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Abstract. We estimated monthly air–sea CO2 fluxes in the
Arctic Ocean and its adjacent seas north of 60◦ N from 1997
to 2014. This was done by mapping partial pressure of CO2
in the surface water (pCO2w) using a self-organizing map
(SOM) technique incorporating chlorophyll a concentration
(Chl a), sea surface temperature, sea surface salinity, sea
ice concentration, atmospheric CO2 mixing ratio, and geo-
graphical position. We applied new algorithms for extracting
Chl a from satellite remote sensing reflectance with close
examination of uncertainty of the obtained Chl a values. The
overall relationship between pCO2w and Chl a was negative,
whereas the relationship varied among seasons and regions.
The addition of Chl a as a parameter in the SOM process
enabled us to improve the estimate of pCO2w, particularly
via better representation of its decline in spring, which re-

sulted from biologically mediated pCO2w reduction. As a
result of the inclusion of Chl a, the uncertainty in the CO2
flux estimate was reduced, with a net annual Arctic Ocean
CO2 uptake of 180± 130 TgCyr−1. Seasonal to interannual
variation in the CO2 influx was also calculated.

1 Introduction

The Arctic Ocean and its adjacent seas (Fig. 1) generally act
as a sink for atmospheric CO2 because of the high solubility
of CO2 in their low-temperature waters, combined with ex-
tensive primary production during the summer season (Bates
and Mathis, 2009). The Arctic Ocean and its adjacent seas
consist of complicated subregions that include continental
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Figure 1. Map of the Arctic Ocean and its adjacent seas. Gray
contour lines show the 1000, 2000, 3000, and 4000 m isobaths.
Blue lines show the 17-year annual mean position of the ice edge
(SIC= 15 %). Area for the mapping is north of 60◦ N (heavy black
circle). Sectors selected for regional analysis are the Arctic Ocean
(dashed magenta line), the Greenland and Norwegian seas (green 1),
the Barents Sea (green 2), and the Chukchi Sea (green 3).

shelves, central basins, and sea-ice-covered areas. Therefore,
the surface partial pressure of CO2 (pCO2w) distribution is
not only affected by ocean heat loss and gain, and biolog-
ical production and respiration, but also by sea ice forma-
tion and melting, river discharge, and shelf–basin interac-
tions (see Bates and Mathis, 2009, and references therein).
However, CO2 measurements are sparse in this very hetero-
geneous area (Fig. 2), and hence the existing air–sea CO2
flux estimates in the Arctic are poorly constrained (Bates and
Mathis, 2009; Schuster et al., 2013; Yasanuka et al., 2016).

As global warming progresses, melting of sea ice will in-
crease the area of open water and enhance the potential for
atmospheric CO2 uptake (e.g., Bates et al., 2006; Gao et
al., 2012). However, other processes could suppress CO2 up-
take. For example, increasing seawater temperatures, declin-
ing buffer capacity due to the freshening of Arctic surface
water by increased river runoff and melting of sea ice, and
increased vertical mixing supplying high-CO2 water to the
surface will all result in a tendency for reduced uptake (Bates
and Mathis, 2009; Cai et al., 2010; Chierici et al., 2011; Else
et al., 2013; Bates et al., 2014; Fransson et al., 2017). The
combined effect of all these processes on ocean CO2 uptake
has not yet been clarified for the Arctic.

Yasunaka et al. (2016) prepared monthly maps of air–sea
CO2 fluxes from 1997 to 2013 for the Arctic north of 60◦ N
by applying, for the first time, a self-organizing map (SOM)
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Figure 2. (a) The number of ocean surface CO2 data in the
grid boxes (1◦× 1◦) used in this study. Data are from SOCATv4,
LDEOv2014, and GLODAPv2 and those collected by R/V Mirai of
JAMSTEC between 1997 and 2014. (b) Monthly number of CO2
data in the analysis area (north of 60◦ N) from 1997 to 2014.

technique to map pCO2w in the Arctic Ocean. The advan-
tage of the SOM technique is its ability to empirically de-
termine relationships among variables without making any a
priori assumptions (about what types of regression functions
are applicable, and for which subregions the same regression
function can be adopted, for example). The SOM technique
has been shown to reproduce the distribution of pCO2w from
unevenly distributed observations better than multiple regres-
sion methods (Lefèvre et al., 2005; Telszewski et al., 2009).
The uncertainty of the CO2 flux estimated by Yasunaka et
al. (2016), however, was large (± 3.4–4.6 mmolm−2 d−1),
and the estimated CO2 uptake in the Arctic Ocean was
smaller than the uncertainty (180± 210 TgCy−1). One pos-
sible reason for the large uncertainties is that no direct prox-
ies for the effect of biological processes on pCO2w were used
in that study, leading to an underestimation of the seasonal
amplitude of pCO2w.

Remotely sensed chlorophyll a concentrations (Chl a)
have been used in several pCO2w mapping efforts as a di-
rect proxy for the effect of primary production. For exam-
ple Chierici et al. (2009) produced pCO2w algorithms for
the subpolar North Atlantic during the period from May to
October and found that the inclusion of Chl a improved the
fit substantially. Measurements in several areas of the Arctic
show that relationships between pCO2w and Chl a also oc-
cur in this region. They correlate negatively (Gao et al., 2012;
Ulfsbo et al., 2014), as expected from the drawdown of CO2
during photosynthesis, but exceptions do occur; in coastal re-
gions the correlation is positive (Mucci et al., 2010).

Biogeosciences, 15, 1643–1661, 2018 www.biogeosciences.net/15/1643/2018/



S. Yasunaka et al.: Arctic Ocean CO2 uptake 1645

Several studies have demonstrated that Chl a in the Arc-
tic can be estimated from satellite remote sensing reflectance
(Rrs) (e.g., Arrigo and van Dijken, 2004; Cota et al., 2004).
Perrette et al. (2011) showed that satellite-derived Chl a suc-
cessfully captured a phytoplankton bloom in the ice edge re-
gion. Changes in the seasonal cycle from a single peak to a
double peak of Chl a have also been detected and are likely a
consequence of the recent sea ice loss in the Arctic (Ardyna
et al., 2014). However, the available products (e.g., NASA’s
OceanColor dataset) in the Arctic include large uncertainty
and many missing values because of sea ice, low angle of
sunlight and cloud cover, and are also prone to error due to
the co-occurrence of high colored dissolved organic matter
(CDOM) and total suspended matter (TSM) concentrations
(e.g., Matsuoka et al., 2007; Lewis et al., 2016). Here we deal
with these issues by using several Chl a algorithms optimized
for the Arctic and others, and by excluding Chl a data from
grid cells potentially affected by CDOM and TSM. Calcu-
lated Chl a values were then interpolated so as to fit with the
original data. Using these data, we examined the relationship
between pCO2w and Chl a in the Arctic Ocean and its adja-
cent seas and computed monthly air–sea CO2 flux maps for
regions north of 60◦ N using a SOM technique similar to that
of Yasunaka et al. (2016) and with Chl a added to the SOM
process.

