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Abstract. The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the
foundation for important benefits to human societies around the world. These globally distributed
habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction
of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance
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spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplank-
ton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologi-
cally structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and
algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including
the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat
fragmentation. However, current and planned satellites are not designed to observe the EBVs that
change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat
destruction over scales relevant to human activity. Making these observations requires a new genera-
tion of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the
order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and
10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630,
2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radio-
metric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open
ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polar-
ization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize
sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4
imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity
and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d
repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily.
Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations
are now feasible and are used in various applications.

Key words: aquatic; coastal zone; ecology; essential biodiversity variables; H4 imaging; hyperspectral; remote
sensing; vegetation; wetland.

INTRODUCTION

Water and life: no two features more completely define
planet Earth and no two are more inextricably intertwined.
This link is especially strong in the coastal zone, where life is
diverse and productive at many levels of the food web. The
physical and biological elements of coastal habitats can
change rapidly with many types of disturbance, such as
extreme tides, extreme temperatures, extreme high or low
salinities, severe storms, and human use including pollution
or physical destruction. Yet monitoring changes in coastal
habitats has been difficult. Field measurements on land or
in adjacent shallow aquatic areas can be detailed and of high
quality, but they are often limited by temporal frequency.
Additionally, because they are expensive and hard to con-
duct, these studies and surveys typically cover only small
areas. Thus, for the most part, the highly variable aquatic
and emergent elements of coastal habitats, including wet-
lands, remain among the most undersampled habitats on
the Earth’s surface. Many terrestrial ecosystems, including
freshwater ones, are just as diverse and difficult to monitor
as coastal aquatic areas. They contain mosaics of different
habitats with assorted substrates and living elements spread
over scales spanning tens of meters to kilometers. They can
change rapidly due to the overlap in phenologies of different
populations of organisms, or because of a disturbance such
as fires or hurricanes.
Characterizing these habitats in a manner that is relevant

to scientific, conservation, and other socioeconomic goals
requires measurements that are sensitive to temporal
changes, cost effective, and allow for an assessment across
large spatial scales. These criteria are the basis for Essential
Climate Variables (Bojinski et al. 2014) and for systematic
ecological observations using Essential Biodiversity Vari-
ables (EBV; Pereira et al. 2013). To characterize the diver-
sity, composition, and function of both terrestrial and
coastal aquatic ecosystems, these observations need to be
acquired synoptically. We outline specifications for satellite

remote sensing of coastal measurements that offer the
potential for rapid, frequently repeated, and consistent high-
quality observations to characterize changes in EBVs across
a wide range of terrestrial and aquatic ecosystems. We
specifically address EBVs relevant to community composi-
tion and trait diversity. We refer to this remote sensing strat-
egy as H4 imaging because it is based on the combined
requirements for high spatial, temporal, and spectral resolu-
tion, as well as high radiometric quality.

THE RELEVANCE OF THE COASTAL ZONE

Humanity benefits directly from marine resources concen-
trated along the coast, including economic value, clean
water, food, energy, pharmaceuticals, and space for recre-
ation (Hay and Fenical 1996, Mimouni et al. 2012, Malve
2016). Areas within 100 km of the coast provide benefits
equivalent to over 60% of the world’s total gross national
product, or over US$26 trillion every year (MEA 2005a).
These coastal areas include diverse wetland ecosystems,
which are broadly defined as biologically structured habitats
where water saturation is a dominant factor in determining
the plant and animal communities that occupy these areas.
The definition for wetlands used by the Ramsar Convention
includes rocky shores, coral reefs, and sea grasses to a depth
of 6 m at low tide (Scott and Jones 1995, Finlayson 2016).
This definition is loosely based on the classification devel-
oped by Cowardin et al. (1979) for the U.S. government.
Coastal wetlands alone provide over US$15 trillion in
annual benefits, including significant protection to human
life and property (MEA 2005b, Barbier 2016, Narayan et al.
2017). Yet, between 30% and 70% of wetlands were lost in
the 20th century as a result of development, pollution, poor
water management, and overfishing (Bruland 2008, Brom-
berg-Gedan et al. 2009, Davidson 2014, Hu et al. 2017). An
additional 20–70% of coastal wetlands could be lost by 2080
because of sea level rise and continuing human-related pres-
sures (Nicholls 2004, Gardner et al. 2015).
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Many of the benefits that we derive from coastal ecosys-
tems depend on the number of species, the abundance and
biomass of organisms, the diverse interactions between
organisms and the environment, and the number of differ-
ent habitats in these areas (Malone et al. 2013). We have
increasing evidence that biomass production increases with
species richness in a wide range of marine and terrestrial
ecosystems and not simply in response to abiotic effects
(Duffy et al. 2017). Moreover, changes in the community
composition of lower trophic levels can have major impacts
on higher trophic levels, determining the success or loss of
animal populations such as fish, waterfowl, and marine
mammals (Platt et al. 2003, Ji et al. 2010, Wood and Keller-
mann 2015, Santora et al. 2017). Top-down pressures due to
the harvesting of top predators and other higher trophic
levels also often have impacts that can cascade down the
food web (Pace et al. 1999). Changes in climatic factors such
as temperature and rainfall, and human activity, can also
affect species ranges and promote invasive species in aquatic
bodies and on land (Andrew and Ustin, 2008).
Characterizing how community structure and the phenology

