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A B S T R A C T

The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific
Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale
oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of
polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess
the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the
natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and
element fluxes in the different exploration areas is required.

Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation
of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in
the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate
that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary
environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while
the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese
and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to
25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3m to more than 8m. Our
data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ulti-
mately determined by the (1) low flux of particulate organic carbon (POC) of 1–2mg Corg m−2 d−1 to the
seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at
depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM
degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the
protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does
not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European
contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the
seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the
observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree
of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction
of bottom water currents with seafloor topography.
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1. Introduction

Vast deep-sea regions of the open Pacific Ocean are characterized by
low fluxes of organic carbon to the seafloor (Lutz et al., 2007). The
discovery of high abundances of polymetallic nodules in these carbon-
starved environments in the equatorial Pacific Ocean during the HMS
Challenger expedition (Murray and Renard, 1891) has driven the global
economic interest in deep-sea mining (Mero, 1965) and has triggered
several comprehensive studies in the area of the Clarion-Clipperton
Zone (CCZ) (e.g., Chun, 1908; Bischoff and Piper, 1979; Bender, 1983;
von Stackelberg and Beiersdorf, 1987; Lodge et al., 2014). Most geo-
chemical studies on CCZ sediments have focused on polymetallic
manganese nodules, more precisely their chemical and mineralogical
composition as well as pathways of formation (e.g., Calvert and Price,
1977; Jeong et al., 1994; Wegorzewski and Kuhn, 2014). Only a few
studies that combine pore-water and sediment geochemistry have been
performed on sediments of the CCZ (e.g., Bischoff and Piper, 1979;
Jahnke et al., 1982; Müller et al., 1988; Mewes et al., 2014; Mogollón
et al., 2016). The upper few centimeters of the sediments in the CCZ are
generally characterized by organic carbon (OC) contents of< 0.5 wt%
(e.g., Arrhenius, 1952; Heath et al., 1977; Khripounoff et al., 2006).
Below 30 cm, a residual OC fraction of ~ 0.1 wt% remains in the deeply
buried sediments (Müller and Mangini, 1980; Müller et al., 1988;
Mewes et al., 2014; Mogollón et al., 2016). Müller and Mangini (1980)
have reported a sedimentation rate of 0.15–0.4 cm kyr-1 for the western
CCZ. Slightly higher rates between 0.35 and 0.6 cm kyr-1 were de-
termined by Mewes et al. (2014) for the eastern CCZ. In the framework
of the MANOP (Manganese Nodule Project) study, sediments and as-
sociated pore water underlying the Pacific equatorial upwelling area
between 0° and 10°N were analyzed (e.g., Emerson et al., 1980;
Klinkhammer, 1980). The relatively high POC flux to the seafloor in this
area (Lutz et al., 2007) causes a compressed redox zonation in the se-
diments with the occurrence of Mn2+ in the absence of oxygen and
sulfide in the pore water after nitrate is consumed below 10 cm
(Emerson et al., 1980; Klinkhammer, 1980; Jahnke et al., 1982). The
study by Røy et al. (2012) was performed along a sampling transect at
0°N in the eastern Pacific Ocean and shows that the oxygen penetration
depth (OPD) is generally 10 cm. Oxygen depletion in combination with
the absence of sulfate reduction allows manganese reduction to extend
over sediment intervals of up to 100m (D’Hondt et al., 2004). Studies
performed by Mewes et al. (2014) and Mogollón et al. (2016) in the
German contract area “East” for the exploration of polymetallic nodules
show that oxygen typically penetrates 1.8–3m into the sediments be-
tween 11°–12°N and 117°–120°W. Below the oxic zone, manganese and
nitrate reduction occur concurrently over depth intervals between 6m
to more than 12m depth. In contrast, sediments underlying the carbon-
starved waters of the North Pacific Gyre (NPG) are deeply oxygenated
at least 30m below the seafloor due to low respiration rates (Røy et al.,
2012).

