Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry


Contact
sofia.antonova [ at ] awi.de

Abstract

In permafrost areas, seasonal freeze-thaw cycles result in upward and downward movements of the ground. For some permafrost areas, long-term downward movements were reported during the last decade. We measured seasonal and multi-year ground movements in a yedoma region of the Lena River Delta, Siberia, in 2013–2017, using reference rods installed deep in the permafrost. The seasonal subsidence was 1.7 +- 1.5 cm in the cold summer of 2013 and 4.8 +- 2 cm in the warm summer of 2014. Furthermore, we measured a pronounced multi-year net subsidence of 9.3 +- 5.7 cm from spring 2013 to the end of summer 2017. Importantly, we observed a high spatial variability of subsidence of up to 6 cm across a sub-meter horizontal scale. In summer 2013, we accompanied our field measurements with Differential Synthetic Aperture Radar Interferometry (DInSAR) on repeat-pass TerraSAR-X (TSX) data from the summer of 2013 to detect summer thaw subsidence over the same study area. Interferometry was strongly affected by a fast phase coherence loss, atmospheric artifacts, and possibly the choice of reference point. A cumulative ground movement map, built from a continuous interferogram stack, did not reveal a subsidence on the upland but showed a distinct subsidence of up to 2 cm in most of the thermokarst basins. There, the spatial pattern of DInSAR-measured subsidence corresponded well with relative surface wetness identified with the near infra-red band of a high-resolution optical image. Our study suggests that (i) although X-band SAR has serious limitations for ground movement monitoring in permafrost landscapes, it can provide valuable information for specific environments like thermokarst basins, and (ii) due to the high sub-pixel spatial variability of ground movements, a validation scheme needs to be developed and implemented for future DInSAR studies in permafrost environments.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
47561
DOI 10.3390/rs10040494

Cite as
Antonova, S. , Sudhaus, H. , Strozzi, T. , Zwieback, S. , Kääb, A. , Heim, B. , Langer, M. , Bornemann, N. and Boike, J. (2018): Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry , Remote Sensing, 10(4) (494) . doi: 10.3390/rs10040494


Download
[thumbnail of remotesensing-10-00494.pdf]
Preview
PDF
remotesensing-10-00494.pdf

Download (24MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Geographical region

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item