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Abstract We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing
ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state-dependency in paleoclimate
sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg

is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land ice
sheet growth and sea level fall) the multimillennial component of reconstructed ΔTg diverges from CO2,
while in simulations both variables vary more synchronously, suggesting that the differences during these
times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a
reconstruction-based extrapolation of S for the future, we exclude intervals with strong ΔTg-CO2 divergence
and find that S is less state-dependent, or even constant state-independent), yielding a mean equilibrium
warming of 2–4 K for a doubling of CO2.

Plain Language Summary Anthropogenic carbon dioxide (CO2) emissions will lead to rising
global mean temperature through the greenhouse effect. The amplitude of this warming, as estimated
with computer simulations for the equilibrium climate response to a doubling of atmospheric CO2

concentration, is called climate sensitivity. It is necessary to verify these simulation-based quantifications
of climate sensitivity with independent alternative approaches. One such approach is the analysis
of past (paleo) climates, which has indicated a state-dependent paleoclimate sensitivity. Here we compare
different data-based reconstructions and computer-based simulations of paleoclimate sensitivity of the
last 800,000 years and find that they disagree. In data-based reconstructions global mean temperature
and CO2 diverge during intervals when land ice growth is particularly pronounced. This temperature-CO2

divergence is not observed in simulations, probably due to an underestimation of the rate of land ice growth
and the associated cooling. However, these periods of pronounced land ice growth are not of relevance
for a warming future and can therefore be neglected when estimating climate sensitivity from
reconstructions of the past. Consequently, we find that paleoclimate sensitivity derived from
reconstructions is less state-dependent than previously thought and agrees with warming estimates
of 2–4 ∘ C as derived from simulated equilibrium climate response for CO2 doubling.

1. Introduction

Analyses of paleoreconstructions (Köhler et al., 2015; K2015 in the following) and paleoclimate simulations
(Friedrich et al., 2016; F2016 in the following), covering the late Pleistocene, have suggested that climate sen-
sitivity might not be a constant parameter of the climate system but a state-dependent variable that increases
toward warmer climates. Most other studies on this topic indicate a similar behavior, including a review that
covers a wide range of colder and warmer climate states (von der Heydt et al., 2016). However, there have
also been studies using general circulation models (GCMs) or Earth system models of intermediate complex-
ity (EMICs) which simulate an increase in climate sensitivity for colder than present-day climate (e.g., Colman
& McAvaney, 2009; Kutzbach et al., 2013; Pfister & Stocker, 2017).

Fueled by this ambiguity we wanted to test the robustness of the conclusions in earlier studies (K2015 and
F2016). Here we investigate whether this, previously found, state-dependency of climate sensitivity can be
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reproduced in other setups; we reanalyze the proxy-based reconstructions of global temperature change
(ΔTg) published in the last few years (Snyder, 2016, in addition to K2015 and F2016), investigate transient
800-kyr simulation results obtained with the EMICs, CLIMBER (Ganopolski & Calov, 2011), and LOVECLIM
(F2016), and analyze the only available transient GCM simulation across the last glacial/interglacial transition
provided by the CCSM3 model (He, 2011; Liu et al., 2009; Figure 1).

A direct comparison of today’s anthropogenic warming with paleodata-based reconstructions is not possi-
ble, due to the lack of a direct analog in the magnitude of the rate of changes. However, we can evaluate the
general climate system response to radiative forcing anomalies. For such efforts, the specific equilibrium cli-
mate sensitivity (ECS) S[X] (or paleoclimate sensitivity) has been defined as the ratio of the global and annual
mean surface temperature change (ΔTg) over the change in radiative forcing (ΔR[X]) caused by the process(es)
X (PALAEOSENS-Project Members, 2012)

S[X] =
ΔTg

ΔR[X]
(1)

Here we calculate radiative forcing for processes including the greenhouse gas (GHG) effect (CO2, CH4, and
N2O) but also other processes, such as the (planetary) albedo effects from land ice (LI), vegetation (VG), and
aerosols (AE). The time dependency of the climate to those forcing or feedback processes is not of particu-
lar interest in the following but has been addressed elsewhere (e.g., Rohling et al., 2018; Zeebe, 2013). This
concept of calculating S[X] was introduced in PALAEOSENS-Project Members (2012) to clarify which forcing is
explicitly included when estimating climate sensitivity from paleodata, not to test causation. Furthermore, this
approach assumes that different forcing processes have a similar impact onΔTg, which is a simplification (e.g.,
Stap et al., 2018; Yoshimori et al., 2011), that is difficult to overcome in analyses of mainly proxy-based recon-
structions. Within the context of Earth system model analysis this ratio ΔTg∕ΔR[X] is also called the climate
sensitivity parameter (e.g., Yoshimori et al., 2011).

The emergence of state-dependency in S[X] implies that the best fit to a scatter plot of ΔTg versus ΔR[X] is not
linear, but some nonlinear function, for example, a higher-order polynomial (Figure 2a). While the detection
of such a nonlinearity is rather straightforward, the quantification of S[X] is more complicated, as described in
detail by Köhler, Stap, et al. (2017).

