
*Graphical Abstract



Highlights: 
 
Nearly 40000 km of new gravity and radar data in eastern Dronning Maud Land 
 
Paleo-fluvial drainage system behind great escarpment experienced short-lived phase of 
alpine glaciation preceding present cold-based era 
 
Offshore sediments derived from erosion of material by balanced backwearing and 
downwearing seawards of a breakup-aged or older (i.e. Jurassic) inland drainage divide  
 
Paleo-fluvial drainage system may therefore be very ancient 
 
Longer-distance sediment transport in Jurassic river system further east via a valley now 
glacially deepened to form a Grand Canyon-sized subglacial trough  
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ABSTRACT  37 

Modelling-, rock cooling-, sedimentation- and exposure-based interpretations of the 38 
mechanisms by which topography evolves at extended continental margins vary 39 
widely. Observations from the margin of Dronning Maud Land, Antarctica, have until 40 
now not strongly contributed to these interpretations. Here, we present new 41 
airborne gravity and radar data describing the eastern part of this margin. Inland of a 42 
tall (2.5 km) great escarpment, a plateau topped by a branching network of valleys 43 
suggests preservation of a fluvial landscape with SW-directed drainage beneath a 44 
cold-based ice sheet. The valley floor slopes show that this landscape was modified 45 
during a period of alpine-style glaciation prior to the onset of the current cold-based 46 
phase around 34 Ma. The volume of sediments in basins offshore in the Riiser-Larsen 47 
Sea balances with the volume of rock estimated to have been eroded and 48 
transported by north-directed drainage from between the escarpment and the 49 
continental shelf break. The stratigraphy of these basins shows that most of the 50 
erosion occurred during the ~40 Myr following late Jurassic continental breakup. This 51 
erosion is unlikely to have been dominated by backwearing because the required rate 52 
of escarpment retreat to its present location is faster than numerical models of 53 
landscape evolution suggest to be possible. We suggest an additional component of 54 
erosion by downwearing seawards of a pre-existing inland drainage divide. The 55 
eastern termination of the great escarpment and inland plateau is at the West 56 
Ragnhild trough, a 300 km long, 15-20 km wide and up to 1.6 km deep subglacial 57 
valley hosting the West Ragnhild glacier. Numerous overdeepened (by >300 m) 58 
segments of the valley floor testify to its experience of significant glacial erosion. 59 
Thick late Jurassic and early Cretaceous sediments fanning out from the trough’s 60 
mouth into the eastern Riiser-Larsen Sea betray an earlier history as a river valley. 61 
The lack of late Jurassic relief-forming processes in this river’s catchment in the 62 
interior of East Antarctica suggests this erosion was related to regional climatic 63 
change.  64 
 65 

 66 
Keywords: 67 

airborne gravimetry; airborne radar; great escarpment; extended continental margin; 68 
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1. INTRODUCTION 72 

1.1 Background and rationale 73 

Facing the oceans, and several hundred metres to three kilometres in height, so-called great 74 

escarpments are known from numerous extended continental margins worldwide (e.g. 75 

southern Africa, Brazil, eastern Australia, the Red Sea, and western India). Their presence or 76 

absence appears not to correlate with margin age, attesting to their longevity (Gilchrist and 77 

Summerfield, 1990). This in turn is linked to the escarpments’ roles as drainage divides, by 78 

which they sustain feedbacks between climate, erosion, tectonics and isostasy (e.g. Matmon 79 

et al., 2002; Sacek et al., 2012). Ideas about the evolution of great escarpment relief vary 80 

based on modelling and observation but, as a starting condition, all require the presence or 81 

generation of high topography (Braun, 2018). The majority of studies, acknowledging the 82 

extended continental margin setting, relate this topography to tectonic processes. Some 83 

emphasise the role of normal faulting (e.g. King, 1953; Beaumont et al., 2000). Others focus 84 

on flexural-isostatic responses to rifting-related loading of the lithosphere (e.g. Ollier, 1984; 85 

Cockburn et al, 2000; Fleming et al, 1999; Gilchrist and Summerfield, 1994; Sacek et al., 86 

2012).  87 

 88 

Long-term erosion rates increase strongly following the creation of relief and in response to 89 

changes in weathering regimes (e.g. Koppes and Montgomery, 2009). These factors may 90 

develop in feedback with one another, but weathering regimes can also alter independently 91 

as a consequence of regional or global climatic or tectonic changes. Consistent with the 92 

former, the fills of sedimentary basins offshore of the Gondwanan escarpments all seem to 93 

have experienced rapid sediment accumulation early on in their histories following the 94 

creation of relief by extensional tectonics (Rust & Summerfield, 1990; Gunnell and Fleitout, 95 

1998; Campanile et al., 2008; Rouby et al., 2009; Guillocheau et al., 2011). In these studies, 96 

detailed interpretation of the processes by which extended continental margins are shaped 97 

by erosion is hampered by the recognition of later accumulation pulses, which can be related 98 

to drainage capture events and the evolution of dynamic topography in escarpment 99 

hinterlands.  100 

 101 

Utilizing onshore evidence instead, geomorphological studies have long concluded that so-102 

called backwearing dominates erosion at extended continental margins. Backwearing 103 

involves erosion to base level by intensive gorge incision into escarpments; the escarpments 104 

retreat without changing their slope. The observation of multiple regional escarpments and 105 
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terraces at some margins has led to interpretations of backwearing occurring in cycles 106 

modulated by tectonic and climatic changes on geological timescales (e.g. Partridge and 107 

Maud, 1987). The idea of cyclicity is consistent with the variable escarpment retreat rates 108 

interpreted worldwide from low temperature geochronology and rock exposure dating, 109 

which in many instances are an order of magnitude slower than might be required to attain 110 

present-day escarpment—shelf distances by constant rates of post breakup retreat (e.g. 111 