of organisms that use coastal ecosystems shifts due to human
activities, biotic interactions, and processes associated with a

changing climate is a core focus of current scientific research.
Indeed, among the highest priority research questions in
coastal ecology are: How will the diversity of life in coastal
zones change with climate and with increased human uses?
How will these changes affect the ecology and biogeochemistry
of coastal and other marine habitats? What are the relation-
ships between species diversity and ecosystem function?
Addressing these questions is key to tracking progress toward
conservation, management, and sustainable development
(e.g., United Nations 2015; Agenda 2030). However, today it is
difficult to address these questions because measurements of
biodiversity are often limited in temporal frequency and typi-
cally cover only small areas. Many coastal habitats are also
remote or difficult to access, further limiting sampling oppor-
tunities. For example, the Ocean Biogeographic Information
System (OBIS; Appeltans et al. 2012, see OBIS 2017), the pre-
eminent open-access database for international marine biodi-
versity observations, shows large areas of the coast and the
surface ocean with no data (Fig. 1). Information latency is
also slow: there is a 5–10 year lag before research data are
delivered to OBIS (Fig. 1, inset). This seriously hampers the
ability to monitor for change and any possible national or
international response to an environmental issue.

FIG. 1. The Ocean Biogeographic Information System (OBIS 2017) is the preeminent open-access database for international marine bio-
diversity assessments. This map shows the density of taxonomic records from the OBIS in 1 9 1° cells of the global ocean in near-surface
pelagic and coastal waters (upper 20 m; n = 10.8 million; Mollweide projection map of the number of records per square kilometer; color
bar in log10-scale; data extracted 3 October 2016). Nearshore records represent benthic and water column data combined in waters from 0 m
to 5 m bottom depth. Pelagic records are sampled from the surface ocean (upper 20 m) starting at a bottom depth of 5 m near the coast.
The four inset maps show regions around the globe with dense OBIS records, yet these also demonstrate inconsistent spatial coverage.
Right-hand graphics: The shallow pelagic records (>5 m bottom depth) generally show two to three orders of magnitude more observations
than nearshore areas in most latitude bands. The sudden increase in nearshore records in the 2005–2010 timeframe is largely a contribution
of observations collected in the Florida Keys region (USA). The overall decline in data after 2010 highlights typical delays in processing and
reporting biological observations to OBIS. Systematic sampling by satellite remote sensing, combined with field observations, animal track-
ing, and modeling, promise to fill the widespread gaps in space and time and enable routine assessments of marine biodiversity in the
world’s coastal and pelagic zones.
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Answering the fundamental ecology questions previously
mentioned requires characterizing and detecting change in
specific elements of coastal ecosystems, including factors
that can be the environmental and human drivers of change.
For example, monitoring the diversity of life and detecting
change in the ecology and biogeochemistry of coastal zones
requires monitoring EBVs, such as groups of species popula-
tions, traits of assemblages of species, and community prop-
erties (Fig. 2). Understanding and explaining ecological
change requires the context of long-term measurements of
environmental parameters such as temperature, discharge,
and indicators of water quality, as well as quantifying
anomalies in these parameters. Monitoring ecosystem struc-
ture EBVs (Fig. 2) also requires assessing changes in human
activities, as these factors may lead to ecosystem change.
Furthermore, EBVs have to be estimated consistently over
large areas and all around the world, which is only possible
by complementing in situ measurements with those collected
from the vantage point of Earth-observing satellites.

CHARACTERISTIC SCALES OF VARIATION IN COASTAL ZONES

Phytoplankton communities and their concentrations in
coastal and inland waters often change over scales of hours to
days due to runoff, advection, mixing due to tides, currents,
and winds, and to biotic interactions (Chen et al. 2010, Tzort-
ziou et al. 2011, Moreno Madri~n�an et al. 2012). Several case
studies have used spectrometers and other bio-optical devices
deployed on platforms such as towers, boats, and aircraft to
measure rapid changes in biodiversity and phenology in such
conditions (Pengra et al. 2007, Adam et al. 2010, Lantz
2012). For example, Hestir et al. (2015) documented changes

