness causing shadows on the side facing away from the ROV
lamps, but without micro-scale bathymetry, this can neither be con-
firmed nor excluded.

In the absence of ground-truthing images, absolute classification
accuracies of the two classification methods used here could not be
determined. Therefore, only estimates of relative accuracies were pos-
sible. Based on the very good classification results of the SVM method,

Table 1
Overview of the true number of nodules (manual count) and the nodule amount determined from the clumping results (clump count) for case 1 (nodule category only) and case 2 (nodule
and shadow category). Track locations are shown in Fig. 1c.

Track Manual count Clump count No. of correct
nodules

Correct nodules: % of manual
count

Correct nodules: % of growth
count

Double count False positive False negative

Case 1
4 32 12 12 37.50 100.00 0 0 20
5 38 38 30 78.95 78.95 0 8 8
6 25 24 18 72.00 75.00 1 5 7
7 17 11 11 64.71 100.00 0 0 6
8 36 34 29 80.56 85.29 0 5 7
9 34 17 17 50.00 100.00 0 0 17
10 28 27 21 75.00 77.78 0 6 7
12 58 38 32 55.17 84.21 5 1 26
14 29 16 13 81.25 81.25 2 1 16

Case 2
4 32 43 26 81.25 60.47 4 13 6
5 38 43 33 86.84 76.74 1 9 5
6 25 32 22 88.00 68.75 0 10 3
7 17 17 14 82.35 82.35 1 2 3
8 36 42 32 88.89 76.19 0 10 4
9 34 47 34 100.00 72.34 0 13 0
10 28 31 25 89.29 80.65 0 6 3
12 58 50 38 65.52 76.00 3 9 20
14 29 31 28 96.55 90.32 0 3 1
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we estimate a classification accuracy of> 90% for the non-sediment
categories and about 99% for the background sediment category. For
SAM, the classification accuracy was considerably lower than for SVM
and was estimated to about 40% for the non-sediment categories
and>90% for the background sediment category.

5.3. Detection of seafloor manganese nodules

Supervised classification using the SVM method is able to detect
manganese nodules imaged in UHI data. This is shown by the clumping
results and comparison of the potential nodule objects with the true
nodule presence. Although it should be noted that the shape and size of
the clumped objects do not necessarily represent the true nodule di-
mensions, the clumped objects indicate where nodules are suggested to
be present based on the classification results.

When only the nodule category was used in the clumping procedure
(case 1), in most cases not all nodules present were detected, which
resulted in false negatives. Nevertheless, this approach is preferred over
case 2, which generally overestimated the amount of nodules by

introducing more false positives. The number of false negatives in the
case 1 results could potentially be reduced by decreasing the degree of
classification aggregation before the clumping process, thus allowing
nodules marked by only small pixel clusters to be taken into account.
However, this would also increase the number of false positives, as
more non-nodule areas (misclassifications) would also be included.

In addition to nodule detection, the classification images also al-
lowed estimating nodule coverage, which was about 1–4% in the SVM
classification images. However, this amount only represents the
minimum nodule coverage, given that most nodules were partly cov-
ered by sediment. As a nodule half covered by sediment will only have
half of its surface area classified as nodule, the resulting category
coverage is lower than the true nodule coverage. Therefore, coverage
estimates derived from the clumped objects (1–6% for case 1 and 4–9%
for case 2) are probably more realistic, even though they also include
false positives and false negatives. Nodule coverages of up to 9% are in
agreement with nodule coverages determined in other areas such as in
the Clarion-Clipperton Zone (2–20%; Le Bas and North, 2016) and the
Central Indian Ocean Basin (2–15%; Sharma et al., 2010).
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Fig. 6. (a) UHI pseudo-reflectance data (in pseudo-RGB)
showing 17 manganese nodules highlighted by red circles, as
well as a dead salp and a coral. (b) SVM classification image that
served as a basis for the clumping of category areas. (c) Clump
image for case 1 (nodule category only) based on the SVM
classification image in (b). A total of 11 nodule objects were
detected, with six false negatives marked by empty circles. (d)
Clump image for case 2 (nodule category and shadow category
combined) based on (b). Although 17 potential nodule objects
were detected, they include two false positives and one double
count, while three nodules were not detected (false negatives).
(For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)
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Current methods for determining nodule coverage are largely based
on conventional RGB photo imagery from which nodule coverage is
derived through unsupervised or supervised classification (Sharma
et al., 2010; Schoening et al., 2012, 2014), image segmentation
methods (Schoening et al., 2016; Kuhn and Rathke, 2017), object-based
image analysis (Le Bas and North, 2016), or kriging methods (Kuhn
et al., 2016). High-resolution photo imagery has also been correlated
with acoustic backscatter data to extrapolate nodule coverage over
larger areas based on backscatter values (Chakraborty and Kodagali,
2004; Le Bas and North, 2016). In addition, image data can be com-
bined with results from box corer samples to determine resource esti-
mates in kgm−2 (Kuhn et al., 2016; Kuhn and Rathke, 2017).