Considering that abyssal benthic communities are limited by low
carbon export from the euphotic zone (e.g., Smith et al., 2008), biodi-
versity in the CCZ is surprisingly high (e.g., Glover et al., 2002).
Vanreusel et al. (2016) have recently performed a comparative study of
benthic faunal composition and densities in five areas in the CCZ over a
distance of approximately 1300 km. This biological study revealed (1)
lowest densities of both sessile and mobile fauna in the area with lowest
POC fluxes to the seafloor, (2) a strong dependency of local biodiversity
on manganese nodule abundance and (3) a reduction of the mobile
fauna by at least 50% in areas where controlled anthropogenic dis-
turbances were created 37 and 20 years ago. As these simulated deep-
sea mining experiments cause the removal or alteration of top sediment
layers, and the formation of large sediment plumes in the water column,
the recovery of benthic communities after anthropogenic impacts is
expected to be very slow (e.g., Miljutin et al., 2011; Jones et al., 2017;
Boetius and Haeckel, 2018).

Due to the economic interest in the exploitation of deep-sea

manganese nodules, the International Seabed Authority (ISA) has
adopted an Environmental Management Plan (EMP) for the CCZ, which
includes temporal contracts for the exploration of manganese nodules
(ISA, 2010; Lodge et al., 2014; Madureira et al., 2016). In addition to
this, nine areas have been designated for the conservation of natural
resources, which are excluded from any mining activities and declared
as “Areas of Particular Environmental Interest” (APEI). For the further
development of an efficient EMP, Lodge et al. (2014) emphasize the
necessity of environmental baseline studies including the determination
of chemical parameters before and after anthropogenic disturbances.

In order to assess the natural spatial variability of geochemical
conditions, biogeochemical processes, and element fluxes in the CCZ as
needed for such baseline studies, we present a comparative study on (1)
sedimentation rates and bioturbation depths, (2) redox zonation of se-
diments and oxygen fluxes, and (3) rates and pathways of biogeo-
chemical reactions driving the degradation of organic matter in these
deep-sea deposits. We have studied sediments of four European contract
areas including the German BGR area “East” (Bundesanstalt für
Geowissenschaften und Rohstoffe), the area of the eastern European
consortium IOM (InterOceanMetal), the Belgian GSR area (Global Sea
Mineral Resources NV), the French IFREMER area (Institut Français de
Recherche pour l'Exploitation de la Mer) and one of the nine APEIs
which is located north of the CCZ and referred to as the APEI3. Our
work includes ex situ oxygen measurements, comprehensive pore-water
and solid-phase analyses on the upper 10m of sediment and the ap-
plication of a one-dimensional steady-state reaction transport model.

2. Geological and oceanographic setting

The CCZ comprises an area of about 6 million km2 in the equatorial
Pacific Ocean defined by two major transform faults, the Clarion
Fracture Zone in the north and the Clipperton Fracture Zone in the
south (Halbach et al., 1988). The fracture zones are formed at the East
Pacific Rise, stretch perpendicular to the spreading center, and enclose
a vast seafloor covered by numerous seamounts and NNE-SSW oriented
horst and graben structures (Johnson, 1972; ISA, 2010). The abyssal
deep-sea pelagic sediments at 4–5 km water depth between 116°–155°W
and 5°–15°N are dominated by biogenic sediments, notably siliceous
oozes (Berger, 1974). The CCZ sedimentary records commonly have
hiatuses caused by (1) erosion and redeposition of sediment elsewhere
or (2) nondeposition (Johnson, 1972; Craig, 1979; von Stackelberg and
Beiersdorf, 1991; Mewes et al., 2014). Average deep-water flow velo-
cities of< 10 cm s-1 refute significant contemporary erosion, but dis-
tinct hiatuses in the Eocence to Quaternary sediments may have re-
sulted from relatively higher current velocities (Craig, 1979; Theyer
et al., 1985; von Stackelberg and Beiersdorf, 1987).

Average particulate organic carbon (POC) fluxes to the seafloor in
the eastern CCZ are 1.5–1.8mg Corg m-2 d-1 between 10° and 15°N and
decline to 1.3mg Corg m-2 d-1 north of 15°N (Lutz et al., 2007; Fig. 1a).
As a consequence of microbial respiration in the water column and
weak ocean ventilation, a pronounced oxygen minimum zone (OMZ)
persists in the eastern equatorial Pacific (e.g., Wishner et al., 1995;
Kalvelage et al., 2015). Oxygen measurements throughout the water
column in the CCZ show a well-oxygenated upper mixed layer with a
sharp oxycline particularly in the BGR and IOM areas (Martínez Arbizu
and Haeckel, 2015). Below the oxycline, the OMZ extends over
100–1000m and 100–800m, respectively, with concentrations below
3 µM. The GSR and IFREMER areas show similar extents of the OMZ,
however, lowest oxygen concentrations range between 3 and 16 µM. In
the APEI3, the OMZ is located at 300–900m water depth with
minimum oxygen concentrations of 6–16 µM (Martínez Arbizu and
Haeckel, 2015).