Brown et al., 1990; Cockburn et al., 2000; Heimsath et al., 2006; Kounov et al., 2007; Mandal 112 

et al., 2015; Wildman et al., 2016). Despite this, the spatial and depth resolutions of many low 113 

temperature geochronology data sets cannot unequivocally depict rapid escarpment retreat, 114 

and alternative scenarios have been preferred where sufficient resolution does exist (Braun 115 

and van der Beek, 2004). In addition, numerical landscape evolution models have failed to 116 

produce very fast (>1 km/Myr) retreat rates or large sustained changes in retreat rate as a 117 

response to any physical process (e.g. Braun, 2018).  118 

 119 

Most of the types of studies described above remain to be applied for the continental margin 120 

of Dronning Maud Land, Antarctica. Low temperature geochronology data from both ends 121 

of the escarpment reveal periods of cooling that can be related to denudation shortly after 122 

continental breakup (Jacobs et al. 1992; 1995; Näslund, 2001; Krohne, 2017). As elsewhere in 123 

the world, however, the spatial and depth resolutions of these data are not sufficient to 124 

unequivocally support the idea of escarpment retreat by erosional backwearing. Using new 125 

aerogeophysical data sets, we describe the eastern end of the great escarpment and its 126 

surroundings at much higher resolution than possible with previous data sets. Based on our 127 

findings, we investigate independently the setting and pattern of erosion and sedimentation 128 

each side of the continental margin. We first present a volume-balancing test of the first-129 

order idea that rocks were eroded from the eastern part of the great escarpment and 130 

transported as sediments over the shelf and into the deep Riiser-Larsen Sea (Fig. 1). To this 131 

end, we combine our aerogeophysical observations with estimates of the volume of clastic 132 

material in sediments sampled by marine seismic data. Using the same offshore data set, we 133 

interpret the history of sediment accumulation in terms of the pattern and timing of erosion 134 

that would have been necessary onshore to produce it.  135 

 136 

1.2 Geological history of Dronning Maud Land and the Riiser-Larsen Sea 137 

Mountains of the Sør Rondane region provide the few rocks from which the geological 138 

history of eastern Dronning Maud Land has been interpreted (Fig. 1). This history starts in the 139 
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1.0-0.5 Ga period with the accretion of multiple juvenile arc terranes between cratonic parts 140 

of Africa and East Antarctica (Jacobs et al., 2015; Ruppel et al., 2018). Accretion culminated 141 

in the amalgamation of Gondwana. The next major event was the supercontinent’s breakup 142 

in Jurassic times. This is interpreted from magnetic, gravity and seismic evidence for igneous 143 

and volcanic rocks at the region’s extended continental margin and in the deep ocean basins 144 

of the Lazarev and Riiser-Larsen seas (Riedel et al., 2013; Eagles and König, 2008; Leinweber 145 

and Jokat, 2012). These rocks have not been dated directly, but magnetic anomaly isochrons 146 

offshore show that seafloor spreading was underway by 160 Ma at the latest, and 147 

conceivably earlier (Leinweber and Jokat, 2012). Following this, the only rock-based record of 148 

the region’s geological history until the development of the East Antarctic ice sheet comes 149 

from the low temperature geochronology work of Krohne (2017). Paleotopographic 150 

modelling (Wilson et al., 2012) depicts high elevations in Dronning Maud Land around the 151 

Eocene-Oligocene transition at 34 Ma, so that it acted as a nucleation zone for the East 152 

Antarctic ice sheet as global climate cooled (DeConto & Pollard, 2003). In mid-Miocene 153 

times, further cooling led to an increase in ice thickness that has been maintained ever since 154 

(Shevenell et al., 2004; Holbourn et al, 2005).  155 

 156 

Ice streams flow over short distances towards the present-day continental shelf from the 157 

area north of Sør Rondane. Further east, longer-distance ice transport occurs via the West 158 

Ragnhild glacier, which originates inland of a gap between Sør Rondane and the Belgica 159 

Mountains (Figs. 1,2) to drain a rectangular catchment of ~140000 km2 (Rignot et al, 2011; 160 

Callens et al., 2015). Based on sparse existing radar observations (Siegert, 2005) and 161 

thermomechanical ice-sheet models (Pattyn, 2010), the base of this part of the East 162 

Antarctic ice sheet is thought not to experience widespread pressure melting. The ice sheet 163 

south of Sør Rondane thus remains frozen to its bed, limiting its capacity to erode, and 164 

leaving open the possibility for landscape preservation. The subglacial topography and 165 

geology, however, are only incompletely known from Soviet aerogeophysical data collected 166 

along widely spaced (25—50 km) flight lines flown without continuous satellite navigation. 167 

These data are widely known via their contributions to Antarctic radio echo sounding 168 

(BEDMAP2), gravity (AntGG) and magnetic anomaly (ADMAP2) compilations (Fretwell et al., 169 

2013; Scheinert et al., 2016; Golynsky et al., 2017).  170 

 171 

Besides these onshore observations and data, the post-breakup geological history is also 172 

recorded indirectly within the fills of sedimentary basins in the Riiser-Larsen Sea. These 173 
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basins are isolated from their neighbours to the east and west by basement ridges. Astrid 174 

Ridge (Fig. 1) is a magmatic and volcanic ridge whose construction accompanied continental 175 

breakup and early seafloor spreading and continued at its northern end until at least 145 Ma, 176 

the age of oceanic lithosphere on which it rests (Leinweber and Jokat, 2012). Gunnerus Ridge 177 

(Fig. 1) formed in continental crust during relocation of a sheared segment of the Jurassic and 178 

early Cretaceous plate boundary from east to west Gondwana as the site of seafloor 179 

spreading between the two switched from the west Somali Basin to the Enderby Basin at 180 

around 133 Ma (Tuck-Martin et al., 2018).  181 

 182 
 183 
2. AEROGEOPHYSICAL DATA 184 

Extensive new aerogeophysical datasets were collected with the Alfred Wegener Institute’s 185 

two Basler aircraft, Polar 5 and Polar 6, flying out of the Belgian station Princess Elisabeth in 186 

the 2013-14 and 2014-15 seasons (Fig. 1). The data were collected during the fourth stage of 187 

the GEA (Geodynamic evolution of East Antarctica) project, an ongoing collaboration 188 

between the Federal Institute for Geosciences and Natural Resources and the Alfred 189 

