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Seawater alkalinity modulates
the response of Carcinus =753
maenas to Ocean Acidification -

Decapod crustaceans are thought to compensate for an Carcinus maenas under various conditions of water
hypercapnic acidosis through net uptake of bicarbonate from sea  physicochemistry and responses of internal acid-base parameters
ater. Failing to maintain pH, would induce metabolic and ion concentration, relating to potential feedbacks on

depression’2. \WWe studied the capacity for acid-base regulation in  metabolic rate and cardiovascular activity.
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Shore crabs C. maenas were exposed for four weeks

systole

to: 1. control; 2. ocean acidification (1800 patm); 3. low : =
total alkalinity (TA= 1.1 mM); 4: OA + low TA. Metabolic ',” S P \‘
rates were determined using intermittent flow ! :
respirometers3. Haemolymph CO, and ion '.‘ 4y | ',‘
concentrations were measured through gas-, and ion- “ ¢ §
chromatography, respectively. In vivo MRI determined =
heart rate and blood flow, while 3'P-NMR spectroscopy B 'ﬁ;ﬁér‘;‘
was used to measure pH, and pH, from the chemical Anmtomical MR ol o o I\‘/IRI (-C'j- view) S o MR f
: _ : _ natomica overview slice, ase contraste orsal view), elf-gated, flow-weighe Images o
S!‘\Ift of 3 amllnopropylphosphc?nate (3-APP) and P, including the heart of C. maenas depicting haemolymph velocity in C.  systole (A, B) and diastole (C, D) of
S|gna|3, relative to PLA as an internal standard (bGIOW)4. (dorsal view). In the centre of the maenas. Brightness indicates flow arteria sternalis and heart of C. maenas.
heart, the entrance to the arteria direction and -intensity. The red Bruker IntraGate® software detects heart
PLA sternalis is visible. Single gill arrow highlights the arteria sternalis. rate non-invasively.
| filaments are visible, lateral of the
5 (3-APP) heart.
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Hypercapnia led to elevated haemolymph Heart rates were unaffected by changes in Standard metabolic rates and oxygen
CO,, but changes in intra- and extracellular pH | water chemistry, while blood flow in the arteria consumption rates during spontaneous activity
ere compensated for through increased sternalis under OA was significantly depressed were both significantly depressed under OA,
. . . . at low TA. when TA was reduced.
bicarbonate levels, irrespective of ambient
alkalinity. pH regulation caused an increasing o oo P(CO2 0 .
strong ion difference®, possibly elicited by Na*/ 18 - ST (kPa) ¢ c ; o0 4 e
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response of cardiovascular activity and whole- g = 7
animal energy demand under OA. High oxygen 3 3
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were significantly depressed under hypercapnic =
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_ While treatments caused elevated haemolymph
does not affect pH regulahon, but C. maenas was able to maintain pH, during levels of cations, [CI] were depressed under
hypercapnic low aIkaIinity depresses exposure to different acidified water conditions, normocapnic low TA. The increase in [cations] at
_ _ o through actively elevating haemolymph mostly constant [anions] reflects a higher strong
cardiac- and whole-animal act|V|ty bicarbonate concentrations. ion difference under acidified water conditions.
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