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REcoM-2	and	the	role	of	photophysiology
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REcoM-2	is	an	ecosystem	model	coupled	to	the	MITgcm.
It	defines	carbon,	nitrogen	and	chlorophyll	as	state	variables,
allowing	variable	 stoichiometry.
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Chl synthesisNC

Tuning	of	parameters	by	comparison	
to	satellite-based	chlorophyll.

Accurate	surface	fields	for	
phytoplankton	chlorophyll.

Unrealistic	patterns	in	low	light	
conditions:

• below	surface,
• during	polar	winter,
• under	ice	sheets.

𝐶ℎ𝑙	𝑠𝑦𝑛𝑡𝑒𝑠𝑖𝑠 = 𝑁	𝑎𝑠𝑠𝑖𝑚	×𝐶ℎ𝑙: 𝑁123×
𝑃ℎ𝑜𝑡
𝛼𝜃𝐸

𝐶ℎ𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Chl =	synthesis	- damage

Objective
Improvement of

modeled phytoplankton
stoichiometry in	low
ligh conditions.
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Parameterization	of	chlorophyll	non-reversible	damage

Inactivation	proportional	to	
the	degree	of	light	saturation	
of	the	photosynthetic	
apparatus (Pahlow 2005,	
Pahlow and	Oschlies 2009).

𝐶ℎ𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑘	× 1 − 𝑒
?@AB
C123

𝐶ℎ𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑘𝐸

𝐶ℎ𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑘𝜃𝐸

𝐶ℎ𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 	(𝑘)Constant	inactivation	rate	(d-1).

Inactivation	proportional	 light	
intensity	(Kok 1956,	Han	2002,	
Oliver	2003).

Inactivation	proportional	 light	
intensity	and	antenna	size.
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Model	accuracy:	satellite	chlorophyll	and	literature	Chl:C
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OC-CCI

REcoM

Chlorophyll:	 satellite
annual	means	at	surface

2000-2015

Chl:C ratios:	literature
upper	200m;	n⋍100

1990-2014

Authors Year Pacific	Ocean
Li	et	al. 2010 California	coastal	 curr.
Furuya 1990 North	&	Equatorial P.
Chang	et	al. 2003 East	China	Sea
Brown	et	al. 2003 Equatorial	Pacific
Cambell	 et	al. 1994 Hawaii
Jones	et	al. 1996 Hawaii

Authors Year Atlantic	Ocean
Jakobsen &	
Markager

2016 Baltic	Sea

Buck	et	al. 1996 North	Atlantic
Marañon 2005 Atlantic	gyres
Perez	et	al. 2006 A. subtr.	gyres
Caron	et	al. 1995 Sargaso Sea
Goericke	&	
Welschmeyer

1998 Sargaso Sea

model	run Chlorophyll
Chl:C ratio

Set	k values Output	annual	
climatology
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Correlation	with	satellite	chlorophyll	and	literature	Chl:C
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𝑘𝐼𝑠𝑎𝑡

𝑘𝜃𝐸
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Analysis	of	patterns:	Chl:C gradient	in	depth

Assuming that the modeled phytoplankton biomass is overesti-
mated by 10% (i.e., the same as the modeled chlorophyll) for the
equatorial Pacific, corrected averaged biomasswould be ~19 mg C m−3

for the surface water and 1334 mg C m−2 for the upper 120 m. The
latter is close to the observed average of 1370 mg C m−2 for the
euphotic zone of the eastern equatorial Pacific (Taylor et al., 2011).

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Modeled climatology (1990–2007) of (a) and (b) phytoplankton, (c) and (d) chlorophyll, and (e) and (f) C:Chl ratio, in the equatorial Pacific (150°W–140°W, left column)
and the equatorial Atlantic (30°W–20°W, right column), depth versus latitude. Superimposed black and white lines denote the depth for MLD and ferricline, respectively.

(a) (b)

Fig. 9. Time-longitude contours of modeled surface chlorophyll (mg m−3) in (a) the equatorial Pacific and (b) the equatorial Atlantic, averaged over 5°N–5°S for the period of
1990–2007.