2 Data

2.1 pCO2w measurements

We used fugacity of CO2 (f CO2w) observations from the
Surface Ocean CO2 Atlas version 4 (SOCATv4; Bakker et
al., 2016; http://www.socat.info/; 1 983 799 data points from
> 60◦ N), and pCO2w observations from the Global Sur-
face pCO2 Database version 2014 (LDEOv2014; Takahashi
et al., 2015; http://cdiac.ornl.gov/oceans/LDEO_Underway_
Database/; 302 150 data points from > 60◦ N). In the LDEO
database, pCO2w is based on measured CO2 mixing ratio in
a parcel of air equilibrated with a seawater sample and com-
puted assuming CO2 as an ideal gas, whereas in the SOCAT,
f CO2 is obtained considering the non-ideality from CO2–
CO2 and CO2–H2O molecular interactions. Because of am-
biguities in the CO2–H2O interaction corrections, the SO-
CAT f CO2w values are converted to pCO2w values (a cor-
rection of < 1 %) and then combined with the LDEO pCO2w
values. When data points were duplicated in the SOCAT and
LDEO datasets, the SOCAT version was used, except for
the data obtained from onboard the USCGC Healy as these
have been reanalyzed by Takahashi et al. (2015). Altogether
200 409 duplicates were removed. We also used shipboard
pCO2w data obtained during cruises of the R/V Mirai of
the Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) that have not yet been included in SOCATv4
or LDEOv2014 (cruises MR09_03, MR10_05, MR12_E03,

and MR13_06; available at http://www.godac.jamstec.go.jp/
darwin/e; 95 725 data points from > 60◦ N). In total, we used
2 181 265 pCO2w data points, 33 % more than used by Ya-
sunaka et al. (2016).

To further improve the data coverage, especially for the
ice-covered regions, we also used 2166 pCO2w values calcu-
lated from dissolved inorganic carbon (DIC) and total alka-
linity (TA) data extracted from the Global Ocean Data Analy-
sis Project version 2 (GLODAPv2; Key et al., 2015; Olsen et
al., 2016; http://www.glodap.info). Of these data, 90 % were
obtained at cruises without underway pCO2w data. We ex-
tracted values of samples obtained from water depths shal-
lower than 10 m, or the shallowest values from the upper
30 m of each cast if there were no values from above 10 m.
There are 1795 data points above 10 m depth, 296 in the 10–
20 m range, and 75 in the 20–30 m range. This resulted in
94 % more calculated pCO2w values than used by Yasunaka
et al. (2016), and altogether the number of directly measured
and calculated data points used here is 33 % more than used
in Yasunaka et al. (2016). The CO2SYS program (Lewis and
Wallace, 1998; van Heuven et al., 2009) was used for the cal-
culation with the dissociation constants reported by Lueker et
al. (2000) and Dickson (1990).

We checked the difference between calculated pCO2w and
measured pCO2w using the data from cruises with both bottle
DIC and TA samples and underway pCO2w available (10 %
of the bottle samples, i.e., 245 pairs). The mean value for
the calculated pCO2w values from bottle DIC and TA sam-
ples from the upper 30 m was 299± 42 µatm, and that for the
corresponding directly measured pCO2w values from under-
way observation generally at 4–6 m was 289± 11 µatm. The
mean values are slightly higher for calculated pCO2w val-
ues than for measured ones, but the difference is smaller than
the standard deviation and the uncertainties of the calcula-
tion (the latter of which is 14 µatm; see Sect. 4.2). The dif-
ference between calculated and measured pCO2w is not de-
pendent on the depth at which the TA and DIC samples were
obtained. It was 10± 31 µatm for samples from above 10 m,
7± 27 µatm for samples from 10–20 m, and 11± 47 µatm for
samples from 20 to 30 m.

The availability of pCO2w data (measured and calculated)
varies spatially and temporally (Fig. 2). Most of the avail-
able data are from the subpolar North Atlantic, the Greenland
Sea, the Norwegian Sea, the Barents Sea, and the Chukchi
Sea while much less data are available for the Kara Sea, the
Laptev Sea, the East Siberian Sea, and the Eurasian Basin.
The number of pCO2w data increased after 2005, but there
are also a substantial number of data from before 2004.

2.2 Other data

To calculate Chl a, we used merged Rrs data from the SeaW-
iFS, MODIS-Aqua, MERIS, and VIIRS ocean color sensors
processed and distributed by the GlobColour Project (Mar-
itorena et al., 2010; http://hermes.acri.fr/index.php?class=
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archive). For compatibility with the spatiotemporal resolu-
tion of the gridded pCO2w data (see below Sect. 3.3), we
selected monthly mean Rrs data with a spatial resolution of
1◦ (latitude)× 1◦ (longitude).

Sea surface temperature (SST) data were extracted
from the NOAA Optimum Interpolation SST Version 2
(Reynolds et al., 2002; http://www.esrl.noaa.gov/psd/data/
gridded/data.noaa.oisst.v2.html). These data are provided
at a resolution of 1◦× 1◦× 1 month. Sea surface salin-
ity (SSS) data were retrieved from the Polar Science
Center Hydrographic Climatology version 3.0, which
also has a resolution of 1◦× 1◦× 1 month (Steele
et al., 2001; http://psc.apl.washington.edu/nonwp_projects/
PHC/Climatology.html). Sea ice concentration (SIC) data
were obtained from the NOAA National Snow and Ice
Data Center Climate Data Record of Passive Microwave
Sea Ice Concentration version 2, which has a resolution
of 25 km× 25 km× 1 month (Meier et al., 2013; http:
//nsidc.org/data/G02202). These data were averaged into
1◦× 1◦× 1 month grid cells. Zonal mean data for the at-
mospheric CO2 mixing ratio (xCO2a) were retrieved from
the NOAA Greenhouse Gas Marine Boundary Layer Ref-
erence data product (Conway et al., 1994; http://www.
esrl.noaa.gov/gmd/ccgg/mbl/index.html) and were interpo-
lated into 1◦× 1◦× 1 month grid cells. Both sea level
pressure and 6-hourly 10 m wind speed data were ob-
tained from the US National Centers for Environmental
Prediction–Department of Energy Reanalysis 2 (NCEP2)
(Kanamitsu et al., 2002; http://www.esrl.noaa.gov/psd/data/
gridded/data.ncep.reanalysis2.html). We also used the 6-
hourly 10 m wind speeds from the US National Centers
for Atmospheric Prediction and the National Center for
Atmospheric Research Reanalysis 1 (NCEP1) (Kalnay et
al., 1996; https://www.esrl.noaa.gov/psd/data/gridded/data.
ncep.reanalysis.html) when the gas transfer velocity was op-
timized for NCEP2 wind (see Sect. 3.5 below).