in the concentration of cyanobacteria in lakes in Italy over
scales of days with field spectroscopy data (Fig. 3). Kudela
et al. (2015) used field spectroscopy observations to show that
phytoplankton blooms can be displaced by toxic cyanobacte-
ria in only a few days in Pinto Lake, California. In order to
detect long-term trends, such measurements of short-term
variability are required over long periods of time. An excellent
example of trends in an aquatic ecosystem was provided by
Hunter-Cevera et al. (2016). They detected shifts in the timing
of annual blooms of the phytoplankter Synechococcus with
an automated submersible flow cytometer deployed at the
Martha’s Vineyard Coastal Observatory. Spring blooms
occurred progressively earlier in the season as temperatures
became warmer, and by 2012, the blooms began up to 20 d
earlier than they had in 2003. At higher latitudes, shifts
toward phytoplankton species more typical of warmer waters
have also been documented (Hays et al. 2005, Dybas 2006).
Field studies of Nordic wetlands spectra show significant

changes in vegetation colors in less than a week (Eklundh
et al. 2011). Indeed, wetland species, including invasive spe-
cies, can be identified by the change of spectral signatures
over the growing cycle (Gilmore et al. 2008, Ouyang et al.
2013). These observations also demonstrate that phenology
is a sensitive indicator of environmental change, but that
observing such changes in phytoplankton or wetland vegeta-
tion requires sampling at frequencies on the order of a week
or faster to differentiate seasonal or longer-term changes
relative to short-term variability.
The spatial variability of coastal habitats is also high. Domi-

nant spatial variability of physical, biological, geological, and
biogeochemical properties of coastal waters changes with dis-
tance from the coast (Bissett et al. 2004). In terms of

EBV class EBV
Wetland 

vegetation
Mangrove/ 
salt marsh

Seagrass Macroalgae Coral Phytoplankton HAB Fish, Zoo-
plankton

Apex predator
Legend

Genetic 
composition

Population 
genetic 
diversity

Unproven

Distribution
Demonstrated 
limited cases

Abundance Routine use

Size/vertical 
distribution

Habitat model 
required

Pigments NA NA

Phenology

Community 
composition

Taxonomic 
diversity

Functional type

Fragmentation/
heterogeneity
Net primary 
production

NA NA

Net ecosystem 
production

NA NA NA

Habitat type

Benthic communities

Routine use  
for open 

ocean

Ecosystem 
structure

Ecosystem 
function

Species 
populations

Species traits

Pelagic organisms

FIG. 2. Current capabilities of remotely sensed data for measuring Essential Biodiversity Variables (EBVs; Pereira et al. 2013). The
EBVs are complementary to the GOOS Essential Ocean Variables for biology and ecology (FOO 2012). “Unproven” indicates that methods
have not yet been developed to collect these measurements from satellite/aerial data. “Demonstrated in limited cases” are methods that have
been demonstrated and that could be made operational with the proposedH4 imaging approach. “Routine use” indicates measurements that
are produced regularly, and at present include distribution, abundance, and phenology of bulk phytoplankton only in the open ocean (i.e.,
derived chlorophyll a concentration). “Habitat model required” indicates EBVs that can be predicted on the basis of habitat correlations
developed from remotely sensed data. “NA” indicates that the observation is not applicable.
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horizontal distribution, close to the coast, these properties tend
to have peak variability at between 70 and 600 m. Farther off-
shore, out to about 5 km off the coast, features such as fronts
and phytoplankton blooms show high variability around
100–200 m. Observing and monitoring these features and their
variability requires sampling at between about 30 and 100 m
(Moses et al. 2016). At distances larger than 10 km from the
coast, features show typical scales of 1 km or larger, which can
be detected with coarser resolution sensors (Bissett et al.
2004). Wetland habitats show variability at smaller spatial
scales. Turpie et al. (2015) studied the impact of varying spatial
resolution on mapping of coastal tidal wetland habitats. They
concluded that a spatial resolution of approximately 30-m pix-
els or smaller is ideal to map wetlands. Coarser spatial resolu-
tion sensors smear and confound spectral and spatial patterns
necessary to identify biota and quantify habitat variability.
These spatial scales are sampled adequately by current

sensors such as the Operational Land Imager (OLI) on the
Landsat 8 satellite, operated by the U.S. Geological Survey,
and the MultiSpectral Instrument (MSI) on Sentinel 2A/B,
operated by the European Space Agency under the Coperni-
cus program (Vanhellemont and Ruddick 2015, Pahlevan
et al. 2017a). The combination of Landsat 8/OLI and
Sentinel 2A/B allows the development of applications that
require relatively high temporal frequency, i.e., observations
every 4 d or more frequent. However, this sensor class lacks
the spectral definition in the visible and near-infrared light
(i.e., spectral resolution of 5 nm or better between 380 nm

and 900 nm, and about 10 to 20 nm between 900 and
2500 nm) needed to estimate the biodiversity of coastal
organisms and habitats. Other satellite sensors meet the
required 5–10 nm spectral resolution, but lack in spatial
detail, such as the 1-km spatial resolution planned for the
PACE ocean color sensor (PACE SDT 2012).
The NASA Hyperspectral Infrared Imager (HyspIRI) mis-

sion concept, the JAXA HISUI instrument, and the DLR
Environmental Mapping and Analysis Program (EnMAP;
Guanter et al. 2015) will also have 30-m spatial resolution
(Turpie et al. 2015). HyspIRI is being designed to sample nomi-
nally every 16 d, and EnMAP and HISUI are designed to
acquire targets of interest intermittently. Thus, they will lack
temporal detail needed to observe changes over the scale of days.
The studies just described show that aspects of biodiversity

and phenology are observable with remote sensing globally
and across a range of time and spatial scales using bio-optical
methods. A recent extensive feasibility study conducted on
behalf of the Committee on Earth Observing Satellites
(CEOS 2017) concluded that imaging spectrometers are the
desired tool to conduct terrestrial and ocean remote sensing
of freshwater, estuarine, and coastal environments to charac-
terize water quality, bathymetry, and benthic habitats.