7X. Wang et al. / Journal of Marine Systems xxx (2012) xxx–xxx

Please cite this article as: Wang, X., et al., Phytoplankton carbon and chlorophyll distributions in the equatorial Pacific and Atlantic: A basin-
scale comparative study, J. Mar. Syst. (2012), doi:10.1016/j.jmarsys.2012.03.004

Wang	et	al	(2013)	JMS.	Phytoplankton	carbon	and	
chlorophyll	distributions	in	the	equatorial	Pacific.

𝑘𝐸

𝑘𝐼𝑠𝑎𝑡

𝑘𝜃𝐸

𝑘

𝑘𝐸𝑘𝐼𝑠𝑎𝑡 𝑘𝜃𝐸𝑘
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Analysis	of	patterns:	seasonality	at	high	latitudes
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Annual	cycle	at	Northern	latitudes	66-80°N

Jackobsen &	Markager (2016)	L&O.	Chl:C annual	cycle	at	56°N	(1990-2014)

Annual	cycle	in	Southern	Ocean	66-80°S

Sakshaug &	Holm-Hansen	(1986)	L&O.	Range	of	Chl:C at	61°S
Daly	(1990)	L&O.	Range	of	Chl:C at	60°S

𝑘𝐸𝑘𝐼𝑠𝑎𝑡 𝑘𝜃𝐸𝑘
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Analysis	of	patterns:	Chl:C under	the	ice	sheet
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Northern	latitudes	66-80°N

Southern	Ocean	66-80°S

Daly	(1990)	L&O.	Chl:C under	the	ice	at	60°S
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Summary	and	conclusions

10

Optimization	of	models	with	surface	chlorophyll	can	be	biased	towards	the	
description	of	high	light	conditions.

Modelling	non-reversible	damage	to	chlorophyll	as	a	function	of	light	
intensity	provides:

• accurate	surface	chlorophyll	fields.

• realistic	phytoplankton	stoichiometry	in	conditions	not	seen	by	satellites.
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Details physical forcing and ecosystem model

Figure 1: Schematic sketch of the ecosystem model REcoM-2. The 21 tracers can be
grouped (indicated by boxes) into dissolved nutrients and carbonate system pa-
rameters (upper left), phytoplankton (center), zooplankton (upper right), de-
tritus (lower right), and dissolved organic material (lower left). Source and sink
terms are depicted by arrows, short arrows denote exchange with atmosphere
and sediments. Not shown: sediments also release alkalinity, inorganic nutrients
and dissolved organic matter.

section 7.

S(DIC) = (rphy − pphy) · Cphy + (rdia − pdia) · Cdia

+ rhet · Chet + ρDOC · fT · DOC

+ λ · CaCO3 det − Z

(2)

See section 3 for details on photosynthesis (p) and phytoplankton respiration (r) rates.
Cphy, Cdia and Chet refer to carbon biomass of nanophytoplankton, diatoms and het-
erotrophs, respectively. See section 4 for the formulation of the heterotrophic respiration
rate (rhet) and section 6 for the DOC remineralization term (ρDOC ·fT ·DOC). The calcite
dissolution rate (λ) is defined in Eq. 50 and the calcification flux (Z) in Eq. 37.

Total Alkalinity (TA) The alkalinity balance is determined by processes co-occurring
with primary production and remineralization of dissolved organic matter. Alkalinity is
increased by nitrogen assimilation and reduced by remineralization of dissolved organic
nitrogen (DON). The contribution of phosphate assimilation and remineralization to alka-
linity is taken into account by assuming a constant Redfield ratio (16:1) relating DON to
dissolved organic phosphorous (DOP). Further, alkalinity is reduced during calcification

by	Schartau 2004.

by	Hauck	2013.

Initial	values:	Levitus World	Ocean	Atlas	(Garcia	et	al.,	2006)
Global	Ocean	Data	Analysis	Project	(Key	et	al.,	2004).	

Model	grid:	2° long /	0.38	to 2° lat /	30	depth layers,	0	to 5450m.	

Model	spin-up:	4	years.
Output:	 1	year	in	10daily	steps.