Wegener Institute, Helmholtz Centre for Polar and Marine Research. In total, close to forty 190 

thousand kilometres of gravity, radar, and magnetic data were collected for GEA-IV. Here, 191 

we present and discuss the gravity and radar data that are useful for evaluating the sources 192 

and transport pathways of sediments that are now preserved offshore in the Riiser-Larsen 193 

Sea. The magnetic data are presented and interpreted by Ruppel et al. (2018).  194 

 195 

2.1. Radar 196 

Large quantities of new radar data were collected using AWI’s airborne EMR 197 

(Elektromagnetisches Reflexionssystem; Nixdorf et al., 1999). The system sends signal bursts 198 

with a frequency of 150 MHz and amplitude of 1.6 kW, toggling between durations of 60 ns 199 

and 600 ns with the aim of returning high-resolution images of both the internal structure 200 

and the bed of ice as much as 4 km thick. After 7-fold stacking and conversion from two-way 201 

travel time to depth, the dataset can be used to calculate distances between the aircraft and 202 

the top surface of the ice and its subglacial interface. These can be used together to 203 

determine ice thickness, and, with GPS determinations of flight level, ellipsoidal heights of 204 

the ice sheet surface and subglacial interface.  205 

 206 

A GPS equipment failure led to the loss of radar capability on one flight in the 2013-14 207 

season, and recurrent EMR signal problems led to the collection of unusable data on a further 208 
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seven flights to the region north of the Yamato (Queen Fabiola) Mountains during the 2014-209 

15 season. To make up for these losses, in part of the study region we use data gathered with 210 

AWI’s EMR instrument during a EUFAR-funded flight in the 2010-11 season (Callens et al., 211 

2014). Elsewhere, we sampled values from BEDMAP2 along our flight lines (Fretwell et al., 212 

2013). After adjusting our bed depths to the GL04C geoid (Foerste et al., 2008) used for 213 

BEDMAP2, we then gridded the data set using minimum curvature rules for a regular 3 km 214 

grid spacing. The resulting basal topography is shown in Figure 2b. Example radargrams are 215 

shown in Figure 3.  216 

 217 

2.2. Gravity 218 

New free-air gravity data were collected as part of GEA-IV in 2013-14 with the Alfred 219 

Wegener Institute’s LaCoste and Romberg/ZLS AirSea gravimeter (serial number S56) and in 220 

2014-15 with the institute’s Gravimetric Technology GT2A gravimeter (serial number 28). 221 

The International Gravity Standardization Net tie to Princess Elisabeth airfield (for the 2013-222 

14 and 2014-15 data) was completed using AWI’s LaCoste and Romberg portable 223 

gravimeters G744 and G877 via Novolazarevskaya Station (absolute measurement by 224 

Mäkinen, pers. comm. to Yildiz et al, 2017), visited before and after both campaigns. The 225 

2013-14 data were collected at constant elevations, constrained by the capabilities of the 226 

AirSea gravimeter. Unpredictable broken and multi-level cloud in the 2013-14 season led to 227 

considerable data loss owing to multiple flight level changes on some profiles. Consequently, 228 

crossover errors within the AirSea data set are only determined along fragments of two tie 229 

lines and are not numerous enough to be statistically meaningful. At face value, these 230 

crossover values in the range 0-7 mGal suggest the instrument performed according to 231 

expectations. In contrast, along track data recovery with the GT2A gravimeter exceeded 95% 232 

owing to its capability to operate reliably during climb and descent. A 100 s filter length and 233 

flight speeds of 120-140 knots imply along-track half-wavelength resolution in the range 3.0-234 

3.6 km. Where weather conditions permitted, data with this instrument were collected at a 235 

constant ice separation of 600 m. Crossover determinations within the GT2A data set are 236 

more numerous (90 to tie lines), the raw data returning a mean crossover error of -0.15 mGal 237 

and standard deviation of 2.50 mGal, suggesting this gravimeter too performed 238 

satisfactorily. These data are combined with older data acquired using S56 in 2006 and 2010 239 

(Nogi et al. 2013; Mieth, 2014) to generate the grid in Figure 4b. After internal levelling, the 240 

S56 data were levelled to the GT2A data set. Simple Bouguer gravity anomalies (Fig. 4c) 241 
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were calculated using ice, seawater, and crustal densities of 900, 1020 and 2670 kgm-3 242 

without any terrain correction.    243 

 244 

3. INTERPRETATION 245 

3.1. Bed topography 246 

Figure 2 shows that the overall pattern in subglacial topography is one of strong contrast 247 

between a plateau in the south, with highland peaks in and around Sør Rondane exceeding 248 

3000 m above sea level, and coastal plains reaching a maximum depth around 960 m below 249 

sea level.  250 

 251 

West of the Belgica Mountains, the coastal plain lies at an average of 380 m below sea level 252 

and gives way to the inland plateau at 1000-1500 m above sea level via a 2000-3000 m high 253 

escarpment (e.g. Fig. 2d, Profile 1). The mountains of Sør Rondane crop out on the seaward 254 

face and crest of the escarpment. A straight ESE-trending valley cuts the subglacial surface 255 

about 100 km south of the escarpment, coincident with part of the magnetically-defined 256 

Schirmacher-Rondane lineament of Ruppel et al. (2015). Hanging and overdeepened valleys 257 

can be interpreted from the grid in the areas between and immediately south of the 258 

mountains. These features record a phase of alpine glaciation and furthermore suggest that 259 

the escarpment relief hosting them was already in place at the time the ice sheet started to 260 

accumulate in the run-up to the Eocene-Oligocene transition.  261 

 262 

The picture east of the Belgica Mountains is different (Fig. 2d, Profile 4). Here, the coastal 263 

plain dips somewhat irregularly inland, starting close to sea level a short distance behind the 264 

grounding line, and eventually dropping to around 150 m below sea level just north of a ~100 265 

km length of east-striking escarpment. This escarpment, of around 1100-1500 m height, 266 

bends southwards at its western end to continue inland at lower elevations for at least 267 

another 150 km. The Yamato (Queen Fabiola) Mountains crop out from a north-striking spur 268 

to the north of the east-striking segment of escarpment. Together, this spur and the south-269 

trending segment of the escarpment lie along strike from the Riiser-Larsen Peninsula (Fig. 1) 270 

and its offshore continuation, the submarine Gunnerus Ridge, suggesting they share a 271 

deeper geological control.  272 

 273 

The ~150 km wide area between the Yamato (Queen Fabiola) Mountains and Sør Rondane 274 

presents a coastal plain with seaward and landward terraces at ~480 m and ~180 m below 275 
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sea level (Fig. 2d, Profile 3). Further inland, the subglacial topography rises up landwards to 276 