ESSENTIAL BIODIVERSITY VARIABLES IN THE COASTAL ZONE

Pereira et al. (2013; see also Geijzendorffer et al. 2015, Pet-
torelli et al. 2016, Kissling et al. 2017) proposed that EBVs
can be grouped into six classes: genetic composition, species
populations, species traits, community composition, ecosys-
tem structure, and ecosystem function. Fig. 2 highlights the
classes of EBVs that are well suited for remote sensing appli-
cations, such as species populations, species traits, and
ecosystem structure. There is a potential to expand the num-
ber of EBVs that can be measured today by measuring sur-
face spectral reflectance of visible and near-infrared light
(i.e., from 380 nm to 2500 nm). The EBVs are complemen-
tary to the Essential Ocean Variables (EOVs) defined by the
Global Ocean Observing System (GOOS) in its Framework
for Ocean Observing (FOO, 2012). The spectral reflectance
contains the signatures of specific traits of groups of species
populations or habitat elements, defined by their absorption,
scattering, and fluorescence emission characteristics (Colgan
et al. 2012, Asner et al. 2017. Kissling et al. (2017) empha-
sized that progress in defining these EBVs is stimulated by
the coordinated collection and sharing of in situ biodiversity
observations (e.g., Jetz et al. 2012) and open access to satel-
lite data sets (e.g., Skidmore et al. 2015). Indeed, in situ data
are fundamental to algorithm development efforts that link
observable geophysical quantities and EBVs.
Satellite sensors can cover large areas quickly and repeat-

edly. Estimates of wetland extent have been periodically gen-
erated from Landsat since the early 1970s (Tiner et al. 2015,
McCombs et al. 2016). In this time frame, satellite instru-
ments have also routinely measured ocean currents, surface
winds, precipitation, and color and temperature of the ocean
surface (Muller-Karger et al. 2013). These observations have
resulted in an unprecedented understanding of physical
changes in the environment and have advanced our knowl-
edge of coastal and oceanic ecosystems. State of the art
remote sensing research focused on marine biodiversity

Median daily trendHypothetical 3-day coverage

Landsat-7 overpass Daily data

FIG. 3. Illustration of rapid changes in concentration of nui-
sance cyanobacteria, quantified as a phycocyanin pigment index. In
situ measurements conducted every 15 minutes on a daily basis with
a hand-held spectrometer were used to identify the organism in
Upper Mantua Lake (Italy). Gaps in the time series are due to night
and cloudy days. The frequency of sampling of a Landsat sensor
(16 d), shown as gray vertical bars, would alias changes in the con-
centration of phytoplankton, sediment load, and other water quality
factors. Orange vertical bars illustrate a 3-d sample frequency, i.e.,
five times the Landsat frequency. Some species of cyanobacteria can
outcompete other phytoplankton, form noxious or toxic blooms,
and ultimately reduce water quality for the rest of the food web and
human consumption (after Hestir et al. 2015).
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includes open ocean detection of diatoms and their phenol-
ogy (Racault et al. 2012, IOCCG 2014, Soppa et al. 2016),
tracking of harmful algal blooms (e.g., Soto et al.
2016), and testing of algorithms for phytoplankton size dis-
tribution and functional group detection (Uitz et al. 2010,
Mouw et al. 2012, Brotas et al. 2013, Bracher et al. 2017).
Remote sensing is also critically important to map and mon-
itor coral reef extent and health (Andr�efou€et et al. 2005),
but there remain fundamental problems in the discrimina-
tion between coral and benthic algae (Hedley et al. 2016a).
Governments around the world, organized under the