In F2016 two independent estimates of ΔTg were generated: a purely proxy-based reconstruction based
on SST data from 63 records and a simulation with the LOVECLIM model. The estimates of ΔTg were then
averaged and confirmed the state-dependency in S[X] for the last ∼ 800 kyr as deduced by K2015. Since this
state-dependency in S[X] suggests that during warm interglacials a relatively small change in ΔR leads to
a relatively large change in ΔTg (Figure 2a), it is crucial to know how robust this conclusion is. Recently, a
new proxy-based reconstruction of global mean temperature changes constructed from 61 records of SST
anomalies has been published (Snyder, 2016). These two proxy-based reconstructions of ΔTg (F2016; Snyder,
2016) are not fully independent with respect to the underlying data but differ in details and in the upscaling
methodologies.

Finally, we discuss how our findings for paleoclimate sensitivity can be extrapolated to the future and compare
a rough approximation of equilibrium global warming caused by 2×CO2 with other approaches.

2. Methods

In K2015 deconvolution of the LR04 benthic !18O stack (Lisiecki & Raymo, 2005) was used to provide mutu-
ally consistent contributions from sea level (or land ice volume) and deep ocean temperature (ΔTO) using 3-D
ice sheet models of de Boer et al. (2014). Temperature change over land in the high-latitude Northern Hemi-
sphere (about 40–85∘N, ΔTNH) where most glacial/interglacial changes in land ice occurred during the late
Pleistocene is linearly related toΔTO on a multimillennial time scale. However,ΔTNH also contains changes due
to elevation changes (lapse rate) and considers seasonality. ΔTg and ΔTNH are then related to each other via a
nonconstant polar amplification factor (fpa) that has been determined from PMIP3 output. Sensitivity analy-
ses (de Boer et al., 2014; K2015) have shown that ΔTg has a relative uncertainty of ∼ 10% over the last 800 kyr.
This setup is a model-based interpretation of proxy data. It is a mixture between a purely proxy-based recon-
struction and model-based simulations. However, while full climate models are driven by temporal changes
in various boundary conditions (e.g., insolation and GHG) and then calculate all other variables internally, here
only the ice sheet dynamics are simulated. Therefore, we consider our approach to be more similar to those of
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Figure 1. Paleodata of the last 800 kyr. (a) Data used in the approach of Köhler (K2015) with global mean temperature change ΔTg, land ice-based radiative
forcing change ΔR[LI] and atmospheric CO2 (Bereiter et al., 2015). Inset shows an enlarged view on the divergence of ΔTg and CO2 at the end of the Eemian
(130–110 kyr BP, gray band), including as thin black line changes in obliquity (Laskar et al., 2004). Comparing different temperature time series with K2015-ΔTg
(black bold line); (b) proxy-based reconstructions of ΔTg (Synder, Friedrich (F2016)) and EPICA Dome C (EDC) ΔT ; (c) model-based simulations (CLIMBER and
LOVECLIM) including CCSM3 for the last 21 kyr. Ice core data (EDC ΔT , CO2) are plotted on the most recent age model AICC2012 (Bazin et al., 2013; Veres et al.,
2013) and shown as original high-resolution data (thin) and 8-kyr running means (bold).
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Figure 2. Scatter plots of temperature change ΔTg over radiative forcing change ΔR[X]. (a) Conceptual understanding of different relationships between ΔTg and
ΔR[X] and the resulting state-(in)dependency of S[X]. (b) Data-based reconstructions of ΔTg (Köhler, Snyder, and Friedrich); (c) model simulation results of ΔTg
(CLIMBER and LOVECLIM); (d) alternative approaches (Friedrich’s model/data mixture for ΔTg, 21 kyr transient simulations with CCSM); (e) internally consist model
setups of CLIMBER and LOVECLIM; (f–h) multimillennial component (8-kyr running mean) of the proxy-based approaches (f: Köhler; g: Snyder; h: Friedrich) split in
time windows with strong or weak divergence of ΔTg and CO2. Data are split by the zero line in the standardized ratio ΔTg∕ΔR[CO2] shown in Figure 3b. White
squares are data points which are filtered out in the standardizing of the data, and therefore neither considered in strong or weak divergence part, but which
contribute to the fit through all data. In most plots the same ΔR[CO2 .LI] from K2015 is plotted, while in (d) CCSM3 is based on ΔR[LI] from ICE-5G; in (e) we show
ΔR[CO2 .LI] as used in CLIMBER and LOVECLIM.

KÖHLER ET AL. 6664



Geophysical Research Letters 10.1029/2018GL077717

the proxy-based reconstructions than of the model-based simulations. From the three alternative time series,
based on different assumptions for the polar amplification factor fpa in K2015, we use the standard case (ΔTg1),
in which fpa is linearly related to ΔTNH. However, our conclusions are not dependent on this choice of fpa and
ΔTg (see the application of the alternative temperature time series in Figure S1 in the supporting information).
The fact that three alternative formulations of ΔTg can be connected to the same ΔR[LI] shows that there are
some degrees of freedom in the connection of both variables.