Surface nitrate measurements were extracted from GLO-
DAPv2 (Key et al., 2015; Olsen et al., 2016) and the World
Ocean Database 2013 (WOD; Boyer et al., 2013). When
data points were duplicated in the GLODAPv2 and WOD
datasets, the GLODAPv2 version was used as this has been
subjected to more extensive quality control.

3 Methods

3.1 Calculation of chlorophyll a concentrations

Chl a was calculated from Rrs by using the Arctic algorithm
developed by Cota et al. (2004). Several assessments have
shown that this algorithm has a large uncertainty (e.g., Mat-
suoka et al., 2007; Lewis et al., 2016), and therefore the sen-
sitivity of our results to this choice was evaluated by using
two alternative algorithms for Chl a: the standard algorithm

of O’Reilly et al. (1998) and the coastal algorithm of Tassan
(1994).

To ensure that we were working with Rrs data rel-
atively unaffected by CDOM and TSM, the Chl a

data were masked following the method of Siswanto
et al. (2013). Briefly, the Rrs spectral slope between
412 and 555 nm (Rrs555−412 slope; sr−1 nm−1) was plot-
ted against logarithmically transformed Chl a. Based on
the scatter plot of log(Chl a) and Rrs555−412 slope, we
then defined a boundary line separating phytoplankton-
dominated grid cells (Rrs555−412 slope < boundary value)
from potentially non-phytoplankton-dominated grid cells
(Rrs555−412 slope≥ boundary value) by

Rrs555−412 slope =−0.000003{log(Chl a)}2

+ 0.00002{log(Chl a)}+ 0.00006. (1)

Grid cells were considered invalid and masked out if
(1) Rrs555−412 slope≥ boundary value or (2) Rrs at 555 nm
(Rrs555) > 0.01 sr−1 (or normalized water-leaving radiance
> 2 mWcm−2 µm−1 sr−1; see Siswanto et al., 2011; Moore
et al., 2012). This criterion masked 2 % of all Chl a data.

The criteria described in the previous paragraph could
mask out grid cells with coccolithophore blooms, which are
sometimes observed in the Arctic Ocean (e.g., Smyth et
al., 2004), as they also have Rrs555 > 0.01 sr−1 (Moore et
al., 2012). Unlike waters dominated by non-phytoplankton
particles, whose Rrs spectral shape peaks at 555 nm, the
Rrs spectral shape of waters with coccolithophore blooms
peaks at 490 or 510 nm (see Iida et al., 2002; Moore et
al., 2012). Therefore, grid cells with Rrs spectral peaks at
490 or 510 nm (already classified using the criteria of Rrs at
490 nm (Rrs490) > Rrs at 443 nm (Rrs443) and Rrs at 510 nm
(Rrs510) > Rrs555) were considered as coccolithophore grid
cells and were reintroduced. Of the masked Chl a data, 8 %
were reintroduced by this criterion.

3.2 Chlorophyll a interpolation

Chl a values are often missing because of cloud cover, low
angle of sunlight, or sea ice. For the period and area analyzed
here, data are missing for 86 % of the space and time grid
cells. Because pCO2w mapping requires a complete Chl a

field without missing values, we interpolated the Chl a data
as follows; (1) Chl a was set to 0.01 mgm−3 (minimum value
of Chl a) in high-latitude regions in winter when there was
no light (north of 80◦ N in December and January, and north
of 88◦ N in November and February). (2) Whenever SIC was
greater than 99 %, Chl a was set to 0.01 mgm−3 (full ice cov-
erage, thus minimum Chl a). We chose the strict criterion of
SIC > 99 % because weak but significant primary production
has been found to occur under the sea ice in regions with
SIC around 90 % (Gosselin et al., 1997; Ulfsbo et al., 2014;
Assmy et al., 2017). (3) The remaining grid cells with miss-
ing data were filled, wherever possible, using the average of
Chl a in the surrounding grid cells within ± 1◦ latitude and
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± 1◦ longitude; this mainly compensated for missing Chl a

values due to cloud cover or grid cells masked out as poten-
tially affected by CDOM and TSM. (4) Parts of the remain-
ing missing Chl a values, mainly for the pre-satellite period
of January–August 1997, were set to the monthly climatolog-
ical Chl a values based on the 18-year monthly mean from
1997 to 2014. (5) The final remaining missing Chl a data,
mainly for the marginal sea ice zone, were generated with
linear interpolation using surrounding data. With each inter-
polation step the number of grid cells with missing data de-
creased; 23 % of grid cells without Chl a data were filled by
the first step, and the subsequent steps provided data for the
remaining 12, 8, 5, and 52 %.

3.3 Gridding of pCO2 data

In order to bring the individual pCO2w data to the same
resolution as the other input data, they were gridded to
1◦× 1◦× 1 month grid cells covering the years from 1997
to 2014. This was carried out using the same three-step pro-
cedure of Yasunaka et al. (2016) as this excludes values that
deviate strongly from the long-term mean in the area of each
grid cell. In short, first, anomalous values were screened in
the following manner. We calculated the long-term mean and
its standard deviation for a window size of ± 5◦ of latitude,
± 30◦ of longitude, and ± 2 months (regardless of the year)
for each 1◦× 1◦× 1 month grid cell. We then eliminated the
data in each grid cell that differed by more than 3 standard
deviations from this long-term mean. In the second step, we
recalculated the long-term mean and its standard deviation
using a smaller window size of ± 2◦ of latitude, ± 10◦ of
longitude, and ± 1 month (regardless of the year) for each
1◦× 1◦× 1 month grid cell, and eliminated data that dif-
fered from that long-term mean by more than 3 standard de-
viations. In the final step the mean value of the remaining
data in each 1◦× 1◦× 1 month grid cell for each year from
1997 to 2014 was calculated. This procedure identified in to-
tal about 0.5 % of the data as extreme values. These may well
be correct observations, but likely reflect small spatial scale
and/or short timescale variations that can be quite atypical of
the large-scale variability of interest in this study. These ex-
cluded values were randomly distributed in time and space.

Although some studies have used pCO2w normalized to a
certain year, based on the assumption of a constant rate of
increase for pCO2w (e.g., Takahashi et al., 2009), we used
“non-normalized” pCO2w values from all years; therefore,
in our analysis pCO2w can increase both nonlinearly in time
and non-uniformly in space.