V. Schourup-Kristensen et al.: A skill assessment of FESOM–REcoM2 2771

lation, whereupon smoothing is performed to remove grid-
scale noise. The topography data also defines the coastline
using bilinear interpolation from the data to the model’s grid
points. For a further description of the creation of bottom to-
pography for FESOM, please refer to Q. Wang et al. (2014).
The version of FESOM used here utilizes a linear rep-

resentation on triangles (in 2-D) and tetrahedrals (in 3-D)
for all model variables. The same is true for the biological
tracers, which are treated similar to temperature and salinity.
The temporal discretization is implicit for sea surface ele-
vation and a second order Taylor–Galerkin method together
with the flux-corrected transport (FCT) is used for advec-
tion–diffusion equations. The forward and backward Euler
methods are used for lateral and vertical diffusivities, respec-
tively, and the Coriolis force is treated with a second order
Adams–Bashforth method.
The vertical mixing is calculated using the PP-scheme first

described by Pacanowski and Philander (1981) with a back-
ground vertical diffusivity of 1⇥10�4 m2 s�1 for momentum
and 1⇥ 10�5 m2 s�1 for tracers. Redi diffusion (Redi, 1982)
and Gent and McWilliams parameterization of the eddy mix-
ing (Gent et al., 1990) are applied with a critical slope of
0.004.
The skill of FESOM has been assessed within the CORE

framework (Griffies et al., 2009; Sidorenko et al., 2011;
Downes et al., 2014), where several sea ice–ocean models
were forced with the normal year (CORE-I) and interannu-
ally varying (CORE-II) atmospheric states (Large and Yea-
ger, 2004, 2009) and results compared. In these assessments,
the full flexibility of FESOM’s unstructured mesh was not
utilized, but the results from FESOM were still within the
spread of the other models, and it was consequently con-
cluded that FESOM is capable of simulating the large-scale
ocean circulation to a satisfactory degree.

2.2 Biogeochemical model

The Regulated Ecosystem Model 2 (REcoM2) belongs to
the class of so-called quota models (Geider et al., 1996,
1998), in which the internal stoichiometry of the phytoplank-
ton cells varies depending on light, temperature and nutrient
conditions. Uptake of macronutrients is controlled by inter-
nal concentrations as well as the external nutrient concen-
trations, and the growth depends only on the internal nutri-
ent concentrations (Droop, 1983). Iron uptake is controlled
by Michaelis–Menten kinetics. An overview of the compart-
ments and fluxes in REcoM2 can be seen in Fig. 2.
The model simulates the carbon cycle, including calcium

carbonate as well as the nutrient elements nitrogen, silicon
and iron. It has two classes of phytoplankton: nanophyto-
plankton and diatoms, and additionally describes zooplank-
ton and detritus. The model’s carbon chemistry follows the
guidelines provided by the Ocean Carbon Model Intercom-
parison Project (Orr et al., 1999), and the air–sea flux cal-

Figure 2. The pathways in the biogeochemical model REcoM2.

culations for CO2 are performed using the parameterizations
suggested by Wanninkhof (1992).
We do not add external sources to the macronutrient pools

since the timescale of the runs is short compared to the res-
idence time of the macronutrients in the ocean (Broecker
et al., 1982).
Iron has a much shorter residence time (Moore and

Braucher, 2008) and is strongly controlled by external
sources as well as scavenging. Dissolved iron is taken up
and remineralized by phytoplankton, it reacts with ligands
and it is scavenged by detritus in the water column (Parekh
et al., 2005). New iron is supplied to the ocean by dust and
sedimentary input. For dust input, REcoM2 uses monthly
averages (Mahowald et al., 2003; Luo et al., 2003), which
have been modified to fit better to the observations from Wa-
gener et al. (2008) (N. M. Mahowald, personal communica-
tion, 2011). The model assumes that 3.5% of the dust field
consists of iron and that 1.5% of this iron dissolves when
deposited in the surface ocean. This gives a total aeolian in-
put of 2.65⇥ 109 molDFeyr�1 (DFe – dissolved iron) to the
ocean on average. A flux of iron from the sediment has been
added accounting for an input of 2.67⇥108 molDFeyr�1 on
average. It is incorporated following Elrod et al. (2004) with
the magnitude of the iron concentration released by the sedi-
ment being dependent on the rate of carbon remineralization
in the sediment.
The model has 1 zooplankton class, which is the model’s

highest trophic level. Grazing is calculated by a sigmoidal
Holling type 3 model with fixed preferences on both phyto-
plankton classes (Gentleman et al., 2003).
The sinking speed of detritus increases with depth, from