Hyperspectral image data provide an alternative to the conventional
RGB imagery used by these approaches. Although it was beyond the
scope of this study to directly compare the hyperspectral classification
results to classification of RGB imagery, it is expected that the higher
spectral resolution of hyperspectral data yield more accurate classifi-
cation results than RGB imagery (Johnsen et al., 2013). Comparisons
between hyperspectral and multispectral classifications (e.g. Hochberg
and Atkinson, 2003) showed that hyperspectral classifications were
generally superior to those based on fewer spectral bands. Hyperspec-
tral imaging may thus provide a better basis for determining seafloor
nodule coverage.

5.4. Potential for hyperspectral mapping of seafloor mineral resources

Our results show that underwater hyperspectral image data can be
used similarly to conventional hyperspectral data to detect and evaluate
mineral resources of interest for mining purposes. The main differences
between the conventional approach applied in terrestrial mineral ex-
ploration and our underwater approach are the spectral band range and
the areal coverage.

Conventional hyperspectral imaging for mineral exploration usually
does not focus on the visible range. Instead, the near-infrared and in-
frared parts of the solar spectrum are used in preference (Resmini et al.,
1997; Bierwirth et al., 1999; Sabins, 1999; Kruse et al., 2003), as these
contain characteristic absorption minima in mineral spectra (Clark
et al., 1990). However, our data indicate that mineral deposits such as
manganese nodules are well imaged and spectrally distinct in the
visible range. Based on these observations, we suggest that the neces-
sary omission of near-infrared and infrared wavelengths in underwater
hyperspectral imaging does not affect the detection of seafloor mineral
resources.

Due to the requirement to maintain a low altitude of 1–2m, re-
sulting in a swath width of 1–2m, UHI surveys have a much lower areal
coverage than conventional hyperspectral surveys. UHIs are therefore
only suitable for mapping small areas of up to a few 1000m2. Coverage
could be increased by increasing the altitude to up to 7m (approxi-
mately 7m swath width), provided the illumination sources are strong
enough to ensure sufficient seafloor illumination (S. Ekehaug, pers.
comm.). Alternatively, an AUV could be used as UHI platform, which
would allow increased coverage due to higher survey altitudes of 6–9m
and the autonomous operation mode (Sture et al., 2017.). However, in
both cases, the image resolution and hence feature detectability would
suffer. For low-altitude (1–2m) ROV-based studies, the spatial resolu-
tion is considerably higher and allows more detailed mapping of de-
posits, including mapping of individual manganese nodules, as shown
in this study.

With the growing interest in commercial deep-sea mining, the need
for high-resolution seafloor exploration is also increasing (Van Dover,
2011; Boschen et al., 2013, 2016; Collins et al., 2013). While a UHI
would not be suitable to map an entire mining claim, UHI surveys could
be used for detailed investigations of target sites that were identified in
larger-scale seabed data, e.g. acquired by acoustic methods.

As with terrestrial hyperspectral image data, seafloor hyperspectral
images also have the potential to allow different types of mineral

deposits to be distinguished (Johnsen et al., 2013). In the case of
manganese nodules, compositions can vary over larger spatial scales,
e.g. nodules from the Peru Basin differ in composition from those in the
Clarion-Clipperton Zone (Glasby, 2000). These variations are, however,
unlikely to be directly reflected by the nodule surfaces imaged by UHI
surveys, and our data show that in the study area, spectral variations
within the nodule category are low (Fig. 3). The potential for spectrally
distinguishing different types of deposits is expected to be higher for
hydrothermal deposits in massive sulphide areas, which are also a
current target for potential future resource exploitation (Glasby, 2002;
Rona, 2003; Hoagland et al., 2010; Boschen et al., 2013). First results
(Dumke and Ellefmo, 2017) indicate that differences in the surface
material composition of such deposits are apparent in UHI data.

6. Conclusions

In this study, we presented the first hyperspectral image data from
the deep seafloor. Manganese nodules and seabed fauna may be well
imaged at high spectral and spatial resolutions. Comparison of two
supervised classification methods showed that the SVM method is su-
perior to the SAM method in classifying manganese nodules as well as
fauna and sediment anomalies. Nodule coverages within the surveyed
region of the nodule field investigated were inferred from the SVM
classification images and varied between 1 and 9% of the seafloor. Most
nodule surfaces are not fully exposed due to sediment partially covering
the top surfaces of nodules, which resulted in these sections of nodules
being classified as sediment rather than nodule.

Our results show that underwater hyperspectral imaging allows
extending seafloor hyperspectral surveys from shallow coastal waters to
the deep sea, and therefore represents a promising new method for
high-resolution mapping and classification of seafloor composition in
terms of mineral deposit quantification. Moreover, the approach has a
high potential for habitat mapping and environmental monitoring, e.g.
in terms of fauna characterisation and distribution (Tegdan et al., 2015;
Johnsen et al., 2016; Dumke et al., in prep.), which are also of high
importance for environmental management in future mining areas
(International Seabed Authority, 2012; Boschen et al., 2013, 2016;
Durden et al., 2016; Vanreusel et al., 2016). Provided a broader ex-
ploration technique is applied first to identify areas of interest for high-
resolution surveys, the UHI may become a promising tool for high-re-
solution seafloor exploration and monitoring in potential deep-sea
mining areas.
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