In K2015 the radiative forcing of CO2 (ΔR[CO2] = 5.35 ⋅ ln(CO2∕(278 ppm))W∕m2, Myhre et al. (1998)) and
land ice albedo was considered explicitly—leading to ΔR[CO2 ,LI] and to the state-dependency in S[CO2 ,LI]. It
should be noted that when following the revised formulation of Etminan et al. (2016), ΔR[CO2] differs by
less than 0.01 W/m2 (Köhler, Nehrbass-Ahles, et al., 2017). Furthermore, we assume that radiative forcing is
state-independent, which might be a simplification (e.g., Forster et al., 2016). We will analyze similar variables
based on alternative ΔTg from proxies (F2016; Snyder, 2016) and simulations (LOVECLIM (F2016), CLIMBER
(Ganopolski & Calov, 2011), CCSM3 (He, 2011; Liu et al., 2009)). We will first analyze these different ΔTg in rela-
tion to the same ΔR[CO2 ,LI] as derived in K2015, but for in-depth investigations of simulations we only use the
internally applied radiative forcing. The use of these alternative ΔTg for identical ΔR[CO2 ,LI] has the potential to
introduce a bias because temperature and land ice distribution are firmly linked through deconvolution of the
LR04 benthic !18O stack. This potential bias is not investigated any further here, although alternative land ice
distribution (e.g., ICE-5G of Peltier, 2004) agrees well with our results (K2015). Alternative approaches to
estimate ΔR[LI] from sea level changes have shortcomings, since they omit the latitudinal effect of land ice
distribution on radiative forcing (see K2015 for further details). Chronological misfits between the different
records, which might also be introduced in that way, should not be of importance here, as our final interpreta-
tions are based on 8-kyr running means. Details of both alternative ΔR[LI] estimates and chronological issues
have been discussed previously (K2015; Köhler, Stap, et al., 2017). For the CLIMBER simulations additional
processes (CH4, N2O, vegetation, and aerosols) in the radiative forcing term ΔR[X] are also considered.

Time series are standardized before analysis. Due to very high variability in calculated ratios (Figures 3b and 3c,
and S1b and S1c) data far away from the mean (|ΔTg∕ΔR[CO2 ,LI]|> 0.25"; |ΔR[LI]∕ΔR[CO2]|> 1") are considered
as outliers and removed. The chosen cutoff thresholds mainly influence the peak height in the standard-
ized time series, but not the dynamics contained in the time series. Due to the rather linear behavior of
the simulations, no outliers in ΔTg∕ΔR[CO2 ,LI] have been removed from the LOVECLIM and CLIMBER results.
Finally, the outlier-free time series are standardized a second time to enable comparison between the different
approaches. This outlier selection during standardization is illustrated for K2015 in Figure S2.

The land ice dynamics simulated in CLIMBER (which are also used in LOVECLIM via off-line coupling) are
restricted to Northern Hemisphere ice sheets, Antarctic land ice is kept fixed at present-day configuration,
while in K2015 the dynamics of ice sheets and ice shelves in both hemispheres have been investigated.
The CCSM3 simulations (He, 2011; Liu et al., 2009) were driven by the ICE-5G land ice distribution, which was
compared to de Boer et al. (2014) in K2015. This ICE-5G-based ΔR[LI] is also used here when investigating
CCSM3 results.

We use the internal fitting routines of the software package GLE, the Graphics Layout Engine
(http://www.gle-graphics.org) and use F tests to determine whether a second-order polynomial fits the scat-
tered ΔTg-ΔR data better than a linear approach (Table S1). For all fits the precondition of meeting the origin
is applied (no temperature change for no forcing change), leading to the following two regression equations
to be tested: either y = b ⋅ x (linear) or y = b ⋅ x + c ⋅ x2 (nonlinear).

In cases where uncertainties in both ΔTg and ΔR[X] are available, more elaborate statistics might be applied
(e.g., Monte Carlo approaches have been used in K2015). Uncertainties inΔTg are only available for K2015 and
Snyder. In Figure S3, we show that nonlinear fits are very similar when considering or ignoring uncertainties
in these two data sets. We take this as support for the more simplistic approach in our main analysis: all data
sets are treated identically and fits are calculated without considering uncertainties in the scattered data.

3. Results and Discussions
3.1. Proxy-Based Reconstructions Versus Model-Based Simulations
The main difference between proxy-based reconstructions and model-based simulations to estimate global
temperature changes is that the proxy-based reconstructions capture the impacts of all Earth system pro-
cesses active in the considered time window, while in the model-based approaches only those processes

KÖHLER ET AL. 6665

http://www.gle-graphics.org


Geophysical Research Letters 10.1029/2018GL077717

Figure 3. Multimillennial (all data as 8-kyr running mean) ΔT-CO2 divergence and relative contributions of radiative forcing of land ice albedo and CO2 for ΔT in
different setups. (a) ΔT (local ΔT for EDC and ΔTg elsewhere); (b) the divergence of ΔT and CO2 described by ΔT∕ΔR[CO2]; (c) ΔR[LI]/ΔR[CO2]: Relative land ice
(sea level) contribution with respect to CO2. The data sets Köhler and EDC differ only by their ΔT . From the model simulations (CLIMBER and LOVECLIM) we
analyzed the internally used radiative forcing. All data sets have been standardized and outliers in the ratios have been filtered out. Obliquity (Laskar et al., 2004)
is sketched on top of subpanel a (thin black line), with shadings and labels (A–S) indicating times of decreasing obliquity. Color code is given by the details of the
Köhler data set: Gray = strong ΔTg−CO2 divergence including large variations in relative sea level contribution; light red = no or weak ΔTg−CO2 divergence and
large variations in relative sea level contribution; light blue = no or weak ΔTg-CO2 divergence and stable relative sea level contribution. Vertical two-headed
arrows in the ΔTg-CO2 divergence panel indicate the antiphase dynamics partially seen between Köhler and the CLIMBER/LOVECLIM data sets. Question marks in
(b) highlight two phases (MIS 15a and MIS15e) during which Köhler and EDC largely disagree.

implemented in the model can leave their imprint in the simulation results. Simulated time series of ΔTg,
therefore, have to be questioned critically for any serious omissions. In other words, any persisting difference
between proxy-based reconstructions and simulatedΔTg might be caused by those processes not included in
the models. Alternatively, proxy-based reconstructions might be systematically biased, although this seems
unlikely if independent reconstructions come to similar conclusions.