1700 m via a series of isolated rises, the most prominent of which bears outcrop at the 277 

Belgica massif.  278 

 279 

The Belgica massif is separated from Sør Rondane to the west by a 15-20 km wide trough 280 

beneath the West Ragnhild glacier, which we refer to as the West Ragnhild trough. 281 

BEDMAP2 (Fretwell et al., 2013) shows the trough as a continuous feature north of Belgica 282 

Mountains. Our new radio echo sounding data show it also to continue until at least 100 km 283 

south of the mountains (Fig. 2c, Profile 2), where it passes out of the region of our survey. 284 

Along the way, the depth of the trough floor rises from its deepest point at least 1300 m 285 

below sea level (Callens et al., 2014) via a set of overdeepened sections, which the grid 286 

suggests to be individually 10-15 km long and between 150 and 350 m deep, to depths within 287 

a few hundred metres either side of sea level in a saddle near the Belgica Mountains. 288 

Averaging and smoothing of bed depths picked from the better-imaged trough flanks results 289 

in the narrow trough floor in the saddle being depicted at around 200 m above sea level in 290 

the grid (Fig. 2b). However, inwards of the flanks numerous EMR picks are made below sea 291 

level, and the steep sides of the unimaged parts of the trough leave little doubt that a narrow 292 

swath of its floor lies well below sea level (Fig. 3a). The current picture of the West Ragnhild 293 

trough is thus one of a canyon at least 350 km long, 15-20 km wide, and up to 1600 m deep, 294 

whose floor is likely to lie below sea level all along its length. The trough runs straight in a 295 

NNW orientation between 74°S and 71.2°S where, having passed the great escarpment on its 296 

western side, it bends sharply NW to continue to the grounding line. This section of the 297 

trough may be related to a pre-existing tectonic grain, as its NW trend is repeated in a 298 

separate ridge and trough lying 50 km to the south. The bend at 71.2°S coincides with the 299 

deepest of the overdeepened sections, and marks the northwards change from a deep rough 300 

bed to a smoother shallower bed first observed by Callens et al. (2014). Side valleys feeding 301 

into the West Ragnhild trough appear to be structurally controlled on the basis of their 302 

linearity and consistent northeasterly strike on both sides of the trough. Segments of the 303 

valleys at the western side of the trough are preserved as hanging valleys that permit ice 304 

drainage only along short (<100 km) tributaries to the West Ragnhild glacier (Rignot et al., 305 

2011). The West Ragnhild trough and glacier at the present day thus drain only the eastern 306 

fringes of Sør Rondane and the plateau south of it.   307 

 308 
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Further west, inland of the great escarpment, very little about the bed was interpretable 309 

from BEDMAP2 (Fig. 2a) in which elevations over a large area were based on very sparse 310 

radio echo sounding data and a low-resolution inverse gravity model (Fretwell et al., 2013). 311 

Mieth and Jokat (2014) interpreted magnetic anomaly data to suggest that this region’s 312 

upper crustal structural grain is oriented NW-SE. Figure 2 shows that relief with this trend is 313 

present, but by no means dominant, in the subglacial landscape. More prominently, the new 314 

data reveal the presence of a network of subglacial valleys reaching depths as much as 600 m 315 

below the surrounding topography. These valleys are sinuous, and thus appear less strongly 316 

controlled by geological structures than the West Ragnhild trough and its tributaries. The 317 

valleys are 15-30 km wide and usually V-shaped in cross section (Figs. 2b, 3b). The valleys 318 

converge at acute angles that close towards the southwest. The overall slopes of the great 319 

majority of these valley floors are towards the southwest. Consistent with the possibility of 320 

landscape preservation outlined above, these observations support the interpretation of a 321 

fluvial landscape with southwest-directed drainage. In the easternmost ~50 km of the data 322 

set, the floors of some of the valleys slope towards the east, suggesting the presence of a 323 

south-trending drainage divide to the catchment of the West Ragnhild trough (Fig. 2c). The 324 

apparent connectivity of these short east-sloping valley floor segments with the floors of the 325 

much longer southwest-sloping valleys suggest that this divide formed by local capture of 326 

southwest-flowing streams.  327 

 328 

In more detail, the floors of the remaining parts of the valley system also do not slope 329 

monotonously downwards to the southwest, but instead feature local overdeepened (by 330 

~100-150 m) segments (e.g. Fig. 3c). These observations are consistent with the valleys’ 331 

modification by glacial erosion and deposition processes. As none of the valleys presently 332 

correlates with any present-day ice stream, and their orientation is perpendicular to the 333 

coastward ice flow direction (Rignot et al., 2011), we conclude that this modification occurred 334 

during an alpine glaciation phase that pre-dated establishment of the modern state of the ice 335 

sheet.  336 

 337 

3.2. Free-air gravity 338 

The free-air gravity anomalies, as expected, display strong coherency with basal topography 339 

interpreted from the EMR data. This coherency is well evident over the great escarpment of 340 

Sør Rondane and in the branching pattern of valleys south of the mountains (Fig. 4b). These 341 

valleys are not interpretable in the AntGG data set (Scheinert et al., 2016), which in this 342 
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region is based on widely-spaced Soviet data (Leitchenkov et al, 2008). Free-air anomaly 343 

troughs are centred over the valley axes, their shapes mirroring those in the EMR bed 344 

topography, suggesting an origin by erosion into largely homogeneous rocks with no strong 345 

geological structural control.  346 

 347 

The West Ragnhild trough anomaly is much sharper and deeper than in the AntGG dataset 348 

and, like the branching valleys south of Sør Rondane, its close mimicry of the EMR-based bed 349 

topography suggests its relief to be controlled dominantly by erosion. Its depth and shape 350 

through the saddle next to the Belgica Mountains are closely similar to those immediately 351 

north and south, supporting the interpretation that even in the saddle the trough floor lies 352 

below sea level. In the north, the free-air anomaly low associated with the trough continues 353 

for at least 30 km seawards of the grounding line. Beneath the ice shelf, it is likely therefore 354 

that the trough continues as a sediment-filled feature like that imaged immediately south of 355 

the grounding line by Callens et al. (2014). From the GT2A data set’s southernmost crossings 356 

of the trough, the free-air anomaly low bends into a SE orientation, suggesting the trough 357 

may adopt a southeasterly strike just north of 73°40’ S. This impression is consistent with the 358 

orientation of a broad free-air low in the AntGG data set (Fig. 4a), whose greater extent also 359 

suggests that the SE-striking segment of the trough might continue towards 75°S, 35°E.  360 