3.4 pCO2 estimation using a self-organizing map

We estimated pCO2w using the SOM technique used by Ya-
sunaka et al. (2016), but with Chl a as an added training pa-
rameter to the SOM in addition to SST, SSS, SIC, xCO2a, and
geographical position X (= sin[latitude]× cos[longitude])

and Y (= sin[latitude]× sin[longitude]). Chl a, SST, SSS,
and SIC are closely associated with processes causing vari-
ation in pCO2w, such as primary production, warming–
cooling, mixing, and freshwater input, and they represent
spatiotemporal pCO2w variability on seasonal to interannual
timescales. Including the xCO2a enables the SOM to reflect
the pCO2w time trend in response to the atmospheric CO2
changes including large seasonal variation and continued an-
thropogenic emissions. In several previous studies the an-
thropogenic pCO2w increase has been assumed to be steady
and homogeneous and subtracted from the original pCO2w
data and added to the estimated pCO2w (Nakaoka et al.,
2013; Zeng et al., 2014). However, the occurrence of steady
and homogeneous pCO2w trends has not yet been demon-
strated in the Arctic Ocean and using xCO2a as a training
parameter in the SOM, similar to Landschützer et al. (2013,
2014), is preferable. Finally, the inclusion of geographical
position among the training parameters can prevent system-
atic spatial biases (Yasunaka et al., 2014). Compared to other
efforts mapping pCO2w using the SOM technique such as
those by Telszewski et al. (2009) and Nakaoka et al. (2013),
we used xCO2a and geographical position as training param-
eters while we did not use mixed layer depth because of lack
of reliable data in the Arctic.

Briefly, the SOM technique was implemented as follows:
first, the approximately 1 million 1◦× 1◦× 1 month grid
cells in the analysis region and period were assigned to 5000
groups, which are called “neurons”, of the SOM by using the
training parameters. Then, each neuron was labeled, when-
ever possible, with the pCO2w value of the grid cell where
the Chl a, SST, SSS, SIC, xCO2a, and X and Y values were
most similar to those of the neuron. Finally, each grid cell in
the analysis region and period was assigned the pCO2w value
of the neuron whose Chl a, SST, SSS, SIC, xCO2a, and X and
Y values were most similar to those of that grid cell. If the
most similar neuron was not labeled with a pCO2w value,
then the pCO2w value of the neuron that was most similar
and labeled was used. That case often happened in periods
and regions without any observed data. A detailed descrip-
tion of the procedure can be found in Telszewski et al. (2009)
and Nakaoka et al. (2013).

3.5 Calculation of air–sea CO2 fluxes

We calculated monthly air–sea CO2 flux (F) values from the
pCO2w values estimated in Sect. 3.4 by using the bulk for-
mula:

F = kL(pCO2w−pCO2a), (2)

where k is the gas transfer velocity and L is the solubility of
CO2. The solubility of CO2 (L) was calculated as a function
of SST and SSS (Weiss, 1974). We converted the interpo-
lated NOAA marine boundary layer xCO2a data (Sect. 2.2)
to pCO2a by using monthly sea level pressure data and the
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Figure 3. (a) Original and (b) interpolated Chl a (mgm−3) in July 2012 (upper panels), and along 75◦ N in 2012 (lower panels). Black lines
denote SIC of 50 and 90 %. Gray areas in (a) indicate missing Chl a data.

water vapor saturation pressure calculated from monthly SST
and SSS (Murray, 1967).

The gas transfer velocity k was calculated by using the
formula of Sweeney et al. (2007):

k = 0.19(Sc/660)−0.5
〈W 2

NCEP2〉, (3)

where Sc is the Schmidt number of CO2 in seawater at
a given SST, calculated according to Wanninkhof (1992,
2014), “〈〉” denotes the monthly mean, and 〈W 2

NCEP2〉 is the
monthly mean of the second moment of the NCEP2 6-hourly
wind speed. The coefficient 0.19, which is the global aver-
age of 0.27〈W 2

NCEP1〉/〈W
2
NCEP2〉, is based on the one deter-

mined by Sweeney et al. (2007) but optimized for NCEP2
winds, following the same method as Schuster et al. (2013)
and Wanninkhof et al. (2013).

The suppression of gas exchange by sea ice was accounted
for by correcting the air–sea CO2 fluxes using the parameter-
ization presented by Loose et al. (2009); the flux is propor-
tional to (1−SIC)0.4. Following Bates et al. (2006), in the
regions with SIC > 99 %, we used SIC= 99 % to allow for
non-negligible rates of air–sea CO2 exchange through leads,
fractures, and brine channels (Semiletov et al., 2004; Frans-
son et al., 2017). This parameterization reduces the flux in
fully ice-covered waters (SIC > 99 %) by 84 %.

4 Uncertainty

4.1 Uncertainty in chlorophyll a concentration data

Figure 3 shows original and interpolated Chl a for the
year 2012, as an example. Overall, the interpolated Chl a

data seem to fit well with the original data. Most interpolated
Chl a data have low concentrations because of high SIC and
lack of sunlight. The average of the interpolated Chl a val-
ues is 0.1 mgm−3, and less than 5 % of the interpolated Chl a

values are > 0.5 mgm−3 (cf. the average of the original Chl a

values is 1.1 mgm−3, and 48 % of the original Chl a values
are > 0.5 mgm−3). The previous studies to estimate pCO2w
in high latitudes assumed missing Chl a as constant values
and ignored spatiotemporal variation in Chl a (Landschützer
et al., 2013; Nakaoka et al., 2013). However, original Chl a

values in the ice edge region are not small as captured by
Perrette et al. (2011), and those in the northernmost grids in
winter, north of which the original Chl a values are missing,
are far south of the polar night region since they are missing
not because of no sunlight but because of low angles of sun-
light (Fig. 3a). Therefore, we believe interpolation is better
than using low and constant values.

To validate our Chl a interpolation, we repeated the in-
terpolation after randomly eliminating 10 % of the satellite
Chl a values. We then used the eliminated original Chl a data
as independent data for the validation. Note that this compar-

Biogeosciences, 15, 1643–1661, 2018 www.biogeosciences.net/15/1643/2018/



S. Yasunaka et al.: Arctic Ocean CO2 uptake 1649
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Figure 4. (a) Observed pCO2w averaged over the whole analysis
period (µatm). (b) Estimated pCO2w averaged over the grid boxes
in which observed pCO2w values were available (µatm). (c) Bias
(estimate–observation) and (d) RMSD between observed and esti-
mated pCO2w averaged over the whole analysis period (µatm).

ison was performed where there were the original Chl a data,
i.e., the high Chl a region. The root mean square difference
(RMSD) and correlation coefficient between the interpolated
and the independent original Chl a data are 0.90 mgm−3 and
0.80, respectively. It means the interpolated Chl a, maybe
not quantitatively, but qualitatively reproduced the original
Chl a, and therefore is a meaningful parameter in the SOM
process. Actually Chl a data improved the pCO2w estimate,
even though Chl a values in many grid cells were interpo-
lated values (see Sect. 5.4).