Here we compare results of others to the approach of K2015 (Figure 1a) in order to understand when the
proposed state-dependency in S[CO2 ,LI] is sustained or when it needs to be rejected. If we replace ΔTg with
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an alternative time series (F2016, Snyder, CLIMBER, LOVECLIM, CCSM3, Figures 1b and 1c), we find a similar
state-dependency in S[CO2 ,LI] —with higher values for warmer conditions—when the applied ΔTg time series
is based on proxy-based reconstructions (Figure 2b). This holds for the temperature data set of Snyder, as well
as for proxy-based ΔTg derived in F2016 (Figure 2b). The nonlinearity in the ΔTg-ΔR[CO2 ,LI] scatter plots is less
pronounced in these alternative calculations, when compared to K2015.

If temperature anomalies are taken from CLIMBER simulations, a nonlinear relationship between ΔTg and
ΔR[CO2 ,LI] is generated that is inverse to that found by K2015 (Figure 2c), suggesting a smaller paleoclimate
sensitivity for warmer climates. Similarly, if we base this analysis on the ΔTg simulated in LOVECLIM, we find
an inverse nonlinear relationship—opposite to the proxy-based results (Figure 2c). Since the ΔTg-ΔR[CO2 ,LI]
relationship of the proxy-based reconstructions of F2016 and the transient LOVECLIM simulations show the
opposite slope, it is natural that an averaged ΔTg based on both (as used in F2016) contains a rather linear
relationship (Figure 2d). Finally, we analyzed the only available transient GCM-simulation, the Trace21K sce-
nario of the CCSM3 model for the last 21 kyr. Using their ΔTg, we again find the same results as from the
EMIC runs (Figure 2d)—a state-dependent paleoclimate sensitivity with steeper slopes in the ΔTg-ΔR[CO2 ,LI]
data during colder climates, pointing to a higher S[CO2 ,LI], which is inverse to the results from the proxy-based
approaches.

If we analyze internally consistent EMIC simulation results using the radiative forcing of CO2 and land ice
applied in the model runs together with the simulated ΔTg (instead of ΔR[CO2 ,LI] based on K2015), we find a
linear relationship betweenΔTg andΔR[CO2 ,LI] for LOVECLIM (Figure 2e). In CLIMBER we find a similar nonlinear
relationship between ΔTg and ΔR[CO2 ,LI] —with steeper slope during cold climate—as in the approaches in
which the CLIMBER-simulated ΔTg was analyzed together with ΔR[CO2 ,LI] of K2015 (Figure 2e). Further details
on the differences in ΔR[LI] for the different approaches can be found in Figure S4.

3.2. Obliquity-Driven Changes and the !Tg-CO2 Relationship
How can we understand this strong state-dependency of S found in proxy-based approaches and the dif-
ference to the model-based approaches? It has recently been deduced, from ice core data covering the last
800 kyr, that the multimillennial trend of atmospheric CO2 concentration and Antarctic temperature diverge
when obliquity decreases (Hasenclever et al., 2017). One way of perceiving this divergence is that the reduced
incoming insolation at high latitudes causes land ice sheet growth and cooling, while there is a coexist-
ing process that keeps CO2 at a relatively constant level. Solid Earth modeling experiments have indicated
that falling sea level might lead to enhanced magma and CO2 production at mid-ocean ridges (e.g., Lund &
Asimow, 2011). Hasenclever et al. (2017) suggested that the combination of marine volcanism at mid-ocean
ridges and at hot spot island volcanoes might react to decreasing sea level and be a potential cause for this
ΔTg-CO2 divergence. Alternatively, the divergence implies that processes other than CO2 radiative forcing or
land ice albedo (potentially radiative forcing from non-CO2 GHGs, or albedo change caused by aerosols, or
vegetation) dominate during these phases—leading to a cooling with little reduction in CO2. The evidence
so far (e.g., Köhler et al., 2010) does not indicate that the latter was the case, although potential impacts of
different forcing efficacy (e.g., Stap et al., 2018; Yoshimori et al., 2011) have so far not been investigated. One
study analyzed the contribution of the terrestrial carbon cycle to the divergence of CO2 and ΔTg at the end
of the present (Holocene) and the previous (Eemian or MIS 5e) interglacial (Brovkin et al., 2016). Processes
which seemed to explain the reconstructed divergence in the Holocene failed to explain similar dynamics
during MIS 5e, pointing to model deficiencies in the representation of the land carbon cycle, or suggesting
that other processes are at work. All modeling results used in here (CLIMBER, LOVECLIM, and CCSM3) were
obtained in simulations with prescribed observed CO2 concentrations and thus include all effects of the Earth
system feedbacks on CO2. However, simulation results do not contain the characteristic long-term ΔTg-CO2

divergence found in the proxy-based reconstructions (Snyder, F2016), or in the deconvolution of LR04-!18O
into land ice dynamics (K2015). This suggests that a relatively low rate of simulated land ice growth and asso-
ciated cooling during times of decreasing obliquity, and not a feedback on CO2, might be responsible for the
difference between model- and proxy-based approaches.