Group on Earth Observations Biodiversity Observation
Network (GEO BON), are defining strategies to estimate
EBVs from space. However, we cannot obtain key informa-
tion to evaluate the EBVs of coastal aquatic and wetland
habitats shown in Fig. 2 from current or past satellite sen-
sors. These sensors have shortcomings in their combined
spectral, spatial, and/or temporal resolution (Hestir et al.
2015, Bracher et al. 2017, CEOS 2017).
Remote sensing is an important tool to monitor anthro-

pogenic activities (e.g., land use and cover change, oil spills)
and their impact in coastal zones (Muller-Karger et al.
2014, CEOS 2017). Remote sensing also offers significant
potential to help in the design and management of marine
protected areas (Kachelriess et al. 2014). These applications
require measuring the condition of marine habitats, includ-
ing water quality, sea surface temperature, currents, and
eddies, and assessing the spatial extent of biologically struc-
tured habitats (reefs, seagrass meadows, mangrove forests,
salt marshes, etc.). These factors can all affect species diver-
sity and productivity of these systems. Since the launch of
the Coastal Zone Color Scanner (CZCS; Gordon and Morel
1983) and the first Landsat sensors (Tiner et al. 2015) in the
1970s, the coastal zone has been observed remotely with
multispectral imaging missions designed either for bright
terrestrial targets or relatively dark targets such as the sur-
face of the open ocean. Sensors launched since then lack
either the spectral, temporal, or the spatial resolution to
observe ecological characteristics of coastal habitats, and
therefore cannot be used to identify assemblages of species
populations, measure the fast changes of communities living
in coastal areas, or evaluate the spatial structure and integ-
rity of typical coastal aquatic and wetland habitats. No
space-based mission has yet been designed to study and
monitor the canopy to benthos continuum of global coastal
habitats (Dekker and Pinnel 2017).

ESSENTIAL BIODIVERSITY VARIABLES IN OPEN OCEAN HABITATS

We currently derive bulk phytoplankton pigment and car-
bon concentration in the pelagic global ocean from satellite
ocean color measurements with a spatial resolution of about
1 km (Fig. 2). Since 1996, these estimates have been made
using observations collected from a series of sensors. Long
term (i.e., decade-long) records of ocean color are crucial to
assess the effects of natural and anthropogenic changes on
oceans. The National Oceanic and Atmospheric Administra-
tion (NOAA) plans to continue the Visible Infrared Imaging
Radiometer Suite (VIIRS) series on future Joint Polar
Satellite System (JPSS) platforms, but this sensor does not
measure radiance in the red absorption wavelengths of

chlorophyll, in wavelengths of absorption by phycobiliproteins
characteristic of cyanobacteria, or the solar-stimulated fluo-
rescence of phytoplankton. This limits the ability to identify
phytoplankton blooms in coastal waters affected by river
discharge, where colored dissolved organic matter (CDOM)
masks the blue absorption features in the spectral signature
of chlorophyll. The U.S. National Aeronautics and Space
Administration (NASA) Plankton, Aerosol, Cloud, and
ocean Ecosystem (PACE) mission will cover key gaps in the
visible color spectrum (PACE SDT 2012). PACE will have a
nominal spatial resolution of 1 km and a spectral resolution
of 5 nm from the ultraviolet to the near infrared. This could
improve our ability to monitor biodiversity in pelagic ocean
waters by quantifying phytoplankton functional types
(IOCCG 2014), including nitrogen-fixing organisms (e.g.,
Trichodesmium), calcifiers (coccolithophores), producers of
dimethyl sulfide or DMS (e.g., Phaeocystis), silicifiers (e.g.,
diatoms), and harmful algal blooms.
PACE is expected to launch in the 2022–2023 timeframe

and conduct observations over 3 to 10 years. In addition,
the European Space Agency has launched Sentinel-3A, and
will soon launch Sentinel-3B in 2018, containing the two
multispectral Ocean and Land Colour Instruments (OLCI;
22 spectral bands each). These are part of the Copernicus
program, and together enable global ocean coverage every
1.5 d at 300-m spatial resolution, not accounting for clouds.
While the Sentinel-3 A/B OLCI and PACE sensors offer
improved capabilities to observe the global ocean, they are
not designed to monitor coastal ecosystems. In coastal
areas, the influence of the seafloor, land areas, and con-
stituents that affect water quality are often confounded in
the signals recorded by these coarse spatial resolution imag-
ing devices. Thus, despite the advances and benefits pro-
vided by these instruments, another class of sensors is
required to adequately observe coastal zones.

REQUIREMENTS FOROBSERVING COASTAL BIODIVERSITY

AND ECOSYSTEM CHANGE

Directly measuring EBVs (Fig. 2) across the coastal zones
of the world requires repeated observations of areas span-
ning hundreds to thousands of square kilometers at a spatial
resolution adequate to detect change across environmental
gradients in aquatic and adjacent wetland settings. This
requires sampling with stringent specifications in four cate-
gories: spatial resolution, spectral resolution, radiometric
quality, and temporal resolution. We refer to this demanding
strategy as H4 sensing. We examine each of these required
dimensions below.