To evaluate our choice of Chl a algorithm (i.e., the Arctic
algorithm of Cota et al., 2004), we compared its calculated
Chl a values with those determined by using the standard al-
gorithm of O’Reilly et al. (1998) and the coastal algorithm
of Tassan (1994). RMSD and correlation coefficient (r) be-
tween the original (i.e., non-interpolated) Chl a values are
about 0.8 mgm−3 and 0.9, respectively (Table 1). For all the
Chl a values including the interpolated data, they are about
0.4 mgm−3 and 0.9. The lower RMSD in this case results
from the fact that most of the interpolated Chl a values have
low concentrations. This result means the Chl a from the dif-
ferent algorithms are, maybe not quantitatively, but qualita-
tively consistent with each other. Since not absolute Chl a

values but relative values affect the pCO2w estimates in the
SOM technique, the large RMSD among the Chl a values
does not result in significant difference of the pCO2w esti-
mates. Actually, the pCO2w and CO2 fluxes determined us-
ing Chl a from any of these algorithms as input to the SOM
are consistent within their uncertainties (see Sect. 4.2 and 4.3

(b) pCO2w (bias RMSD) 
[μatm]

(a) pCO2w (OBS EST) 
[μatm]

Figure 5. (a) Monthly time series of observed pCO2w averaged
over the entire analysis area (black), and estimated pCO2w aver-
aged over the grid boxes in which observed pCO2w values were
available (green) (µatm). (b) Bias (estimate–observation; black) and
RMSD (green) between observed and estimated pCO2w averaged
over the entire analysis area (µatm).

below). RMSDs between the observed and estimated pCO2w
are smallest in the pCO2w estimate using Chl a from the Arc-
tic algorithm, but the differences are quite small (< 1 %).

4.2 Uncertainty of pCO2w mapping

Figure 4 compares observed and estimated pCO2w (note that
the spatial pattern visible in Fig. 4a and b includes differences
generated by different seasonal coverage of data in the vari-
ous regions). Both observed and estimated pCO2w tend to be
higher in the subpolar North Atlantic, the Laptev Sea, and the
Canada Basin, and lower in the Greenland Sea and the Bar-
ents Sea. However, the east–west contrast in the Bering Sea
and the contrast between the Canada Basin and the Chukchi
Sea are weaker in our estimates than in the observations,
and mean bias and RMSD are relatively large in those ar-
eas (Fig. 4c and d). The temporal changes in the observed
and estimated pCO2w are in phase (Fig. 5a), although the
variability in the estimated values is somewhat suppressed
compared to that of the observed data (note that the temporal
change depicted in Fig. 5a also includes changes incurred by
time variations in data coverage). The mean bias and RMSD
fluctuate seasonally but are at a constant level over the years
(Fig. 5b).
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Table 1. RMSD (mgm−3) and correlation (r) between Chl a values.

Standard algorithm Coastal algorithm

RMSD r RMSD r

Chl a from Arctic algorithm 0.80 0.90 0.81 0.87
Interpolated Chl a from Arctic algorithm 0.37 0.92 0.48 0.86

The correlation coefficient between estimated and ob-
served pCO2w is 0.82, and the RMSD is 30 µatm, which is
9 % of the average and 58 % of the standard deviation of the
observed pCO2w values. This is a performance level cate-
gorized as “good” by Maréchal (2004). The differences be-
tween the estimated and observed values stem not only from
the estimation error but also from the error of the gridded ob-
served data. The uncertainty of the pCO2w measurements is
2–5 µatm (Bakker et al., 2014), the uncertainty of the pCO2w
values calculated from DIC and TA, whose uncertainties are
within 4 and 6 µmolkg−1, respectively (Olsen et al., 2016),
can be up to 14 µatm (Lueker et al., 2000), and the sampling
error of the gridded pCO2w observation data was determined
from the standard errors of monthly observed pCO2w in the
1◦× 1◦ grid cells to be 7 µatm (Yasunaka et al., 2016).

To validate our estimated pCO2w values for periods and
regions without any observed data, we repeated the mapping
experiments after systematically excluding some of the ob-
served pCO2w data when labeling the neurons; four experi-
ments were carried out, by excluding data (1) from 1997 to
2004, (2) from January to April, (3) from north of 80◦ N,
and (4) from the Laptev Sea (90–150◦ E), where there are
only a few pCO2w observations. We compared the pCO2w
estimates obtained in each experiment with the excluded ob-
servations and found that the pCO2w estimates reproduced
the general features of the excluded data, both spatially and
temporally (not shown here). They were also similar to the
pCO2w estimates obtained by using all observations, al-
though the RMSDs between the estimates and the excluded
observations are 54 µatm on average, which is 1.8 times the
RMSDs of the estimates based on all observations. It means
that our estimated pCO2w values reproduce the general fea-
tures both in space and time even when and where there are
no observed data, although the uncertainty in pCO2w might
be as large as 54 µatm in regions and periods without data.
We used this uncertainty for pCO2w estimates made by us-
ing the pCO2w values of a less similar neuron.

4.3 Uncertainty of CO2 flux estimates

Signorini and McClain (2009) estimated the uncertainty of
the CO2 flux resulting from uncertainties in the gas ex-
change parameterization to be 36 % and the uncertainty re-
sulting from uncertainties in the wind data to be 11 %.
The uncertainty for SIC is 5 % (Cavalieri et al., 1984; Glo-
ersen et al., 1993; Peng et al., 2013). The standard error of

the sea ice effect on gas exchange was estimated to about
30 % by Loose et al. (2009). The uncertainty of pCO2a
is about 0.5 µatm (http://www.esrl.noaa.gov/gmd/ccgg/mbl/
mbl.html), and that of pCO2w was 30 µatm (Sect. 4.2); there-
fore, we estimated the uncertainty of 1pCO2 (= pCO2w−

pCO2a) to be 34 % (average 1pCO2 in the analysis do-
main and period was −89 µatm). The overall uncertainty
of the estimated CO2 fluxes is thus 59 % ([0.362

+ 0.112
+

0.052
+0.32

+0.342
]
1/2) in sea-ice-covered regions and 51 %

([0.362
+0.112

+0.342
]
1/2) in ice-free regions. For estimates

using the pCO2w values of a less similar neuron, whose un-
certainty in pCO2w is 54 µatm and the uncertainty of the
1pCO2 estimates can be as high as 61 %, the uncertainty
is 78 % ([0.362

+ 0.112
+ 0.052

+ 0.32
+ 0.612

]
1/2) in sea-

ice-covered regions and 72 % ([0.362
+ 0.112

+ 0.612
]
1/2)

in ice-free regions. The average of the estimated CO2 flux
in the analysis domain and period is 4.8 mmolm−2 d−1;
hence the uncertainty of the CO2 flux estimate corre-
sponds to 2.8 mmolm−2 d−1 in sea-ice-covered regions and
2.4 mmolm−2 d−1 in ice-free regions. For estimates using the
pCO2w values of a less similar neuron, the uncertainty cor-
responds to 3.7 mmolm−2 d−1 in the sea-ice-covered region
and 3.5 mmolm−2 d−1 in ice-free regions.