 361 

3.3. Bouguer Anomaly 362 

The long wavelength signal in the Bouguer anomaly data set is one of increasing values 363 

northwards, towards the extended continental margin of Antarctica (Fig. 4c). This is 364 

consistent with increasing gravitational acceleration due to increasingly-shallow mantle 365 

rocks with densities exceeding 2670 kgm-3 beneath the crust, which we expect both to thin 366 

northwards as a result of tectonic extension, and to flex upwards in response to the reduced 367 

loading by the thinning ice sheet. At shorter wavelengths, this increase shows a sharp (~30 368 

km) step at the crest of the great escarpment. This wavelength is not typical of flexural 369 

topography (Watts and Moore, 2017), but might still be seen as consistent with a step-like 370 

contrast in Moho depth across a crustal-scale basin-bounding fault coincident with the 371 

escarpment. Seismic estimates of crustal thickness in the region are too sparse to reveal 372 

details of its Moho topography, but outcrop geology (e.g. Jacobs et al., 2015) and magnetic 373 

anomalies (Ruppel et al. 2018) do not permit the interpretation of any such fault near the 374 

surface. A more plausible interpretation is that the upper crust north of the escarpment crest 375 
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has been thinned more by erosion than that further south. There is no comparable sharp 376 

contrast in Bouguer gravity values across the Yamato (Queen Fabiola) Mountains.   377 

 378 

The West Ragnhild trough appears as a subdued linear low in the Bouguer anomaly data. 379 

North of the bend in the anomaly at 71.2°S, this low is confidently interpretable in terms of a 380 

trough fill of subglacial sediments of lower density than the rocks the trough is cut into. 381 

Further south, localised more strongly negative Bouguer values correlate to segments of the 382 

trough floor without radar reflections. We regard these negative anomalies as artefacts 383 

related to the erroneously shallow interpolated bed values in the EMR data grid.  384 

 385 

In contrast, some of the larger valleys south of Sør Rondane are marked by ~20 mGal relative 386 

Bouguer highs. If these highs were consequences of systematically poorly-picked bed depths 387 

in the EMR data, then the valley floor picking error would be too large to have gone 388 

unnoticed, in the region of 200 m. A more plausible alternative interpretation is that the 389 

valleys are cut into an uppermost crustal layer with a density less than the crustal reduction 390 

density of 2670 kgm-3 used for the Bouguer correction. A density of less than 2670 kgm-3 391 

could be characteristic of low-grade metasedimentary rocks like the greenschist-facies 392 

supracrustal rocks widely reported from Sør Rondane (Jacobs et al. 2015). Figure 5 illustrates 393 

such a scenario using a two-dimensional model of gravity anomalies sampled from the grid. 394 

The accompanying model of magnetic anomalies sampled from the data set of Ruppel et al. 395 

(2018) uses small susceptibilities in its uppermost layer that are also typical of 396 

metasedimentary rocks.  397 

 398 

4. EROSION AND SEDIMENTATION ACROSS THE CONTINENTAL MARGIN 399 

4.1 Background 400 

Before this study, retreat of the great escarpment of Dronning Maud Land has only been 401 

addressed in relation to interpretations of denudation from low temperature geochronology 402 

data. As at many other margins worldwide, the distribution of mineral cooling data from 403 

Dronning Maud Land means such interpretations are not unequivocal (Braun and van der 404 

Beek, 2004). Näslund’s (2001) interpretation of post-breakup denudation in western 405 

Dronning Maud Land (Jacobs et al., 1992; 1995) in terms of erosional retreat of an originally-406 

tectonic fault scarp thus remains be tested using complementary approaches.  407 

 408 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 13 

At the escarpment’s further eastern reaches, Krohne (2017) generated apatite fission track 409 

data from a small area of Sør Rondane to interpret its denudation history. Together with 410 

regional geological constraints, they interpreted cooling at 215-180 Ma in terms of the 411 

removal of 2.8 km fill from a Permo-Triassic intracontinental basin in response to tectonic 412 

uplift at the margins of extensional basins formed during Gondwana breakup. Following this, 413 

those authors interpret ongoing extensional tectonism leading to reburial of Sør Rondane in 414 

a local basin until 140 Ma, perhaps responding to landward migration of a flexurally-415 

controlled drainage divide, followed by renewed denudation at 140-120 Ma, quiescence until 416 

40 Ma, and localised denudation accompanying strong rock cooling until present. Added to 417 

these ideas, in the previous sections we used our new datasets to interpret how at the time of 418 

ice sheet glaciation, more than 100 million years following the onset of seafloor spreading in 419 

the Riiser-Larsen Sea, a significant escarpment and drainage divide existed at the continental 420 

margin of eastern Dronning Maud Land. We build on these starting observations and ideas in 421 

the next section, which examines further products of erosion at the continental margin: the 422 

sediments deposited offshore of it.   423 

 424 

4.2 Sedimentation and basins of the Riiser-Larsen Sea 425 

Leitchenkov et al. (2008) interpreted the stratigraphy revealed in a network of seismic 426 

reflection profiles from the Riiser-Larsen Sea (Fig. 6a). The framework of their interpretation 427 

is a set of regional reflection surfaces. Below the seafloor, the uppermost of these surfaces is 428 

dated to the onset of regional glaciation at 34 Ma, because it marks the change from sub-429 

parallel and parallel to more varied reflectivity patterns (Kuvaas et al., 2004). Ages are 430 

assigned to five deeper surfaces on the basis of their onlaps onto oceanic crustal basement. 431 

