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MODEL / MODEL RUNS

biogeochemical model: HAMOCC
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added to that: 3Si cycle, with
constant fractionation by diatoms
(Gao et al, 2016)

forced by atmospheric fields from
coupled climate model for LGM
and pre-industrial (Zhang et al.

2013)

integrated for 10000 years with climatological forcing

LGM sea-level lowered by 116 m, ocean inventories of S and
nutrients preserved

stronger dust deposition in LGM
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LGM OCEAN VS. PRE-INDUSTRIAL
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temperature and salinity in Atlantic for LGM and PI

Prominent changes:
¢ SO winter sea ice area ~2 times larger
o saltier AABW, filling a larger fraction of the ocean
o weaker and somewhat shallower Atlantic meridional overturning
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DUST BRINGS IN MORE FE IN LGM

e glacial increase in dust
deposition drives higher dissolved
iron concentrations

DFe diff LGM-Holo at 10m

e increase is modest in Southern o 03
Ocean: despite large fractional o = oo
change in dust deposition it still is ws . °
small compared to upwelling " o
0° 60°E 120°E 180° 120°W 60°W -15
e caveat: The model only takes change in sea surface dissolved iron,
into account dust as iron source: driven by changes in dust deposition
changes in sedimentary iron fluxes
are absent
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CHANGES IN EXPORT PRODUCTION

C flux holocene

e equatorward shift in SO
productivity in LGM, due to
extended sea-ice cover
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e increased productivity in most of

the equatorial Pacific o= .
. . . ny 6

e is this due to more diatom | )
growth, driven by silicic acid w i :
leakage from the Southern Ocean, S e
transported in SMPW and AAIW? o s
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AND IN OPAL EXPORT

e general pattern is similar for
opal export

e but: contrary to the expectations
of the Silicic Acid Leakage
Hypothesis, there is no increase
but a decrease of diatom export in
the eastern tropical Pacific!

¢ and an increase in the tropical
Atlantic

o this agrees with sediment core
findings by Bradtmiller et al.
(2006, 2007)
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S1(OH)4 DISTRIBUTION CHANGES

Si diff LGM-Holo at 10m
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A CAVEAT

Si:N ratio in export
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Si:N ratio in 100m sinking flux from the model
A central element of the Silicic Acid Leakage Hypothesis is missing in
the model: Si:N ratio in diatoms varies as a function of Fe limitation,

leading to higher Si:N drawdown ratio in the Southern Ocean (e.g.
Dunne et al. 2007)

But: very similar results also found in a model that includes this
effect: See poster BN34A-1144:
Ye et al. “Modelled changes in the Southern Ocean Si:N drawdown ratio in
the glacial ocean, and their biogeochemical consequences”
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CHANGES IN 630S1

67°Si holocene at 10m
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CHANGES IN SEDIMENTARY 63051

5 —-—- Southern Ocean 639Si diff LGM-Holo, surface sediment
—— Other
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Sutton et al. (2018) . .
equatorial Pacific
30Q; .
Many (not all) 6*Si the pattern is not the same as that
glacial-interglacial records from in diatom productivity change!

marine sediment cores show
lower glacial §°°Si, higher
interglacial §%°Si

caveat: unchanged 6*°S in
weathering fluxes!
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HOW TO INTERPRETE 6°0S1?
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blue: best fit for LGM state, red: best fit for PI state

o surface §°°Si values show increased values at low In(Si(OH)y),

consistent with Raleigh fractionation

e slope of °°Si vs. In(Si(OH)4) varies between ocean basins, despite
constant diatom fractionation

 5%0Si vs. In(Si(OH),) relation is different in LGM and PI climate

states! 12.1/ 13
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CONCLUSIONS & THANK YOU FOR LISTENING!

@ modeled LGM has less diatom production in eastern tropical
Pacific, more in tropical Atlantic

@ agrees with some sediment core recostructions but not with
SALH

@ drives some shift of Si from deep Pacific to deep Atlantic

@ glacial 5°Si at surface generally lower in LGM, except in tropical
Pacific

@ fractionation-like relation between §%Si and Si differs between
ocean basins and between climate states

Also go and see poster BN34A-1144: Ye et al. “Modelled changes in the
Southern Ocean Si:N drawdown ratio in the glacial ocean, and their
biogeochemical consequences”!
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