5 Results and discussion

5.1 Relationship between pCO2 and chlorophyll a

Figure 6 compares the observed pCO2w and the original
non-interpolated Chl a in spring (March–May) and summer
(July–September). In spring, when much of the Arctic Ocean
is ice covered, Chl a is high in the Barents Sea and the
Bering Strait (> 1 mgm−3). In summer, when the ice cover
is less extensive, Chl a is high in the Chukchi Sea, the Kara
Sea, the Laptev Sea, and the East Siberian Sea (> 1 mgm−3)
and especially high in the coastal regions of the two lat-
ter (> 2 mgm−3). pCO2w is high in the Norwegian Sea in
spring, and in the Kara Sea, the Laptev Sea, and the Canada
Basin during summer (> 300 µatm). Conversely, it is lower
in the Chukchi Sea, Bering Strait area, and the sea ice edge
region of the Eurasian Basin in summer (< 300 µatm). The
overall correlation between pCO2w and Chl a is negative
where Chl a≤ 1 mgm−3 (70 % of all the data; correlation co-
efficient r =−0.36, P < 0.01), but there is no significant re-
lationship where Chl a > 1 mgm−3 (Fig. 7). A similar situa-
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(a) pCO2w 

(b) Chl a 
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Figure 6. (a) Observed pCO2w (µatm), and (b) non-interpolated
Chl a (mgm−3) in March–May (left) and July–September (right)
from 1997 to 2014.

tion was identified in the subpolar North Atlantic by Olsen et
al. (2008). It means that primary production generally draws
down the pCO2w, but high Chl a values are not necessarily
associated with the low pCO2w probably because high Chl a

usually appears in the coastal regions (Fig. 6b; see below).
To determine the spatial variability in the relationship be-

tween pCO2w and Chl a, we calculated the correlation coef-
ficients between pCO2w and Chl a in a window of ± 5◦ of
latitude and± 30◦ of longitude for each monthly 1◦× 1◦ grid
cell (Fig. 8a). The correlations between pCO2w and Chl a

are negative in the Greenland and Norwegian seas and over
the Canada Basin. In the Greenland and Norwegian seas,
the correlation between pCO2w and Chl a is strongly nega-
tive (r <−0.4) in spring and weakly negative (−0.4 < r < 0)
in summer. Chl a there is higher in summer than in spring
(Fig. 6b), whereas nutrient concentrations are high in spring
and low in summer (Fig. 8b). Taken together, this suggests
that primary production draws down the pCO2w in spring,
whereas in summer the primary production mostly depends
on regenerated nutrients (Harrison and Cota, 1991) and the
net CO2 consumption is small, as also reported for the sub-
polar North Atlantic (Olsen et al., 2008). Therefore the cor-
relation between pCO2w and Chl a becomes less negative. In
the eastern Barents Sea, the Kara Sea and the East Siberian
Sea, and the Bering Strait, the correlations are positive be-
cause of water with high pCO2w and Chl a in the coastal
region subjected to river discharge (Murata, 2006; Semiletov
et al., 2007; Anderson et al., 2009; Manizza et al., 2011). In
the Chukchi Sea, the relationship is weak (−0.2 < r < 0.2),
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Figure 7. Observed pCO2w (µatm) vs. satellite Chl a (mgm−3)
in the Arctic Ocean and its adjacent seas (north of 60◦ N)
from 1997 to 2014. Colors indicate the number of data pairs
in a 0.1 mgm−3

×5 µatm bin when Chl a≤ 5 mgm−3, or in a
1 mgm−3

× 5 µatm bin when Chl a > 5 mgm−3.

probably because the relationship is on smaller spatial and
temporal scales than those represented by the window size
used here, as shown by Mucci et al. (2010). The occurrence
of calcifying plankton blooms in this region likely also weak-
ens the correlation since the calcification increases pCO2w
(Shutler et al., 2013; Fransson et al., 2017).

These results show that pCO2w relates to Chl a, but the re-
lationships are different depending on the region and the sea-
son. It is difficult to represent such a complex relationship
using simple equations (e.g., multiple regression methods)
because it needs a priori assumptions of regression functions
and of dividing the basin into subregions. But the SOM tech-
nique can empirically induce the relationships without any of
the a priori assumptions and is therefore suitable to represent
such a complex relationship.

5.2 Spatiotemporal CO2 flux variability

The 18-year annual mean CO2 flux distribution shows that
all areas of the Arctic Ocean and its adjacent seas were net
CO2 sinks over the time period that we investigated (Fig. 9).
The annual CO2 influx to the ocean was strong in the Green-
land and Norwegian seas (9± 3 mmolm−2 d−1; 18-year an-
nual mean± uncertainty averaged over the area shown in
Fig. 1), the Barents Sea (10± 3 mmolm−2 d−1), and the
Chukchi Sea (5± 3 mmolm−2 d−1). In contrast, influx was
weak and not statistically significantly different from zero in
the Eurasian Basin, the Canada Basin, the Laptev Sea, and
the East Siberian Sea. Our annual CO2 flux estimates are
consistent with those reported by Yasunaka et al. (2016) and
other previous studies (Bates and Mathis, 2009, and refer-
ences therein).
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(b) Nitrate

(a) Correlation (pCO2w-Chl a) 
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Figure 8. (a) Spatial correlation (correlation coefficient, r) between
pCO2w and Chl a in a window size of ± 1 month, ± 5◦ lati-
tude, and± 30◦ longitude in March–May (left) and July–September
(right). Darker hatched areas represent values in grids where corre-
lations are insignificant (P > 0.05). (b) Surface nitrate concentra-
tion (µmolL−1) in March–May (left) and July–September (right)
from 1997 to 2014.

The estimated 18-year average CO2 influx to the Arctic
Ocean was 5± 3 mmolm−2 d−1, equivalent to an uptake of
180± 130 TgCyr−1 for the ocean area north of 65◦ N, ex-
cluding the Greenland and Norwegian seas and Baffin Bay
(10.7× 106 km2; see Fig. 1). This accounts for 12 % of the
net global CO2 uptake by the ocean of 1.5 PgCyr−1 (Gru-
ber et al., 2009; Wanninkhof et al., 2013; Landschützer et
al., 2014). It is within the range of other estimates (81–
199 TgCyr−1; Bates and Mathis, 2009), but close to the
upper bound. That is partly because of the parameteriza-
tion of the suppression effect by sea ice used in this study.
Using another parameterization that represents the SIC ef-
fect linearly (Takahashi et al., 2009; Butterworth and Miller,
2016), CO2 uptake of the Arctic Ocean was estimated to be
130± 110 TgCyr−1.