When ΔTg is derived mainly from proxy-based reconstructions (K2015, F2016, and Snyder), our results show
a strong ΔTg-CO2 divergence at times of obliquity decrease. An example of this is the dynamics at the end of
the Eemian (see zoom-in in the inset in Figure 1a). For comparison of the different approaches, all time series
in the following are analyzed in their standardized versions (Figures 3 and S1). They confirm the earlier find-
ing of a temperature-CO2 divergence at times of obliquity decrease by Hasenclever et al. (2017), in which not
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global temperature change, but Antarctic temperature change derived from the EPICA Dome C (EDC) ice core
(Jouzel et al., 2007) has been considered. The temporal evolution of this divergence betweenΔTg and CO2 can
be observed by analyzing the multimillennial dynamics of the ratio ΔTg∕ΔR[CO2], which by coincidence is also
defined as S[CO2] (Figure 3b). The interpretation of S[CO2] as a proxy for the multimillennialΔTg-CO2-divergence
represents a major improvement in the understanding of S[CO2], since previously no meaningful patterns
have been detected in its temporal variability (PALAEOSENS-Project Members, 2012). We find that a strong
ΔTg-CO2 divergence exists in 12 out of 19 phases with decreasing obliquity (gray bands in Figure 3) in the
data from K2015. Furthermore, the ratio of land ice and CO2 radiative forcing (ΔR[LI]∕ΔR[CO2]) underwent large
changes during these intervals (Figure 3c), suggesting that land ice (sea level) related changes might indeed
be connected to the times of these diverging trends.

The seven phases with decreasing obliquity, but without strong ΔTg-CO2 divergence in K2015, can further-
more be divided into periods with a stable ratio of ΔR[LI]∕ΔR[CO2] (light blue bands marked A, D, G, and P)
and those with strong variability in ΔR[LI] ∕ΔR[CO2] (light red bands I, K, and R). In the former periods (blue
colored) the stable ratio of land ice and CO2 radiative forcing suggests in-phase variations of both processes,
which might indicate that any potential sea level-related CO2 outgassing from marine volcanism or other pro-
cesses could be compensated by the land ice sheet albedo feedback. In the latter periods (red colored) the
ratio ΔTg∕ΔR[CO2] is always increasing toward the end of the obliquity-half cycle, suggesting that some sea
level-related process affecting CO2 might have initiated but not yet developed its full potential. This leads, for
example, to the unusual strong ΔTg-CO2 divergence after the end of period K at 436 kyr BP which persisted
for almost a complete obliquity cycle around MIS 11. Five of these seven phases with decreasing obliquity but
without a strong ΔTg-CO2 divergence (A, D, I, K, and P, but not G and R) are also characterized by very mod-
est cooling, indicating that the net climate changes during these phases are small when compared to other
phases with decreasing obliquity. These phases should, therefore, be interpreted with care since the dominant
climate variations occur during other times.

Much smaller variations in the ΔTg-CO2 divergence are found when analyzing model-based simulations
of CLIMBER and LOVECLIM than in K2015 (Figure 3b). Furthermore, the model-based ΔTg-CO2 divergence
observed during times of decreasing obliquity is partially in antiphase to the proxy-based results (phases C
and S), suggesting highly synchronous variations in CO2 and simulated ΔTg while a strong divergence to CO2

persists in the reconstructed ΔTg (Figure 3b). The two lukewarm interglacials MIS 15a, and 15e (phases N, O,
570 and 610 kyr BP, respectively, Past Interglacials Working Group of PAGES, 2016) seem to be special in this
respect, since the ΔTg-CO2 divergence from K2015 is in antiphase to those based on the simulation output
and also to that based on EDC ΔT . Interestingly, the temperature-CO2 divergence during the MIS 5/4 transi-
tion, around 75 kyr BP (phase B) which motivated the study of Hasenclever et al. (2017), is one of the largest
in EDC but rather weak in K2015. Our calculated ΔTg-CO2 divergence, based on ΔTg of Snyder or F2016, con-
tains qualitatively similar dynamics related to obliquity as that based on EDC ΔT or K2015 but differs from
the model-based simulations (Figure S1). This qualitative agreement of the divergence in proxy-based ΔTg

(K2015, F2016, Snyder, and EDC) provides confidence in the global temperature record obtained in K2015.
Furthermore, tests have shown that if new insights into polar amplification (Stap et al., 2018) are used for an
improvement of the model setup used in K2015, only small changes in ΔTg are generated, but the general
difference to the model-based simulations persists. Based on these findings, the analysis of Hasenclever et al.
(2017) needs to be expanded: decreasing obliquity seems to be a necessary but not a sufficient condition for
the ΔTg-CO2 divergence. Another process related to sea level change, or in detail to ΔR[LI] ∕ΔR[CO2], needs to
be active at the same time to explain the data.