20mday�1 at the surface, to 192mday�1 at 6000m depth
(Kriest and Oschlies, 2008). Sinking detritus is subject to
remineralization.
REcoM2 has sediment compartments for nitrogen, silicon,

carbon and calcium carbonate, which consist of one layer
into which the detritus sinks when reaching the lower-most
ocean layer. Remineralization of the sunken material subse-
quently occurs in the benthos, and the nutrients are returned
to the water column in dissolved state.

www.geosci-model-dev.net/7/2769/2014/ Geosci. Model Dev., 7, 2769–2802, 2014

by	Schourup-Kristensen2014.
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Phytoplankton growth model
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Respiration

Photosynthesis

Chla	synthesisExcretion

Excretion
Uptake

Damage

DIN

Light

Fe

Biosynthesis

C

N

lim =	Liebig’s	law	(DIN,Fe)	
Pmax =	Pcm *	lim *	Tfunc
Photosynth	=Pmax*(1-exp((-𝜶 *	Chl:C *	E	)/	Pmax))	
N_assim =	Vcm *	Pmax *	Qmax *	Ni/(Ni	+	kdin)

*	lim(Qmax)			
Chl_synth =	N_assim *	Chl:Nmax*(Phot/(Chl:C*𝜶 *E)))	
Respiration	=	Rref *	Tfunc+	Biosynth*N_assim

dC =	(Phot -Respiration - excretionC)	*	phyC
dN =(N_assim*	phyC)	– (excretionN*phyN)	
dChl =(Chl_synth*phyC)	– (damageCHL*phychl)

lim =	Liebig’s	law	(DIN,Fe,	Si)
Si_assim =	Vcm*Pcm*SiCuptake*Si/(Si	+	ksi)*

lim(Qmax)*lim(Simax)*Tfunc
Resprate =	Rref *Tfunc+	Biosynth*N_assim

+	Sisynth*Si_assim

dSi=(Si_assim*phyC)- (excretionSi*phySi)

All	phytoplankton

additional	 for	diatoms
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Phytoplankton growth model: processes dependent on light
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Photosynthesis Damage	non-reversible Chla	synthesis

S𝑦𝑛𝑡ℎ = 𝑁	𝑎𝑠𝑠𝑖𝑚	×𝐶ℎ𝑙: 𝑁123×
CHIJ
@AB

𝐶ℎ𝑙	𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑘𝜃𝐸𝑃ℎ𝑜𝑡 = 𝑃123× 1 − 𝑒
?@AB
CKLM

Damage
non-reversiblePSII
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Phytoplankton growth model: high vs low light
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Chla	s𝑦𝑛𝑡𝑒𝑠𝑖𝑠

= 𝑁	𝑎𝑠𝑠𝑖𝑚	×𝐶ℎ𝑙: 𝑁123×
𝑃ℎ𝑜𝑡
𝛼𝜃𝐸

𝐶ℎ𝑙𝑎	𝑑𝑎𝑚𝑎𝑔e	= 𝑘

𝑃ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

= 𝑃123× 1 − 𝑒
?@AB
CKLMAlgal growth dynamics 

Table 2. The model equations. 

1 dC --=c 
C dt phol - RC - IJV; 

1dN VN ----=--RN 
Ndt Q 

1 dChl pch,V; -- 

CL = pc Q - Qm ref I I Q 
T m&x - Qm funct’on 

T 
1 1 

f”nctlon = exp A, - - - I( )I T Trc, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

of the cells (Eq. 5). (2) The carbon-specific, light-limited 
photosynthetic rate depends on the Chl : C ratio (Eq. 4). (3) 
Chl a synthesis requires nitrogen assimilation (Eq. 3). (4) 
Chl a synthesis is downregulated when the rate of light ab- 
sorption exceeds the rate of utilization of photons for carbon 
fixation (Eq. 3), with the extent of dowmegulation being 
governed by the imbalance between rates of light absorption 
and photosynthesis (Eq. 8). (5) The maximum rate of nitro- 
gen assimilation is regulated by the internal nitrogen status 
of the cells (Eq. 7). (6) The respiration rate is coupled to the 
rate of nitrogen assimilation through the cost of biosynthesis 
(Eq. 1). The essential features of the feedbacks among car- 
bon and nitrogen metabolism included in the model are sum- 
marized in Fig. 1. In addition to predicting the growth rate 
(CL), the model predicts the Chl a-to-carbon (Chl: C), chlo- 
rophyll a-to-nitrogen (Chl : N), and nitrogen-to-carbon (N: 
C) ratios under both balanced and unbalanced growth. 