3. Material and methods

As part of the BMBF-EU JPI Oceans pilot action “Ecological Aspects
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of Deep-Sea Mining (MiningImpact)” sediment cores were taken at five
sites in the CCZ during RV SONNE cruise SO239 in March/April 2015
(Fig. 1; Martínez Arbizu and Haeckel, 2015). For the recovery of sedi-
ment cores, two different sampling devices were deployed in all in-
vestigated areas. A multiple corer (MUC) equipped with twelve 60 cm

long tubes with an inner diameter of 9.4 cm was used for the retrieval of
undisturbed surface sediments. For the recovery of long sediment cores
of up to 10m length a gravity corer (GC) with a 12 cm wide plastic liner
was deployed (Table 1).

Fig. 1. Maps of the study area during RV
SONNE cruise SO239 showing (a) the four in-
vestigated exploration areas in the CCZ, the
APEI3 and the sampling stations (white cir-
cles). The background colors indicate the esti-
mated upper limit in POC flux [mg Corg m-2 d-1]
to the seafloor by Lutz et al. (2007) (modified
after Vanreusel et al., 2016). Detailed hydro-
acoustic maps created with the multibeam
system EM122 (Martínez Arbizu and Haeckel,
2015; Greinert, 2016) show the locations of the
sampling stations with b: IOM; c: BGR; d:
IFREMER; e: GSR; f: APEI3. The maps were
produced with GMT5 (Wessel et al., 2013).
(For interpretation of the references to color in
this figure legend, the reader is referred to the
web version of this article.)
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3.1. Pore-water and sediment sampling

Immediately after core recovery, sediment cores were transferred
into the cold room of the RV SONNE at a temperature of ~ 4 °C. Two
MUC cores were separately used for (1) oxygen measurements and
subsequent solid-phase sampling and (2) the retrieval of bottom water
and pore water by means of rhizons with an average pore size of 0.1 µm
(Seeberg-Elverfeldt et al., 2005). Pore water was sampled at intervals of
1 cm in the upper 10 cm and at 2 cm below. For solid-phase investiga-
tions the sample interval for the MUC cores was 1 cm.

The GCs were cut into 1m segments on deck and stored in the cold
room for at least 12 h in order to allow temperature equilibration of the
sediments before oxygen measurements were performed. After the
oxygen measurements, the segments were split into two halves from
which the 'working half' was used for pore-water and sediment

sampling while the other half was kept undisturbed and archived. Pore-
water and sediment from the GCs were sampled every 20 cm.

During the pore-water sampling by rhizons, the first mL of extracted
pore water was discarded in order to avoid any dilution or oxidation.
Sample aliquots of typically 2mL for nitrate (NO3) were stored in
amber vials sealed with a PTFE septum-bearing lid at − 20 °C. For the
analyses of further dissolved pore-water constituents, aliquots of the
remaining pore-water samples were diluted 1:10 and acidified with
0.145M sub-boiling distilled HNO3 and stored at 4 °C in Zinsser vials.
All sediment samples were taken using either cut-off syringes with a
volume of about 12mL or with a plastic spatula and stored at− 20 °C in
plastic vials. Sediment samples from suboxic intervals of the cores were
stored in argon-flushed gas-tight glass bottles at − 20 °C until further
analysis.

Table 1
MUC and GC cores investigated in this study including information on geographic position, water depth and core length. Nodule coverage shows the density and size
of nodules recovered from the sediment surface at the box corer (BC) station nearest to MUC and GC locations. Nodule sampling area is 0.25m2, the length of scale
( ) corresponds to 10 cm.