Figure 10 shows the seasonal variation in the air–sea CO2
fluxes and its controlling factors (1pCO2, wind speed and
SIC; solubility is not shown as the impacts of its variations
are relatively small in this context) in the Greenland and Nor-
wegian seas, the Barents Sea, the Chukchi Sea, and the Arc-
tic Ocean. In all of these regions the influxes are strongest
in October, when the winds strengthen with the approach
of winter and the pCO2w and/or SIC are still as low as in
the summer. In the Greenland and Norwegian seas and the
Barents Sea the CO2 influx shows a secondary maximum in

[mmol m-2 
day-1]

CO2 flux 

Figure 9. The 18-year annual means of CO2 flux
(mmolm−2 day−1) (negative values indicate flux into the ocean).
Darker hatched areas represent values in grids where fluxes were
smaller than the uncertainty, estimated as described in the text.

February because the strongest winds occur in that month,
while in the Chukchi Sea and Arctic Ocean, the winds are
also strong but the flux is suppressed by the extensive sea ice
cover. All of these regions are undersaturated with pCO2w
(i.e., negative 1pCO2) throughout all seasons. The under-
saturation is strongest in the Arctic Ocean, as this has the
most extensive sea ice cover limiting the fluxes from the at-
mosphere and the strongest stratification, limiting the mixing
of CO2 rich subsurface waters into the surface ocean. The
undersaturation typically shows a maximum (i.e., 1pCO2 is
minimum) in late spring to early summer (May–June) when
the spring bloom occurs (Pabi et al., 2008), but not in the
Arctic Ocean. Here the undersaturation reaches its minimum
(1pCO2 is the smallest) in late summer (August–September)
at the time of minimum sea ice cover since the seasonal de-
crease in pCO2 in summer is larger in the air than in the sea.
Overall, in the Greenland and Norwegian seas and the Bar-
ents Sea the seasonal variations in the CO2 flux are opposite
to those expected from the seasonal 1pCO2 variations be-
cause it is the wind speed that governs most of the seasonal
flux variations. In the Chukchi Sea, however, the CO2 influx
is strongest in summer, a consequence of the minimum sea
ice cover and strongest pCO2 undersaturation. In the Arc-
tic Ocean it is the SIC and wind speed that drive the seasonal
flux variations. Seasonal variations in CO2 flux are consistent
with those of the previous studies (Yasunaka et al., 2016, and
references therein), whereas seasonal variations in pCO2w
become realistic (see Sect. 5.3 below).

Figure 11 shows interannual variation in CO2 flux and its
driving factors in these four regions. The interannual vari-
ations in CO2 flux and 1pCO2 are generally smaller than
the seasonal variations and are often smaller than their re-
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Figure 10. The 18-year monthly mean CO2 flux (mmolm−2 day−1, black), 1pCO2 (µatm, red), wind speed (ms−1, green), and SIC (%,
blue), averaged over (a) the Greenland and Norwegian seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic Ocean. Error bars
indicate the uncertainty.
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Figure 11. Area-mean interannual variations in CO2 flux (mmolm−2 day−1, black), 1pCO2 (µatm, red), wind speed (ms−1, green), and
SIC (%, blue) in (a) the Greenland and Norwegian seas, (b) the Barents Sea, (c) the Chukchi Sea, and (d) the Arctic Ocean. Error bars
indicate the uncertainty.

spective uncertainty. In the Greenland and Norwegian seas,
interannual variation in the CO2 flux negatively correlates
with the wind speed (CO2 influx to the ocean is large when
the wind is strong; r =−0.41), while interannual variation
in 1pCO2 and sea ice change is small. In the Barents Sea,

the interannual variation in CO2 flux positively correlates
with 1pCO2 (r = 0.71) and negatively correlates with SIC
(r =−0.50), while the correlation with wind speed is not
significant. Although low SIC enhances the air–sea CO2 ex-
change due to increase in the area of open water, it also as-
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Figure 12. Trends in (a) CO2 flux (mmolm−2 day−1 decade−1),
(b) 1pCO2 (µatmdecade−1), and (c) SIC (%decade−1). Darker
hatched areas represent values in grids where trend values were less
than the uncertainty, estimated as described in the text.

sociates with high SST and therefore high pCO2w. In the
Chukchi Sea, CO2 influx to ocean is decreasing with in-
creasing 1pCO2 (r = 0.87). High pCO2w (> 500 µatm) via
storm-induced deep mixing events has been sometimes ob-
served in the Chukchi Sea after 2010 (Hauri et al., 2013;
Taro Takahashi, personal communication, 2017). Interannual

variability in the CO2 flux averaged over the Arctic Ocean
is small because the increasing 1pCO2 is compensated for
by the effect of sea ice retreat (r =−0.70). Thus, the com-
bined effect of sea ice retreat and pCO2w increase on CO2
flux varied among regions.

The CO2 influx has been increasing in the Greenland Sea
and northern Barents Sea and decreasing in the Chukchi Sea
and southern Barents Sea (Fig. 12). The CO2 flux trend cor-
responds well with the 1pCO2 trend, which in turn corre-
sponds well with the SST trend. The increasing CO2 influx
in the northern Barents Sea also corresponds with the sea
ice retreat. These results are similar to those for the previ-
ous estimates without using Chl a (see Fig. 10 in Yasunaka
et al., 2016). It shows again that the combined effect of sea
ice retreat and pCO2w increase on the CO2 flux is regionally
different. In the SOM process, the pCO2w values observed
in the latter period might be used for the pCO2w estimate in
the former period when the pCO2w measurements have not
been made, and therefore the trend in CO2 influx might be
affected by the spatiotemporal distribution of the measure-
ments. To confirm this is not the case, we checked that the
spatial distribution of the pCO2w trend did not correspond to
the year when the first observation was conducted (see Sup-
plement).

5.3 Impact of incorporating chlorophyll a data
in the SOM

To determine the impact of including Chl a data in the SOM
process, the analyses were repeated without Chl a data. The
RMSD of the resulting estimated pCO2w values is 33 µatm,
which is 3 µatm larger than the uncertainty of the estimates
generated by including Chl a in the SOM. Chl a data thus
improved the pCO2w estimate (namely, a 10 % reduction of
RMSD), even though 40 % of the Chl a data labeled with
pCO2w observations were interpolated Chl a values.