The importance of this ΔTg-CO2 divergence and its connection to obliquity, for the state-dependency of our
paleoclimate sensitivity estimate, becomes apparent when we split the data into times with increasing or
decreasing obliquity. In the latter case the nonlinearity (parameter c in the second-order fit) betweenΔTg and
ΔR is significantly different in the data set of K2015 and Snyder (Figures S5a and S5c), while in the CLIMBER
output hardly any difference can be detected (Figure S5b). For F2016 (Figure S5d), which shows a nonlinear
relationship when all data are analyzed, the relationship is only linear in both data subsets when differentiated
by their phase of obliquity. When data are split based on the ratioΔTg∕ΔR[CO2] in subsets with strong or weak
ΔTg-CO2 divergence, we find an even larger difference in the nonlinearity than when data are split by obliquity
in K2015 (Figure 2f ), implying a more linear relationship for data with strong ΔTg-CO2 divergence than for
data with decreasing obliquity. When using ΔTg from the proxy-based reconstructions of Snyder and F2016,
we find a nonlinear relationship in the ΔTg-ΔR[CO2 ,LI] scatter plot during strong ΔTg-CO2 divergence, while for
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times with more synchronous changes in ΔTg and CO2 (weak divergence) a linear relationship between ΔTg

and ΔR[CO2 ,LI] emerges (Figures 2g and 2h).

3.3. Using Paleoclimate Sensitivity to Estimate !T2×CO2

TheΔTg-CO2 divergence appears mainly during, or in connection with, periods of decreasing obliquity related
to land ice growth or sea level fall. These times cover ∼ 50% of past climates. We conclude that for a generic
climate system understanding the implementation of the processes responsible for this ΔTg-CO2 divergence,
potentially being the solid Earth-climate feedbacks related to a sea level-induced change in marine volcanism
(e.g., Hasenclever et al., 2017; Lund & Asimow, 2011), is essential.

Intervals of strong ΔTg-CO2 divergence should not be considered for the interpretation of paleodata in the
context of future warming, for example, by calculating the paleoclimate sensitivity S, because in the future
we expect sea level to rise. Otherwise the climate system response of a glaciation is erroneously implicated
with anthropogenic warming. Here one might rely only on the subset of ΔTg-ΔR data that coincide with
times of weak (or no) ΔTg-CO2 divergence. For K2015, this restriction would lead to a different quantification
of paleoclimate sensitivity following the framework of Köhler, Stap, et al. (2017; Figure 2f ). In detail, S[CO2 ,LI]
can be derived from the fit to the scattered ΔTg-ΔR[CO2 ,LI] data after S[CO2 ,LI] = b + c ⋅ ΔR[CO2 ,LI]. The pale-
odata of the last 800 kyr cover mainly intervals with ΔR[CO2 ,LI] ≤ 0 W/m2, and due to the state-dependent
character of S[CO2 ,LI] we refrain from an extrapolation of our derived fitting function to a range not covered
by the data, for example, to ΔR[CO2 ,LI] > 0 W/m2. Nevertheless, climates comparable to late Pleistocene inter-
glacials can be approximated by ΔR[CO2 ,LI] ≈ 0 W/m2. S[CO2 ,LI] for those interglacials would be ∼ 20% smaller
when excluding intervals of ΔTg-CO2 divergence in comparison to calculations based on all available data,
S[CO2 ,LI] = 1.6 K/(W/m2) instead of 2.0 K/(W/m2). If based on ΔTg of Snyder (Figure 2g) or F2016 (Figure 2h)
these subsets of data with weak (or no) ΔTg-CO2 divergence are defined by a linear relationship between ΔTg

andΔR[CO2 ,LI] and a constant S[CO2 ,LI] of 0.82 and 0.88 K/(W/m2), respectively. To estimate equilibrium warming
caused by 2×CO2 (ΔT2×CO2

, the classical Charney ECS (Charney et al., 1979; Knutti et al., 2017) from our S[CO2,LI]),
we need to correct for missing slow processes (radiative forcing of CH4 and N2O; albedo changes caused
by vegetation and aerosols). In a previous study (PALAEOSENS-Project Members, 2012) the ratio between
S[GHG,LI,VG,AE]/S[CO2 ,LI] for the last 800 kyr has been determined as 0.64 ± 0.07 (1"). Note that this correction
for the slow processes ignores any state-dependency that might be associated with them. Together with the
average radiative forcing for a doubling of CO2 of 3.71 W/m2 (± 10%(1")) (Myhre et al., 1998) our S[CO2 ,LI] for
late Pleistocene interglacials translates into a ΔT2×CO2

or ECS of 1.9 ± 0.3 K (Snyder), 2.1 ± 0.3 K (F2016), and
3.8 ± 0.6 K (K2015). Alternative calculations, based on the data split by obliquity (Figure S5), would lead to
slightly larger numbers of ECS (2.3 ± 0.3 K (Snyder), 2.3 ± 0.3 K (F2016), and 4.4 ± 0.7 K (K2015)); however, we
consider these to be less reliable following our analysis in the previous subsection. This compares well with
other approaches (Knutti et al., 2017), including the narrow likely (66% confidence interval) range of 2.2–3.4 K
recently obtained from an emerging constraint from global temperature variability and CMIP5 (Cox et al.,
2018), and the 95% confidence range of 2.0–4.3 K from a large model ensemble, which has been constrained
by observational and geological evidences (Goodwin et al., 2018).