The age of the deepest, the top of acoustic basement, varies from place to place owing to its 432 

creation by extension of pre-existing continental crust (>160-164 Ma) or by seafloor 433 

spreading processes (<160-164 Ma). The age of the deepest sedimentary surface is assigned 434 

based on its interpretation by Leitchenkov et al (2008) as a breakup unconformity marking 435 

the onset of seafloor spreading at 160-164 Ma, as determined from magnetic anomaly data 436 

from the conjugate Mozambique Basin (Leinweber and Jokat, 2012). The remaining three 437 

ages are more confidently applicable because the basement age is directly constrained by 438 

magnetic isochron interpretations at 144 Ma, 122 Ma, and 51 Ma.  439 

 440 

Total sediment thickness variation in the Riiser-Larsen Sea reveals the presence of two main 441 

basins on the continental rise. The western basin, labelled A in Figure 6a, lies between Astrid 442 
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Ridge and the mouth of the West Ragnhild trough near 20°E. It is subdivided into western 443 

and eastern parts by an unnamed basement high near 16°E. Sediment fill is thickest in its 444 

eastern part. The lack of any major offshore sediment fan or long onshore feeder trough 445 

allows us to assume that sediments accumulated in basin A from two local sources. The first 446 

was the adjacent continental margin, which has been limited southwards by the great 447 

escarpment since Gondwana breakup. The second, in late Jurassic times only, was active 448 

volcanoes along the magmatic Astrid Ridge. In the eastern basin, B, the total sediment 449 

thickness increases from west to east, reaching maxima in excess of 6.5 km in two lobes that 450 

narrow towards the mouth of the West Ragnhild trough at 24°E on the continental slope. 451 

The lobes are suggestive of the trough having hosted sediment transport processes to basin 452 

B.  453 

 454 

Castelino et al. (2016) presented estimates of sedimentation rate histories at two points in 455 

basin B and at one in the shallow part of basin A. All three reveal fast accumulation in late 456 

Jurassic and early Cretaceous times and in the run-up to post-Eocene perennial glaciation of 457 

East Antarctica. For a more wide-ranging picture of the sedimentation history, Figure 6b 458 

shows normalised accumulation histories that have been determined from 59 locations 459 

spaced at 25 km intervals along four of Leitchenkov et al.’s (2008) interpreted profiles. The 460 

majority of the profiles show a three-stage pattern, with an initial rapid phase of 461 

accumulation in late Jurassic through early Cretaceous times followed first by a long period 462 

of very slow accumulation, and later by accelerated sediment accumulation accompanying 463 

the onset of regional glaciation in Cenozoic times. Figure 6b shows that this pattern is 464 

broadly consistent with the conclusions of Krohne’s (2017) cooling-based denudation study. 465 

In detail, however, whilst Leitchenkov et al.’s (2008) seismic stratigraphy should be finely 466 

enough resolved to test Krohne’s (2017) interpretation of basin filling onshore at ~160-140 467 

Ma, there is no obvious signal of such an event having stalled offshore accumulation. We 468 

propose an alternative interpretation of this reheating that draws on a lull in the rate of filling 469 

in the volcaniclastic basin east of Astrid Ridge at ~160-140 Ma (Fig. 6b), at a time when the 470 

rest of basins A and B were filling rapidly. If this lull is interpreted to represent uplift and 471 

emergence of Astrid Ridge and the neighbouring part of basin A in response to activity of the 472 

Astrid Ridge mantle plume, then the accompanying increase of regional heat flow might be 473 

postulated as the cause of reheating at Sør Rondane.  474 

 475 

4.3 Sediment volume balance test of great escarpment erosion history 476 
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As noted above, rapid late Jurassic sediment accumulation (Fig. 6b) indicates extensional 477 

tectonics during Gondwana breakup led to the development and erosion of significant 478 

tectonic topography at the continental margin of the Riiser-Larsen Sea. Further to this, we 479 

expect the Riiser-Larsen Sea to be well suited for testing more detailed ideas about the great 480 

escarpment’s role in this erosion because sediment transport to it has only ever been 481 

possible across the Princess Ragnhild Coast; along-slope transport is restricted by the Astrid 482 

and Gunnerus ridges. Figure 6c presents a gross check of this expectation by comparing 483 

estimates of clast volumes deposited in and sourced to the Riiser-Larsen Sea since 164 Ma.  484 

 485 

To generate these estimates, we again used Leitchenkov et al’s (2008) sediment thickness 486 

data set. The thicknesses are based on average interval velocities from sonobuoy records 487 

that enable a coarse depth migration of travel times in the network. Based on an error 488 

analysis of similar data sets further east around the East Antarctic margin, uncertainty in 489 

these thicknesses may reach 25% of the calculated values (Whittaker et al, 2013), with 490 

possible extra unquantifiable uncertainty attached to the fact that the onlap-defined 491 

stratigraphy can only be indirectly verified by extrapolation of the DSDP/ODP-tied 492 

stratigraphy in the Weddell Sea (Rogenhagen et al., 2004; Lindeque et al., 2013; Huang and 493 

Jokat, 2016). Using the 25% thickness uncertainty, and assuming average porosity to 7 km 494 

depth lies in the range 12-21% (based on Bahr et al.’s, 2001 compaction coefficients for sand 495 

and mud) the volume of clasts in basin A sediments amounts to something in the range 496 

between 2.9 x 105 and 4.2 x 105 km3. Subtracting the proportion of volcaniclastic material in 497 

the sub-basin neighbouring Astrid Ridge, whose volume we estimate on the basis of its 498 

proportion of chaotic or transparent reflectivity to amount to about 0.65 x 105 km3, we 499 

estimate that basin A contains a volume of 2.25-3.55 x 105 km3 in clasts that can be assumed 500 

to have been eroded from the adjacent continental margin seaward of the great escarpment. 501 

We compare this volume to that of a now-eroded rock body that had been 600 km long and 502 