High spatial resolution

As mentioned above, Turpie et al. (2015) concluded that a
spatial resolution higher than 30-m pixels is ideal to observe
the emergent vegetation of coastal wetlands. This is an ade-
quate resolution to map submerged biologically structured
habitats like coral reefs and sea grass beds (Andr�efou€et et al.
2005, Wabnitz et al. 2010, Hedley et al. 2016a). To charac-
terize coastal phytoplankton blooms, surface floating vegeta-
tion, suspended particulate matter, and colored dissolved
matter, about 100-m or smaller pixels are needed (Bissett
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et al. 2004, Dierssen et al. 2015a, Hedley et al. 2016b, Moses
et al. 2016). The CEOS (2017) report considers that a global
mapping mission for aquatic ecosystem biogeochemistry,
including coastal marine and freshwater bodies such as rivers
requires a spatial resolution significantly higher than 250-m.
However, some applications, for example monitoring coral
bleaching events, require a much higher spatial resolution
(Andr�efou€et et al. 2002; CEOS 2017).

High spectral resolution

High spectral resolution has several benefits. NASA’s
Hyperion sensor operated on the Earth Observing-1 (EO-1)
satellite as a technology demonstration between 2000 and
2017. It provided 30-m spatial resolution images with 220
bands from 400 to 2,500 nm at 10-nm resolution and with
signal-to-noise ratios intended for imaging bright land
targets. Hyperion demonstrated the potential of high spectral
resolution data to derive bathymetry, identify bottom types,
and discriminate between wetland species in different coastal
areas (Brando and Dekker 2003, Pengra et al. 2007). Pahle-
van and Schott (2013) also demonstrated the higher-quality
of Hyperion-derived chlorophyll a concentrations compared
to those derived from simulated Landsat sensors near the
Niagara River discharge. In 2009, the U.S. Office of Naval
Research and NASA installed the Hyperspectral Imager for
the Coastal Ocean (HICO) on the International Space Sta-
tion (ISS; Davis and Tufillaro 2013). HICO had a spectral
resolution of 5.7 nm from 400 to 900 nm, a spatial resolution
of 100 m, and a very infrequent revisit time for observing the
same target on the ground. These acquisition limitations were
in part due to the low-inclination orbit of the ISS, periodic
maneuvers to raise and lower the space station, and other
operational scheduling concerns. Although HICO ceased
operations in 2014, it demonstrated the potential of high
spectral resolution to derive bathymetry, bottom types, water
optical properties, phytoplankton bloom types, suspended
sediment type, and wetland vegetation maps (Ryan et al.
2014). High spectral resolution also enables algorithm devel-
opment and the synthetic spectral reconstruction of different
satellite sensor bands (e.g., Osterman et al. 2016).
High spectral resolution is also required to separate

aquatic constituents by their light absorption, scattering, and
fluorescence characteristics (PACE SDT 2012). These include
chlorophyll a absorption at 435–438 nm, other accessory
pigment absorption features between 550 and 900 nm, and
fluorescence by chlorophyll a and other pigments (Dierssen
et al. 2015b, Hu et al. 2005, Chase et al. 2017). A minimum
spectral resolution of 6–8 nm is required in the visible wave-
lengths to separate diagnostic accessory pigments of phyto-
plankton as well as fluorescence signals in the reflectance
spectrum (Dekker and Pinnel 2017). Other derived products
include CDOM and sediment concentration. Higher spectral
resolution also allows more spectral benthic cover types to be
discriminated to deeper depths (Botha et al. 2013). Addi-
tional EBVs of interest that may be derived from high spatial
and spectral resolution data are coral, macrophyte, and
wetland extent (Fig. 2).
Deriving EBVs for coastal habitats therefore requires mea-

surements at ~5 nm resolution in the visible (VIS; 340–900 nm
spectral range) and at ~10 nm resolution in the short-wave

infrared (SWIR; 900–2500 nm; or at least two or more bands
at 1,030, 1,240, 1,630, 2,125, and 2,260 nm). The SWIR mea-
surements are required for differentiating wetland vegetation
communities (Vaiphasa et al. 2005, Hestir et al. 2012) and are
particularly critical for atmospheric correction algorithms over
turbid waters (Jiang and Wang 2014, Frouin and Pelletier
2015, Pahlevan et al. 2017b). To that end, atmospheric correc-
tion approaches for a coastal mission can leverage the maturity
of operational algorithms for ocean color missions (Ahmad
et al. 2010), but need to be updated to address coastal and
inland aerosol types (Pahlevan et al. 2017b), hyperspectral
data, and higher spatial resolution. Atmospheric correction
should also incorporate procedures to evaluate and correct sun
glint (e.g., Steinmetz et al. 2011, Devred et al. 2013, Botha
et al. 2016) and the radiance reflected from adjacent pixels
(adjacency effect; e.g., Duan et al. 2015).