4. Conclusions

In conclusion, we find an inconsistency in the state-dependency of paleoclimate sensitivity calculated from
model simulations and proxy-reconstructions, when explicitly considering radiative forcing of CO2 change
and land ice albedo change, or S[CO2 ,LI]. This may be related to the fact that fast climate feedbacks in EMICs are
too linear. Furthermore, EMICs may underestimate the strength of some slow climate feedbacks. As it has been
shown that solid Earth-climate feedbacks can play an important role for CO2 dynamics during glacial cycles
(e.g., Hasenclever et al., 2017; Huybers & Langmuir, 2009; Lund & Asimow, 2011), these feedbacks should be
incorporated in models used to simulate CO2 concentration (e.g., Ganopolski & Brovkin, 2017). Furthermore,
one also needs to fully understand why current model simulations contain none of the temperature-CO2

divergence observed during intervals of decreasing obliquity within proxy-based reconstructions. Our study
suggests that one possible reason for this discrepancy is that the CLIMBER model underestimates the rate of
land ice growth during periods of decreasing obliquity and consequently simulates less cooling induced by
land ice. It should be emphasized that the magnitude of the expected CO2 changes connected with these
solid Earth feedbacks are small when compared with anthropogenic CO2 changes. Therefore, these missing
model feedbacks in CLIMBER do not affect its ability to simulate future temperature increase caused by a rise
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in CO2. Our results have important consequences for future efforts to quantify paleoclimate sensitivity from
proxy-based analyses. We suggest that studies should focus on intervals without decreasing obliquity or sea
level, since the detected divergence of global temperature and CO2 during these intervals could otherwise
overprint the system response.
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Figure S1. Same as Figure 3 (multi-millennial �Tg-CO2 divergence, all data as 8-kyr running mean), but
for di↵erent �Tg data sets: the 3 versions of �Tg obtained in Köhler (K2015), and proxy-based reconstruction
of �Tg from Snyder and Friedrich (F2016). (a) �Tg; (b) divergence of �Tg and CO2 indicated by the ratio
�Tg/�R[CO2]. (c) relative land ice (sea level) contribution with respect to CO2 (�R[LI]/�R[CO2]). All data
sets are identical in their ratio �R[LI]/�R[CO2], therefore only one respresentation is shown. All data sets have
been standardized and outliers in the ratios in sub-figures (b, c) have been filtered out. Obliquity [Laskar
et al., 2004] is sketched on top of sub-panel a (thin black line), with shadings and labels (A–S) indicating
times with decreasing obliquity. For more details see caption to Figure 3.
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Figure S2. Illustration of outliers in standardizing procedures for K2015 and (a) ratio �Tg/�R[CO2]; (b)
ratio �R[LI]/�R[CO2]. The first iteration of standardization (orange lines) led to time series in these ratios
which were dominated by a few data points from interglacials (e.g. -19 around 400 kyr BP in �Tg/�R[CO2]).
Therefore the given threshold (horizontal orange lines) have been defined in order to leave these dominating
individual ratios from interglacials in MIS 5. 9. 11 out of the further analysis, which is then based on a second
standardization (black lines). Shadings and labels (A–S) indicating times with decreasing obliquity. For more
details see caption to Figure 3.
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Figure S3. Comparing the influence of considering uncertainties in both x and y direction for non-linear
fits by applying Monte Carlo (MC) statistics in scatter-plots of temperature change �Tg over radiative forc-
ing change �R[CO2,LI]. Data are randomly resampled 5000 times in MC. The alternative fits without MC,
which ignore uncertainties in both directions, are based only on the mean values. Applied on raw data from
(a) Köhler (K2015), and (b) �Tg Snyder. Uncertainties show 1�.
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Figure S4. Di↵erences in land ice sheets in various approaches. K2015 (Köhler) calculates changes of
both ice sheets and ice shelves in northern (NH) and southern (SH) hemisphere, while both CLIMBER and
LOVECLIM use the same ice sheet output generated within CLIMBER, which is restricted to NH ice sheets
only. (a) �R[LI] as published in K2015, and recalculated from de Boer et al. [2014] when restricted to NH ice
sheets in comparison to �R[LI] calculated internally in CLIMBER and LOVECLIM. (b) Change in underlying
land ice area. In CLIMBER the land ice sub-module and the climate sub-module are fed with di↵erent land
ice areas.
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Figure S5. Scatter-plots of temperature change �Tg over radiative forcing change �R[X]. Multi-millennial
(8-kyr running mean) e↵ects split in time windows with falling or rising obliquity for (a) Köhler (K2015), (b)
CLIMBER simulation results, (c) �Tg from Snyder and (d) �Tg from Friedrich (F2016). For CLIMBER the
internally consistent results are shown, containing radiative forcing of all three greenhouse gases (GHG), and
albedo changes based on land ice (LI), aerosols (AE) and vegetation (VG).
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Table S1. Fitting a linear or a non-linear function to the data. For all data least-square linear (y(x) = bx) or
non-linear regressions (y(x) = bx + cx2) are calculated, and F-tests are used to determine the better fitting
regression model. Additionally, for �Tg from K2015 and Snyder 5000 Monte-Carlo-generated (MC) realisa-
tions of the scattered �Tg � �R[CO2,LI] were analysed. The data are randomly picked from the entire Gaussian
distribution described by the 1� of the given uncertainties in both �Tg and �R[CO2,LI]. For MC the parameter
values of fitted polynomials are given as mean±1� uncertainty from the di↵erent realisations. n: number of
data points in data set. �2: weighted sum of squares following either a linear fit (1st order) or a non-linear fit
(2nd order polynomial). F: F-ratio for F-test to determine, if the higher order fit describes the data better than
the lower order fit (1st versus 2nd order polynomial). p: p-value of the F-test. L: significance level of F-test:
/: not significant (p > 0.001); *: significant at 0.1% level (p  0.001). r2: coe�cient of determination of the
fit. b,c: derived coe�cients of fitted polynomial. 8-kyr rm: 8-kyr running mean.