150 km wide, the same as the present-day area between the shelf and Sør Rondane, whose 503 

bottom surface lay at around 0.4 km below sea level (Fig. 2b) and whose top surface lay 2-3 504 

km (cf. the denudation estimates of Jacobs et al. (1995) and Krohne (2017)) above the 505 

present-day height (1.3-3.1 km) of the mountains, making it something in the range 3.7-6.5 506 

km thick. Assuming negligible porosity prior to erosion, the volume of this eroded rock lay in 507 

the range 3.3-5.9 x 105 km3. In view of the expected loss of some of the eroded material by 508 

passage through basin A, to deposition on the continental shelf, or to dissolution, this 509 

volume is consistent with the estimated total volume of clasts in basin A sediments (Fig. 6c). 510 
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The volume balance exercise thus enables us to conclude that continental margin 511 

topography developed during and soon after Gondwana breakup was eroded to form 512 

sediments that were subsequently deposited in the western Riiser-Larsen Sea. In the 513 

following section, we adopt this conclusion as an assumption that allows more detailed 514 

analysis of the erosion and sedimentation history.  515 

 516 

5. DISCUSSION 517 

5.1 Great escarpment erosion: mechanism and history 518 

The slight increase in sedimentation rates after the Eocene (Fig. 6b) and modest alteration of 519 

the fluvial landscape south of Sør Rondane suggest that the ice sheet facing basin A did not 520 

experience a long-lived or widespread warm-based phase of activity during its build up. 521 

Based on this, we assume that the escarpment is currently stationary and has been ever since 522 

34 Ma. Immediately beforehand, the period 122-34 Ma saw very slow sediment accumulation 523 

in Basin A. Escarpment retreat in that period is thus likely to have been at modest rates, and 524 

not to have led to capture of any large drainage catchment. Similarly, the same observations 525 

for that period allow us to rule out that the region was affected by significant changes in 526 

dynamic topography, tectonic relief generation, or large climatic changes. The 165-122 Ma 527 

period, in contrast, saw the accumulation of around two-thirds of the fill of Basin A, 528 

suggesting an early period of more meaningful escarpment retreat. These conclusions are 529 

also consistent with the observation that the regional subglacial landscape is characterized 530 

by a single escarpment and plain (Fig. 2), except perhaps in the narrow margin segment 531 

occupied by the Belgica mountains and West Ragnhild trough. 532 

 533 

The present day great escarpment lies 150 km inland of the continental shelf break. To 534 

achieve this separation during a single phase of escarpment retreat starting with breakup at 535 

165 Ma and ending with cold-based glaciation at 34 Ma would require a long-term 536 

backwearing rate of 1.1 km/Myr. This resembles both the long-term escarpment retreat rate 537 

estimated for the Namibian escarpment by Cockburn et al. (2000), and maximum plausible 538 

long-term backwearing rates in the landscape evolution model experiments presented by 539 

Braun (2018). However, the long-term retreat rate required to fill basin A by two-thirds in the 540 

165-122 Ma period would be about 2.3 km/Myr. With reference to the results of Braun’s 541 

(2018) one-dimensional landscape evolution modelling, achieving this by backwearing alone 542 

would require a physically unreasonable combination of conditions; an unusually long 543 

characteristic length, unusually high transport by hillslope processes, and unusually large 544 
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lithospheric effective elastic thickness. Following Brown et al. (2002), Cockburn et al. (2000) 545 

and Fleming et al. (1999), an alternative to this implausibility is to accept the occurrence of a 546 

significant (that is, approximately equal in sediment yield) component of downwearing over 547 

an area between the escarpment and an inland drainage divide that existed prior its 548 

formation. The existence of such a divide raises the possibility that the fluvial valleys in the 549 

subglacial landscape south of Sør Rondane may have been draining towards the southwest 550 

since as long ago as early-to-middle Jurassic times.  551 

 552 

5.2 Sediments transported by the ‘Ragnhild river’ 553 

At something in the range 6.8-9.7 x 105 km3, the volume of clastic material in basin B is 554 

between one and a half and three times greater than that eroded from the margin in the 555 

west and now resting in basin A. Figure 6b shows that this material accumulated most 556 

rapidly during Callovian-Aptian times. Unlike in basin A, it is not possible to relate this signal 557 

to the erosion of breakup-related margin relief because of its size. Although the Belgica and 558 

Yamato (Queen Fabiola) mountains present fragments of escarpments that might testify to 559 

such a process, the short length of the margin segment they occupy mean that the expected 560 

volume material eroded from in front of them would be less, not more, than that west of the 561 

West Ragnhild trough.  562 

 563 

Instead, the accumulation of basin B sediments in lobes that fan out from the mouth of the 564 

West Ragnhild trough suggests they were transported to the margin by a river whose valley 565 

was later glacially altered to form the trough. The trough originates well inland of the Belgica 566 

and Yamato escarpment fragments, beyond which BEDMAP2 data, although sparse, suggest 567 

this ‘Ragnhild river’ catchment may have occupied much of western Enderby Land northwest 568 

of the older (Permo-Triassic; Thomson et al., 2013) tectonic relief of the East Antarctic rift 569 

system. Whilst the catchment’s relatively large area potentially explains the volume of 570 

sediment encountered in basin B, there is a lack of evidence for Jurassic tectonic relief-571 

forming processes that would explain the sediments’ accumulation in the short period 572 

following Riiser-Larsen Sea breakup. This accumulation signal can instead be related to 573 

regional climate change, in which an arid pre-breakup continental interior became humid in 574 

response to the development of the new ocean between the Weddell and Riiser-Larsen seas. 575 

There is no available rock record from the Ragnhild river catchment to test such an idea. 576 

Paleocirculation modelling (Sellwood and Valdes, 2003) however raises the possibility of 577 

humidification in accompaniment to seaway development across Gondwana, albeit for an 578 
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outdated plate kinematic model in which this seaway is considerably wider by Late Jurassic 579 

times than more modern studies show. 580 

 581 

6. CONCLUSIONS 582 

x New aerogeophysical data reveal details of the topography of the East Antarctic Ice 583 