Area Station SO239- Device Latitude [N] Longitude [W] Water depth [m] Core length [cm] Nodule coverage

BGR 60 BC 11°48.46′ 117°33.02′ 4324.5
BGR 62 GC 11°49.12′ 117°33.22′ 4312.2 900
BGR 66 MUC 11°49.13′ 117°33.13′ 4314.8 36

IOM 84 MUC 11°4.73′ 119°39.48′ 4430.8 43
IOM 87 GC 11°4.54′ 119°39.83′ 4436 930
IOM 89 BC 11°4.55′ 119°39.65′ 4436.5

GSR 121 MUC 13°51.25′ 123°15.3′ 4517.7 30
GSR 122 GC 13°51.23′ 123°15.29′ 4517.7 740
GSR 128 BC 13°51.10′ 123°15.12′ 4510.7

IFRE-1 165 GC 14°2.63′ 130°8.39′ 4922.7 927
IFRE-1 167 MUC 14°2.62′ 130°8.32′ 4918.8 29
IFRE-1 180 BC 14°2.50′ 130°8.18′ 4936.4

IFRE-2 174 GC 14°2.44′ 130°5.1′ 5008 734 no nodules
IFRE-2 175 MUC 14°2.45′ 130°5.11′ 5005.5 36
APEI3 194 GC 18°47.54′ 128°22.33′ 4815.5 576
APEI3 195 BC 18°47.75′ 128°21.73′ 4833.4
APEI3 199 MUC 18°47.46′ 128°22.42′ 4816.6 32
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3.2. Ex situ oxygen measurements

Oxygen concentrations in the sediment were determined using
amperometric Clark-type oxygen sensors with an internal reference and
equipped with a guard cathode (Revsbech, 1989) according to the
procedure described by Ziebis et al. (2012) and Mewes et al. (2014).
The electrodes (Unisense, Denmark) are made of glass with a 6 cm long
tip that was inserted into a hyperdermic needle (diameter 1.1mm,
length 50mm) and had a response time shorter than 10 s. Signals were
amplified and transformed to mV by a picoamperemeter, digitalized by
an analogue/digital converter (ADC 216, Unisense, Denmark) and re-
corded using the software PROFIX (Unisense, Denmark). Measurements
were recorded at each sampling point for 2–3min and mean oxygen
saturation values were taken when signals were stable to calculate the
depth profiles. For the two-point calibration of the oxygen sensors, Ar-
flushed (0% oxygen saturation) and air-purged (100% oxygen satura-
tion) local bottom water was used. High-resolution (1mm) vertical
profiles of oxygen concentrations across the sediment/water interface
were accomplished for MUC cores by use of a micromanipulator down
to a maximum sediment depth of 5–6 cm. For oxygen measurements in
deeper parts of the MUC core as well as for all GCs, holes were drilled
through the walls of the core liners in intervals of 1 cm for MUCs and of
5 cm for GCs for the insertion of the microelectrode.

3.3. Pore-water analyses

In the home laboratory at the Alfred Wegener Institute Helmholtz
Centre for Polar and Marine Research in Bremerhaven (AWI), NO3

- was
determined using a QuAAtro Continuous Segmented Flow Analyzer
(Seal Analytical) with a detection limit of 1.9 µM. Based on duplicate
measurements of NO3

-, the accuracy of the analysis was determined to
be< 4.9%. Dissolved manganese (Mn2+) was determined in the
acidified pore-water subsamples by inductively coupled plasma optical
emission spectrometry (ICP-OES; IRIS Intrepid ICP-OES Spectrometer,
Thermo Elemental) with a detection limit of 0.05 µM. Based on the
triplicate determination of each sample the reproducibility was< 1.5%
for Mn2+.

3.4. Solid-phase analyses

To avoid any interference of the salt matrix in the pore water on the
sediment composition, bulk sediment data, total organic carbon and
total sulfur contents have been corrected post-analytically according to
Kuhn (2013) with the mass percentage of the saline pore water (w’) and
the mass percentage of H2O of the wet sediment (w) with the pore water
containing 96.5% H2O (Eq. (1)). With the mass of the salt s [%] (Eq.
(2)) the solid-phase composition c’ has been calculated using the
measured solid-phase composition c (Eq. (3)).

′ =w w*100/96.5 (1)

=
′ −

−
s w w

w
100*

100 (2)

′ =
−

c c
s

* 100
100 (3)

3.4.1. Total organic carbon content
The content of total organic carbon (TOC) was analyzed using an

Eltra CS2000. About 100mg of freeze-dried, homogenized sediment
were weighed into a ceramic cup. Samples were decalcified with 0.5 mL
10% HCl at 250 °C for 2 h before analysis. As the total carbon (TC)
consists mostly of TOC in the analyzed samples, total inorganic carbon
(TIC) occurs only in negligible amounts. Based on an in-house reference
material precision of the analysis was determined to be< 3.7%
(n=83).