Data set n �2 F p L r2 b c Figure
1st 2nd %

no Monte-Carlo (neglecting uncertainties)
K2015 �Tg1, all data, raw 394 376 148 603.9 <0.001 * 80 2.00 0.20 2b, S3a
K2015 �Tg1, all data, 8-kyr rm 389 333 112 764 <0.001 * 82 2.00 0.20 2f, S5a
K2015 �Tg1, strong divergence, 8-kyr rm 147 113 34 336.9 <0.001 * 81 2.28 0.26 2f
K2015 �Tg1, weak divergence, 8-kyr rm 217 63 27 286.7 <0.001 * 90 1.59 0.12 2f
K2015 �Tg1, obliquity fall, 8-kyr rm 188 211 61 457.4 <0.001 * 84 2.21 0.24 S5a
K2015 �Tg1, obliquity rise, 8-kyr rm 201 112 40 358.2 <0.001 * 81 1.79 0.15 S5a

Snyder �Tg, all data, raw1 400 357 333 28.7 <0.001 * 74 1.29 0.06 2b
Snyder �Tg, all data, raw1 394 352 329 27.4 <0.001 * 74 1.28 0.06 S3b
Snyder �Tg, all data, 8-kyr rm 396 324 304 25.9 <0.001 * 75 1.26 0.06 2g, S5c
Snyder �Tg, strong divergence, 8-kyr rm 169 87 75 26.7 <0.001 * 73 1.43 0.08 2g
Snyder �Tg, weak divergence, 8-kyr rm 147 60 60 0.0 0.878 / 80 0.82 0 2g
Snyder �Tg, obliquity fall, 8-kyr rm 196 136 110 45.9 <0.001 * 83 1.48 0.10 S5c
Snyder �Tg, obliquity rise, 8-kyr rm 200 176 175 0.8 0.389 / 66 0.96 0 S5c

Friedrich �Tg, all data, raw 385 378 356 23.7 <0.001 * 70 1.27 0.06 2b
Friedrich �Tg, all data, 8-kyr rm 381 319 304 18.9 <0.001 * 73 1.22 0.05 2h, S5d
Friedrich �Tg, strong divergence, 8-kyr rm 152 68 62 14.5 <0.001 * 80 1.37 0.06 2h
Friedrich �Tg, weak divergence, 8-kyr rm 198 82 82 0.1 0.798 / 80 0.88 0 2h
Friedrich �Tg, obliquity fall, 8-kyr rm 190 135 128 10.4 0.002 / 80 1.03 0 S5d
Friedrich �Tg, obliquity rise, 8-kyr rm 191 178 173 6.3 0.01 / 54 0.97 0 S5d

CLIMBER �Tg, all data, raw 400 176 170 14.5 <0.001 * 80 0.62 �0.03 2c
CLIMBER consistent, all data, raw 799 170 153 487 <0.001 * 94 0.75 �0.17 2e
CLIMBER consistent, all data, 8-kyr rm 792 44 24 658.3 <0.001 * 98 0.69 �0.05 S5b
CLIMBER consistent, obliquity fall, 8-kyr rm 388 25 12 418.2 <0.001 * 98 0.65 �0.06 S5b
CLIMBER consistent, obliquity rise, 8-kyr rm 404 19 11 292.4 <0.001 * 98 0.72 �0.04 S5b

LOVECLIM �Tg, all data, raw 389 200 199 1.9 0.164 / 85 1.04 0 2c
LOVECLIM consistent, all data, raw 739 126 126 0.01 0.939 / 94 1.96 0 2e

LOVECLIM/Friedrich �Tg, all data, raw 389 165 161 7.2 0.008 / 86 1.01 0 2d
CCSM (Trace21K) �Tg, all data, raw 209 21 10 227.7 <0.001 * 98 0.44 �0.07 2d

with Monte-Carlo (including uncertainties)
K2015 �Tg1, all data, raw 394 3027 1334 497.5 <0.001 * 68 2.01±0.03 0.20±0.01 S3a
Snyder �Tg, all data, raw 394 729 659 41.6 <0.001 * 49 1.46±0.07 0.10±0.01 S3b

1: Both analyses di↵er slightly by the underlying data. In Fig. S5 the data set is reduced to those time steps also used in
K2015 (for a few time periods no CO2 data exist), otherwise no ��R is available, while in Fig. 2b the missing CO2 have
been generated by interpolation.
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