High radiometric quality

Retrieving estimates of constituent concentrations with
better than 20% accuracy requires signal-to-noise ratios
similar to those proposed for PACE (Hu et al. 2012). Specif-
ically, the NASA PACE Science Definition Team (PACE
SDT 2012) concluded that ocean observations require a sen-
sor with signal-to-noise ratios (SNR) >1000 for visible radi-
ance bands for signal levels typically observed over open
ocean waters, absolute radiometric calibration �2%, and
relative calibration of 0.2%. These requirements are more
critical at higher latitudes due to lower sun angles (Dekker
and Pinnel 2017). In contrast, the existing high spatial reso-
lution missions, including Landsat 8 and Sentinel 2A/B,
have SNRs on the order 300–400 in the 443-nm channel and
lower in the longer wavelengths (Pahlevan et al. 2014,
2017a,b). The SNR of such sensors can be improved by
aggregating pixels and degrading spatial resolution. As of
2018, PACE-like SNR for aquatic biogeochemistry observa-
tions may be achievable at 100-m or finer spatial resolution.
Different coastal waters exhibit low radiance values in

different parts of the spectrum and these values change
with time due to the co-occurrence of different colored
submerged vegetation, phytoplankton, other particulate
and dissolved substances, and bottom depth. Because of
the very high dynamic range of reflected radiances across
the spectrum from different coastal aquatic habitats, there
is no typical radiance to use as a standard to define a SNR
specification. This wide range of radiances reflected by
coastal habitats, from very dark to very bright, requires
the highest sensitivity possible. We therefore recommend
SNR above 800 based on signal levels typical of the open
ocean.
Other radiometric considerations include the following:

14-bit digitization, absolute radiometric calibration <2%,
and relative calibration 0.2% with sensor radiometric stabil-
ity and linearity, and strategies to monitor these characteris-
tics. All spectral bands of a scene should be registered
simultaneously. Further, aquatic observations require
minimal polarization sensitivity (<1%), with carefully char-
acterized polarization response. Stray light, spectral out-of-
band, and crosstalk signals, including instrument response-
versus-scan, spectral smile (spectral distortion or shift along
a sensor scan line), and residual polarization should be
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minimal, and should be carefully monitored over time. In
general, on-orbit variation in instrument radiometric
response with time should be monitored and adjusted. Sus-
tained calibration needs to include frequent observations of
the Moon (e.g., once per day over at least half of the lunar
cycle), stable on-board reference standards, and vicarious
calibration and product validation efforts. Observations
must include an active sun glint avoidance and mitigation
strategy, such as tilting <20� from surface specular reflec-
tion. The platform should also exhibit minimal jitter with
high pointing accuracy, and accurate band-to-band registra-
tion. Furthermore, standard and reference in situ radiomet-
ric measurements such as those available from the Marine
Optical BuoY (MOBY; Clark et al. 2003), should be avail-
able for mission-long vicarious calibration.

High temporal resolution

Observations at frequencies of hours to days are required
to measure changes in the distribution of planktonic organ-
isms due to tidal or other circulation, phenology, or change
in community structure. While the biodiversity of some
structured communities like coral reefs, sea grass meadows,
or mangrove forests may be expected to change more slowly,
disturbance due to pollution events, severe storms, or cold or
warm temperature extremes can lead to rapid changes in
organism distribution, traits (e.g., bleaching), or habitat
structure. High temporal resolution also increases the chance
of observing targets often obscured by clouds (Mercury et al.
2012).
The proposed NASA GEOstationary Coastal and Air

Pollution Events (GEO-CAPE) mission would acquire high
quality hyperspectral measurements three to four times per
day of targeted tropical and subtropical coastal areas in
North America, as well as opportunistically in other loca-
tions in the hemisphere of regard, but at 250–375 m spatial
resolution (Salisbury et al. 2016). Furthermore, the geosta-
tionary mission would not cover high latitude areas, and
more than one satellite would be required to observe other
areas around the world.
Therefore, since the capability does not exist elsewhere,

temporal resolution on the order of hours to days, in con-
junction with the other H4 specifications, is required to ade-
quately observe coastal zones.

APPLICATIONS AND BENEFITS

The need for biodiversity data is expressed in interna-
tional treaties, including the Convention on Biological
Diversity (CBD), the U.N. Sustainable Development Goals
(including SDG 6, 14, and 15; see United Nations, 2015 and
Agenda, 2030), and the Ramsar Convention (MEA 2005a,b,
WOA 2016). Similar treaties address the conservation of
major freshwater bodies, such as the Laurentian Great
Lakes. Of interest is using the concept of Essential Biodiver-
sity Variables (EBVs) to monitor and assess long-term
changes in coastal ecosystems, including coastal water qual-
ity, coastal zone algal and bacterial blooms, wetlands biodi-
versity, benthic communities, and fishery potential. The
need for global monitoring of marine biodiversity has been
recognized by the Group on Earth Observations (GEO) and

the Intergovernmental Oceanographic Commission (IOC;
FOO 2012). GEO and the IOC have agreed to implement a
Marine Biodiversity Observation Network (MBON; Duffy
et al. 2013) as an integral part of the GEO BON.
In addition to meeting the objectives of these initiatives,

H4 also addresses the needs of terrestrial and fresh water
studies (Schimel et al. 2015, Jetz et al. 2016, Dekker and
Pinnel 2017). As a result, combining H4 observations with
those from ocean color missions, land-observing missions,
and in situ monitoring would significantly expand the scope
of coastal science.
Example H4 applications include:

1. Coastal water quality and coastal zone blooms. H4
addresses the fundamental requirements of coastal ecol-
ogy and resource monitoring programs for evaluating
EBVs that inform about the quality, diversity, and pro-
ductivity of coastal aquatic habitats as a function of
nutrient inputs, light, and other physical and biotic fac-
tors. Specifically, H4 will provide information on:

a. Functional phytoplankton groups (red tide, coccol-
ithophore, large and small phytoplankton cell concen-
tration, etc.).

b. Floating vegetation (Sargassum, giant kelp and other
large algae, sea grasses)

2. Seascapes (dynamic, multivariate biogeographic classifi-
cation; e.g., Kavanaugh et al. 2016).

3. Wetland biodiversity.H4 provides observations of wetland
areal extent, canopy characteristics, species populations
assemblages, and phenology, including change in emer-
gent vegetation and water quality due to disturbance.

4. Benthic communities. H4 monitors EBVs that track the
areal extent, composition, and health of shallow subtidal
foundation species (e.g., coral reef, seagrasses, kelp) and
the integrity of benthic communities, in addition to pro-
viding information on shallow water bathymetry.

IMPLEMENTING H4 REMOTE SENSING

Implementing a global H4 observation system is within
reach. The technology is available to obtain the required SNR
for hyperspectral data at 30-m resolution, but a single sensor in
orbit cannot provide the desired revisit time for all coastal
zones and inland habitats of the world. A single, agileH4 satel-
lite in a 3-d repeat orbit could accommodate observations of
several hundred coastal habitats distributed around the world
every day, by consistently acquiring data with both along-track
(for glint mitigation) and cross-track targeting (Osterman et al.
2016). A constellation of nine small H4 satellites, collecting 30-
km swaths in pushbroom mode, would cover global land and
coastal zones with weekly frequency. Broadening the swath
would reduce the number of sensors required. Small satellite
constellations are now common for a variety of applications.
For example, NASA launched an eight-satellite Cyclone Global
Navigation Satellite System (CYGNSS) to measure wind speed
over the ocean to improve hurricane forecasting. The Earth
imaging company Planet Labs had a fleet of over 170 minia-
ture satellites operating by mid-2017, collecting daily data
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for agricultural, urban planning, disaster response, and vessel
tracking applications around the world, among many other
uses.
Operational resource management efforts, and an obliga-

tion to evaluate changes occurring over decadal and longer
timeframes, also would require sustaining H4 over longer
periods, similar to those provided by Landsat and other
operational satellite series. The H4 observations would com-
plement such operational satellites.
There are several strategies to increase the SNR for obser-

vations of coastal aquatic habitats and of biologically struc-
tured habitats. While one possibility is to relax the spatial
resolution requirement for coastal aquatic observations to
about 60–100 m to match the scales of variability in coastal
aquatic properties, this is a lower resolution than required for
characterizing coastal vegetation and shallow submerged
habitats such as coral reefs. Binning spectrally to 6–8 nm, per
recommendation of the CEOS report (2017) also helps
increase SNR. A separate strategy is to alter the platform or
sensor motion to scan aquatic targets slower than land or
wetland targets (e.g., Osterman et al. 2016).
Aquatic measurements may be collected within a range

of viewing angles (e.g., �45°), following a strategy that
mitigates sun glint. However, observations of above-water
wetland vegetation would require fixed viewing geometries
to properly interpret the sequence of measurements in a time
series of observations. Such off-nadir observations also help
to minimize the contaminating effects of water reflections
observed through wetland canopies and help improve
biomass estimates (Turpie et al. 2015).
The H4 concept also poses challenges with respect to data

downlink, management, processing, and distribution. A glo-
bal coastal H4 mission will require increased informatics,
with significantly more on-board processing and storage
capacity than is typical for current science applications.
Further, some monitoring applications will require near-
real-time access to the H4 data. Commercial companies are
actively addressing such big-data challenges with super-high
spatial resolution (<0.5 m pixels) multispectral (typically
eight bands) satellite constellations. We can learn important
lessons from these initiatives.

CONCLUSIONS

The combined open ocean, coastal, and wetland H4
observation strategy will revolutionize applied ecological
research. Even one such device flown over a period of
3–5 years would enable the first comprehensive set of mea-
surements of biodiversity variables in hundreds of coastal
habitats around the world. A global H4 observation strategy
would also provide coverage of land and fresh water habi-
tats. This can be achieved with a constellation of multiple
small and low-cost satellite sensors similar to the NASA
eight-satellite Cyclone Global Navigation Satellite System
(CYGNSS) and commercial high spatial resolution imaging
strategies. H4 would define a baseline to evaluate past obser-
vations collected with less capable sensors, and to assess
long-term changes. It would enable operational assessments
and management applications that sustain coastal and ter-
restrial ecosystem services, including provisioning of food,
clean water, and economic well-being around the world.
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