Sheet and its bed in the region south of Sør Rondane for the first time. 584 

x Sør Rondane lies on a 2-3 km high escarpment. The subglacial topography of the 585 

plateau inland of this escarpment is interpretable as that of a pre-existing fluvial 586 

landscape. The fluvial drainage pattern shows that the escarpment existed as a 587 

drainage divide prior to ice sheet glaciation.  588 

x The eastern margin of Sør Rondane is the West Ragnhild trough, an imposing 589 

subglacial canyon just 15-20 km wide but over 350 km long and exceeding 1.6 km 590 

deep in places. Almost the entire length of the trough floor in the new data lies below 591 

sea level.   592 

x The relief of the great escarpment around Sør Rondane, the West Ragnhild trough, 593 

and the fluvial landscape southwest of them were locally enhanced by alpine 594 

glaciation at some time prior to the ice sheet glaciation of the region, which probably 595 

dates from 34 Ma.  596 

x A volume balance exercise to assess erosion and deposition of sediments that were 597 

transported from continental East Antarctica to the western Riiser-Larsen Sea across 598 

the Princess Ragnhild Coast supports concepts of great escarpment formation during 599 

rapid early erosion of topography formed by tectonic processes at the time of 600 

continental breakup.  601 

x Compared to the results of published landscape evolution models, the Jurassic-early 602 

Cretaceous rate of escarpment retreat implied for this erosion to occur by 603 

backwearing alone is unfeasibly fast. Backwearing was likely accompanied by 604 

downwearing to such an extent that both may have yielded similar quantities of 605 

eroded material. 606 

x The requirement for a pre-existing inland drainage divide to focus the coastal 607 

downwearing component suggests some features of the regional relief may be even 608 

older than late Jurassic. 609 

x The concentration of sediments in the eastern Riiser-Larsen Sea in lobes fanning out 610 

from the West Ragnhild trough reveals the trough’s pre-glacial history as the valley 611 

of a major river draining parts of the East Antarctic interior.  612 
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x Rapid accumulation of the sediment lobes in the immediate aftermath of continental 613 

breakup suggests the development of an ocean led to the late Jurassic onset of a 614 

wetter climate in the continental interior of East Gondwana. 615 

x The first order relief of eastern Dronning Maud Land dates at least from the 616 

aftermath of Gondwana breakup in late Jurassic times. The region has been 617 

characterised by high topography ever since. 618 
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FIGURES 810 
 811 

 812 
FIGURE 1: Study location and flight lines used. a) Data used for compilation of free-air gravity 813 

anomaly grid; GT2A: Gravimetric Technologies gravimeter; LCR: Lacoste & Romberg/ZLS 814 

AirSea gravimeter. b) Data used for compilation of sub-ice topography grid. B: Belgica 815 

Mountains; PE: Princess Elisabeth station; YQ: Yamato (Queen Fabiola) Mountains. Inset: 816 

Antarctica, the survey area (red box) and the great escarpment of Dronning Maud Land (green 817 

line). Yellow: basement ridges at the margins of the Riiser-Larsen Sea (RLS). AR: Astrid Ridge, 818 

GR: Gunnerus Ridge.  819 
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 821 
Figure 2: a) BEDMAP2 bed depth estimates; b) bed depth estimates from new EMR data set 822 

(inside the dotted outline) with BEDMAP2 in the background, c) interpretation (see text for 823 

details). Grey fill: area covered by new data at 10 km line spacing. Green line / GE: great 824 

escarpment (the gridded 2.2 km contour along the escarpment face); dark blue line / WRT: West 825 

Ragnhild trough; black line / SRL: valley associated with part of Schirmacher-Rondane 826 

Lineament; light blue lines: valley networks with fluvial branching characteristics; mauve lines: 827 

straight, NE-trending lineaments. Grey dashed lines: lines of grid profiles shown in (d). Red 828 

dotted lines: locations of radargrams of Figure 3. d) Profiles over the grid of bed elevation. Black 829 

arrows: overdeepened sections along valley profiles. 830 
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831 
Figure 3: a) Radargram over the saddle in the West Ragnhild trough (at ~25 km distance) 832 

between Sør Rondane and Belgica Mountains. Pink lines are interpreted bed reflections, red 833 

discs show the deepest picks at the trough flanks between which the trough floor is not imaged 834 

but likely to lie below sea level; b) radargram over mid-stream section of a v-shaped valley south 835 

of Sør Rondane, c) Six radargrams showing valley floor picks (coloured discs) further 836 

downstream in the same valley as (b), and a height profile from those picks. Uphill-westwards 837 

segments are coloured orange. 838 
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Figure 4: a) Free air anomalies in the AntGG free-air anomaly dataset of Scheinert et al. (2016). 840 

b) Newly compiled free-air anomaly data within the dotted outline, AntGG outside it. White 841 

lines: valleys interpreted from EMR data. WRT: West Ragnhild trough. c) new simple Bouguer 842 

anomalies overlain on complete Bouguer anomaly dataset of Scheinert et al. (2016). GE: 843 

gridded 2.2 km contour on escarpment face, from Figure 2; ‘step’: short wavelength 844 

marginwards increase of Bouguer anomaly at the escarpment crest.  845 

 846 

 847 
 848 

FIGURE 5: Two-dimensional gravity (centre) and magnetic (top) anomaly models for a profile 849 

running NW-SE, perpendicular to one of the main valleys (at 95 km) south of the Sør Rondane 850 

escarpment (see Fig. 4b for location). Red numbers indicate SI magnetization values x10-3. Black 851 

numbers indicate densities in thousands of kgm-3. Given the very sparse regional outcrop 852 

constraints, model body variability is interpreted in the text only in terms of metamorphic grade. 853 
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 854 
FIGURE 6: a) Total sediment thickness distribution in the Riiser-Larsen Sea (Leitchenkov et al. 855 

2008) and bed topography of neighbouring Sør Rondane region. Dashed lines show locations of 856 

seismic data constraints. WRT: West Ragnhild trough. b) Sediment accumulation histories at 857 

sites spread throughout the Riiser-Larsen Sea (black discs in (a)) and low-temperature thermal 858 

history (background grey envelope) of Sør Rondane after Krohne (2017). c) maximum and 859 

minimum estimated volumes of clastic component of Riiser-Larsen Sea sediments and of 860 

material eroded from seawards of the great escarpment.  861 