Photosynthesis.-Changes in phytoplankton carbon con- 
tent arise from imbalances between photosynthesis and res- 
piration (Eq. 1). As in our previous models (Geider and Platt 
1986; Geider et al. 1996, 1997), photosynthesis is expressed 
as a carbon-specific rate with units of inverse time. Carbon- 
specific photosynthesis is a saturating function of irradiance 
(Eq. 4; Fig. 1A). The carbon-specific, light-saturated rate of 
photosynthesis (P&J is assumed to be a linear function of 
N: C (see Eq. 5) consistent with observations (Fig. 2A). This 
assumption regarding I”&, provides a significant link be- 
tween carbon metabolism and the nitrogen nutritional state 
of the phytoplankton. This differs from our previous treat- 
ment of P&, as constant under nutrient-replete conditions 

Variable ChI:C 

E k Irradiance 

/ 

Variable 2 

Nitrate Assimilation 
(9 N [g Cl-’ d-l) 

Nitrate 

Nitrate Assimilation Nitrate Assimilation 
(g N [g Cl-’ d-l) (g N [g Cl-’ d-l) 

Fig. 1. Graphical summary of the model showing the depen- 
dencies of photosynthesis, nitrate assimilation, Chl a synthesis, and 
respiration on environmental and physiological variables (see Table 
2 for mathematical details and the text for a fuller explanation). A. 
Photosynthesis is a saturating function of irradiance where the initial 
slope increases with increasing Chl : C and the light-saturated rate 
increases with increasing N: C. The light-saturation parameter (E,) 
is given by the irradiance at which the initial slope intercepts the 
light-saturated rate. B. The carbon-specific nitrate assimilation rate 
is a saturating function of nitrate concentration where the maximum 
uptake rate is downregulated at high values of N: C. C. The rate of 
Chl a synthesis is obligately coupled to protein synthesis and thus 
to nitrate assimilation. However, the magnitude of the coupling de- 
pends on the ratio of irradiance to the light-saturation parameter 
(EJE,). At a given rate of nitrate assimilation the carbon-specific 
rate of Chl a synthesis declines as E,JE, increases. D. The carbon- 
specific respiration rate is a linear function of the rate of nitrate 
assimilation. We assume that there is no lag between nitrate assim- 
ilation and protein synthesis. Major respiratory costs are associated 
with reduction of nitrate to ammonium, incorporation of ammonium 
into amino acids, and polymerization of amino acids into proteins. 
Other respiratory costs are assumed to scale with the rate of protein 
synthesis. 

(Geider et al. 1996), or as a Monod function of external 
nutrient concentration under steady-state nutrient-limiting 
conditions (Geider et al. 1997). However, our previous mod- 
els did not consider variability of N: C with growth irradi- 
ance or nutrient limitation. When used as a variable in the 
model, we designate the N: C ratio as Q (Q denotes the 
carbon-specific quota of limiting nutrient). 

We assume that the light-limited photosynthesis rate is 
proportional to Chl : C, designated @’ in the model equations. 
This assumption is based on two simplifications-first, that 
the rate of light absorption is proportional to the Chl a con- 
tent of the cells; and second, that the maximum quantum 
efficiency of photosynthesis is invariant. Together, these two 
requirements are reflected in a constant value for the Chl a- 
specific initial slope of the P-E, curve (&“I) (see Fig. 2B). 

Respiration.-Respiration of C is treated as the sum of a 
maintenance metabolic rate (Rc) and the cost associated with 
biosynthesis (Penning de Vries et al. 1974; Geider 1992)’ 

Geider et	al.(1998)	L&O.	A	
dynamic	regulatory	model.

CHIJ
@AB =1

CHIJ
@AB <1

Light	limitation Light	saturation
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Phytoplankton growth model: steady state solutions
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Phytoplankton 
growth model

Cell quotas (Chl:C, N:C)
Growth rate

Steady state output

Light-limited

N-limited
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Model accuracy: other metrics, annual NPP and export production

17

𝑘𝐸

𝑘𝐼𝑠𝑎𝑡

𝑘𝜃𝐸

𝑘



INTRODUCTION                  METHODS                   RESULTS                   BACKUP

Analysis of patterns: Chla:C under the ice sheet

18

Northern	
latitudes
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