Figures S1 and S2 in the Supplement present the difference
in bias and RMSD for pCO2w estimated with and without
Chl a; Fig. S1 shows the time evolution and Fig. S2 shows
the spatial distribution. Both approaches typically underes-
timate pCO2w in winter and overestimate the summertime
values, but these systematic biases are reduced when Chl a

values are included in the SOM (Fig. S1). Biases and RMSDs
are reduced in the Canada Basin, the western Bering Sea, and
the boundary region between the Norwegian Sea and the sub-
polar North Atlantic (Fig. S2). As a result, the strong east–
west contrast in the Bering Sea and the contrast between the
Canada Basin and the Chukchi Sea (see Fig. 4) are better
represented when Chl a is included. Taken together, inclu-
sion of Chl a when estimating pCO2w yields not only better
representation of the pCO2w decline in spring and summer
but also improves the representation of the spatiotemporal
pCO2w distribution. Technically, these improvements come
from the fact that Chl a as a training parameter can separate
high Chl a region–time and low Chl a region–time into dif-
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Figure 13. The 18-year averaged pCO2w seasonal variations (µatm) in (a) the Greenland and Norwegian seas, (b) the Barents Sea, and
(c) the Chukchi Sea. Black lines with triangles show estimates without Chl a; magenta lines with open circles show estimates with Chl a;
green lines with closed circles show observed values. The upper panels show pCO2w averaged for all grid cells within each region, and the
lower panels show pCO2w averaged over the grid boxes in which observed pCO2w values were available. Error bars show the uncertainty,
estimated as described in the text.

ferent neurons, which were combined into the same neurons
trained without Chl a. For example, since Chl a is high in
spring but SST and SIC are still at similar levels as winter,
the grid cells in spring and winter would be classified into
separate neurons when Chl a is included as a training pa-
rameter but in the same neuron when Chl a is not included.
As a result, without Chl a, the estimated pCO2w in spring
tends to be similar to the pCO2w in winter, and the pCO2w
in winter tends to be similar to that in spring. And therefore
the contrast between winter and spring is weakened without
Chl a.

The seasonal cycles of pCO2w estimates derived with the
inclusion of Chl a have a larger amplitude than the uncer-
tainties, whereas the uncertainties are larger than the seasonal
amplitude when pCO2w is derived without Chl a (upper pan-
els of Fig. 13). The difference is caused by the fact that the
seasonal cycle of pCO2w in each region reproduces the ob-
served cycle better when Chl a was included (lower panels
of Fig. 13). Note that the much larger seasonal amplitude in
the lower panels is an artefact generated by the seasonal bias
in sampling locations; in winter most measurements are ob-
tained at low latitudes where pCO2w is typically higher than
at high latitudes.

Compared to the CO2 influx estimates by Yasunaka
et al. (2016), the winter CO2 influx in the Greenland
and Norwegian seas estimated including Chl a is about
3 mmolm−2 d−1 less than that calculated without using Chl a

(Fig. 14), but this difference is smaller than the uncertainties.

The CO2 fluxes in the other areas are quite similar for the two
estimates, while their uncertainties are smaller in the present
estimates.

The inclusion of Chl a data also reduced the uncertainty
of the estimated annual air–sea CO2 flux integrated over the
entire Arctic Ocean. Compared to the flux estimate deter-
mined by Yasunaka et al. (2016) of 180± 210 TgCyr−1, the
CO2 uptake in the Arctic Ocean estimated here is signif-
icant within its uncertainty (180± 130 TgCy−1). This im-
provement is the result of (1) the inclusion of Chl a data in
the SOM process (which reduced the uncertainty by 23 %);
(2) the separate uncertainty estimates for ice-free and ice-
covered regions (8 %); and (3) the addition of new observa-
tional pCO2w data (7 %). Reducing the uncertainty of this
quantification is a key contribution to the larger work of con-
straining the global carbon budget (e.g., Le Quéré et al.,
2016). Because the Arctic is an important CO2 sink, quan-
tifying its fluxes and minimizing the uncertainty is of great
scientific value.

5.4 Toward further reduction of the uncertainty

The addition of new observational data from SOCATv4 and
GLODAPv2 reduced the overall uncertainty in the mapped
pCO2w: a 33 % increase in the number of observations in-
duced a 7 % reduction in the uncertainty. However, there are
still few observations in the Kara Sea, the Laptev Sea, the
East Siberian Sea, and the Eurasian Basin (Fig. 2). To im-
prove our understanding of the variability in air–sea CO2
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Figure 14. The 18-year monthly mean CO2 flux (mmolm−2 day−1) averaged over (a) the Greenland and Norwegian seas, (b) the Barents
Sea, (c) the Chukchi Sea, and (d) the Arctic Ocean. Black lines with triangles show estimates without Chl a by Yasunaka et al. (2016);
magenta lines with open circles show estimates with Chl a. Error bars show the uncertainty, estimated as described in the text.

fluxes in the Arctic, it is of critical importance to obtain ad-
ditional ocean CO2 measurements to fill these data gaps and
that these measurements are made publically available. Data
synthesis activities like SOCAT must be encouraged.

In the present study, we discussed the combined effect of
sea ice retreat and pCO2w change on the air–sea CO2 flux.
There are other factors that will induce change of CO2 flux.
For example, warmer temperature will lead to an increas-
ing buffering capacity while lower salinity will have the op-
posite effect and cause a decrease in buffering capacity. In
our current study, we used climatological-mean salinity for
the pCO2w estimate because of lack of reliable year-to-year
salinity data. That might be one of the improvements for a
future study.

6 Conclusions

By applying an SOM technique with the inclusion of Chl a

data to estimate pCO2w, we produced monthly maps of air–
sea CO2 fluxes from 1997 to 2014 for the Arctic Ocean and
its adjacent seas north of 60◦ N. Negative correlation be-
tween pCO2w and Chl a meant that Chl a is a valuable pa-
rameter to represent primary production. Since the relation-
ship varied among seasons and regions, the SOM technique
is better suited for the mapping than a multiple linear regres-
sion approach. Adding Chl a to the SOM process improved
representation of the seasonal cycle of pCO2w and therefore
reduced the uncertainty of the CO2 flux estimates.

In the Greenland and Norwegian seas and the Barents Sea
the CO2 influx was large in autumn and winter because of
the strong wind. In the Chukchi Sea, however, the CO2 in-
flux was strong in summer and autumn, as a consequence of
the low SIC and strong pCO2w undersaturation. Although
interannual variation in the CO2 influx was smaller than the
seasonal variation, the CO2 influx has been increasing in the
Greenland Sea and northern Barents Sea and decreasing in
the Chukchi Sea and southern Barents Sea.

A major goal of the carbon-cycle research community in
recent years has been to reduce the uncertainty in estimates
of carbon reservoirs and fluxes. Our results contribute to this
in that CO2 uptake in the Arctic Ocean is demonstrated with
high significance. The resulting estimate of the annual Arc-
tic Ocean CO2 uptake of 180 TgCyr−1 is significant with
an uncertainty of ± 130 TgCyr−1. This is a substantial im-
provement over earlier estimates and is due mainly to the
incorporation of Chl a data.

Assessment of the numerical models using our estimate of
Arctic carbon uptake is also an interesting topic since numer-
ical models are poorly validated in the Arctic due to the lim-
ited observations of biogeochemistry (Popova et al., 2012).
However, such experiments need thorough insight into the
numerical models, which is beyond the scope of this study.
We hope to perform such comparisons in future studies.
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Data availability. The monthly CO2 flux, pCO2w, and interpolated
Chl a data presented in this paper will be available at the JAMSTEC
website (http://www.jamstec.go.jp/res/ress/yasunaka/co2flux/, Ya-
sunaka, 2018).

The Supplement related to this article is available online
at https://doi.org/10.5194/bg-15-1643-2018-supplement.
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