On-ice Vibroseis: What lies beneath Ekström Ice Shelf, East Antarctica?

Emma C. Smith¹

Reinhard Drews², Todd Ehlers², Dieter Franke³, Christoph Gaedicke³, Coen Hofsteede¹, Gerhard Kuhn¹, Astrid Lambrecht⁴, Christoph Mayer⁴, Ralf TieDEMANN¹,⁵, and Olaf Eisen¹,⁵

¹Alfred-Wegener-Institut (AWI), Germany, ²Department of Geosciences, University of Tübingen, Germany
³BGR, Germany, ⁴Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Germany,
⁵Department of Geosciences, University of Bremen, Germany
Sub-EIS-Obs: Vibroseis on ice

What?
• ~700 km of seismic vibroseis surveys

Why?
• Evidence of paleo-ice flow and retreat
• Geological history of region
• Ice-ocean interaction
• Predictions of SLR contribution
Sub-EIS-Obs: Vibroseis on ice

What?
• ~700 km of seismic vibroseis surveys

Why?
• Evidence of paleo-ice flow and retreat
• Geological history of region
• Ice-ocean interaction
• Predictions of SLR contribution
Sub-EIS-Obs: Vibroseis on ice

Key Findings:

- Sea-floor trough
- Glacial debris deposits 10-60 m thick
- Volcanic Explora wedge outcrop imaged
- Other features of ice flow and retreat
Motivation

The sea-floor and sub-sea floor topography beneath Antarctic ice shelves holds a wealth of information:

- Sea floor topography -> past ice dynamics
- Sub-sea floor -> geological history
- The shape of the cavity -> implications of ocean circulation and ice melt

So how do we „see“ beneath the ice shelf?

Seismic reflection vibroseis data collected between (2010 -2018) on Ekström ice shelf used to map the sea-floor bathymetry and sub-sea floor structures.
Vibroseis on ice!

Eisen et al., *Polar Sci.*, 2015

1. Motivation

2. Method – Vibroseis on Ice

- **Sweep:** 10 – 220 Hz
- **Time:** 10 seconds

3. Location and Data

- **SPs:** 75 – 750 m
- **Distance:** 1500 m, 60 channels
Ekström Ice Shelf

1. Motivation
2. Method – Vibroseis on Ice
3. Location and Data

Please click to view seismic data
1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

2017 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF
1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

2017 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF

Two-way travel time (ms)

Sea floor
Base glacial debris
Explora wedge

Sediment wedge
Glacial debris
Truncated dipping sediment

Seismic multiple
Volcanic Explora wedge

Sea floor depth
on sea ice surface

Back to Map >
1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

2017 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF

Two-way travel time (ms)

<table>
<thead>
<tr>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seismic multiple

Truncated dipping sediment

Glacial debris

Base glacial debris

Sea floor

Explora wedge

Volcanic Explora wedge

50 m

2500 m
1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

2017 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF

Two-way travel time (ms)

400
600
800
1000

~50 m

2500 m

Seismic multiple

Glacial debris

Truncated dipping sediment

Base glacial debris

Explora wedge

Volcanic Explora wedge
2018 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF

Seismic multiple

Truncated dipping sediment

Glacial debris

Volcanic Explora wedge

Seafloor depth (in meters)
2018 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF

Back to Map >
2018 – SP 75 m (10 fold)

Interpretation ON
Interpretation OFF

Two-way travel time (ms)

- Sea floor
- Base glacial debris
- Explora wedge

- Sediment wedge
- Volcanic Explora wedge
- Seismic multiple

- ~50 m
- 3000 m
- Back to Map >
2018 – SP 75 m (10 fold)

Interpretation ON

Interpretation OFF

Two-way travel time (ms)

Sediment wedge

Volcanic Explora wedge

Seismic multiple

Back to Map >
2014 – SP 750 m (1 fold)

LOCATION & DATA

1. Motivation
2. Method – Vibroseis on Ice
3. Location and Data

Back to Map >

Interpretation ON
Interpretation OFF

Two-way travel time (ms)

Sea floor
Base glacial debris
Explora wedge

Seismic multiple

~50 m
3500 m
1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

2014 – SP 750 m (1 fold)

Interpretation ON

Interpretation OFF

Back to Map >
1. Motivation
2. Method – Vibroseis on Ice
3. Location and Data

2017 – SP 125 m (6 fold)

Interpretation ON
Interpretation OFF

Two-way travel time (ms)

- Sea floor
- Base glacial debris
- Explora wedge

Sediment wedge
Truncated dipping sediment
Volcanic Explora wedge

Seismic multiple

~50 m
2000 m

Back to Map >
2017 – SP 125 m (6 fold)
2017 – SP 125 m (6 fold)

1. Motivation
2. Method – Vibroseis on Ice
3. Location and Data

Interpretation ON
Interpretation OFF

Back to Map >
2017 – SP 50 m (15 fold)

1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

- **Two-way travel time (ms)**
 - 600
 - 800

Interpretation ON

Interpretation OFF

Back to Map >

- **Location & Data**
 - **Seismic multiple**
 - **Glacial debris**
 - **Truncated dipping sediment**
 - **Volcanic Explora wedge**
 - **Base glacial debris**
 - **Sea floor**

- **Explora wedge**

- **~50 m**

- **1500 m**

- **2017 SP 50 m (15 fold)**

- **Interpretation ON**

- **Interpretation OFF**

- **Location & Data**

- **Back to Map >**
2017 – SP 50 m (15 fold)

Interpretation ON

Interpretation OFF

1. Motivation

2. Method – Vibroseis on Ice

3. Location and Data

Two-way travel time (ms)

Glacial debris

Truncated dipping sediment

Seismic multiple

Volcanic Explora wedge

~50 m

1500 m
2017 – SP 125 m (6 fold)
2017 – SP 125 m (6 fold)

Interpretation ON

Interpretation OFF

Back to Map >
Whoops – you are at THE END!
Click to return to main menu