3.4.2. Radioisotope analyses of 231Pa and 230Th
For the isotope dilution analysis by Inductively Coupled Plasma-

Sector Field-Mass Spectrometry (ICP-SF-MS, Element2, Thermo
Scientific) freeze-dried and homogenized sediment samples were spiked
with about 9 pg 229Th, 0.7 pg 233Pa and 800 pg 236U as internal stan-
dards and weighed out in Teflon vials. Total acid digestions were per-
formed in the microwave system MARS Xpress (CEM) according to the
procedure described by Kretschmer et al. (2010) and Nöthen and
Kasten (2011). Acids were of sub-boiling distilled (HNO3, HCl) or su-
prapur® (HF) quality. About 50mg of freeze-dried and homogenized
bulk sediment were digested in an acid mixture of 65% HNO3 (3mL),
30% HCl (2mL) and 40% HF (0.5mL) at ~ 230 °C. The digested solu-
tions were fumed off to dryness with the microwave evaporation ac-
cessory (CEM XpressVap) and re-dissolved under pressure in 1M HNO3

(5mL) at ~ 200 °C. The residue was filled up to 50mL with 1M HNO3.
After the total acid digestion, 80% of the total digest volume were co-
precipitated with Fe(OH)3. Separation of Pa, Th and U was performed
by ion exchange chromatography with the Anion Exchange Resin AG®
1-X8 (Bio-Rad) after the protocols of Anderson and Fleer (1982) and
Andersson and Schöberg (2012). Poly-Prep® gravity flow columns filled
with AG® 1-X8 resin were conditioned with 9M HCl (3 * 4mL) before
loading the sample and eluting Th with 9M HCl (3 * 4mL), Pa with 9M
HCl/0.14M HF (4 * 3mL) and U with 0.1 M HCl (4 * 3mL), succes-
sively. All acids were of sub-boiling distilled or suprapur® quality. The
Th, Pa and U eluates were collected and evaporated in Teflon beakers.
The Th eluates were purified on a second column with 9M HCl (400 µL
and 6 * 2mL) for Th, 9M HCl/0.14M HF (6 * 2mL) for Pa and 0.1M
HCl (3 * 4mL) for U. Separated Th, Pa and U fractions were evaporated,
redissolved in HNO3 and diluted to 1M HNO3 for the isotope dilution
analysis using ICP-SF-MS with the desolvation system Apex Q (ESI).
Data correction for the formation of thorium hydride (232ThH+), 232Th
peak tailing and the instrument mass bias were assessed as described by
Kretschmer et al. (2011). Based on the reference material Urem-11
(SARM-31) average accuracy and precision were 0.5% and 1.2% for
235U, 2.4% and 1.2% for 230Th and 0.3% and 2.6% for 231Pa, respec-
tively (n= 5).

Sedimentation rates were calculated following the algorithm by

Faure (1977), where t is the age yr[ ] of the sediment and Th

Pa
ex

ex

230

231 is the

specific activity ratio at a certain sediment depth x . Here, we used the
well constrained value in the bioturbated layer above (Supplementary
Fig. 1) as the starting value b, respectively (Eq. (5)).

=
⎡

⎣

⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

t 1
82574.86

ln

Th

Pa x

Th

Pa b

ex

ex

ex

ex

230

231

230

231
(5)

Mass accumulation rates − −[g cm kyr ]2 1 were determined by the
product of sedimentation rate −[cm kyr ]1 and dry bulk density (DBD)

−[g cm ]3 .

3.5. Geochemical model setup and reaction network

A one-dimensional steady-state reaction transport model (e.g.
Boudreau, 1997) that couples reactions through a discretized steady-
state reaction-transport equation was used to interpret the sedimentary
geochemistry at the various CCZ sites (Eq. (6)):

∑=
∂ ∂ ∂

∂
−

∂
∂

+ − +
D C z

z
ω C

z
α C C R0

ϑ ( / ) ϑ
ϑ ( ) ϑi j i i j i i i j

i i i j j i i j
, , ,

, 0, , (6)

where z is sediment depth, and i j, represent subscripts depicting depth-
and species-dependence, respectively. C is the species concentration
(aqueous or solid species, Supplementary material Table 2); D is the
diffusive mixing coefficient taking tortuosity (Boudreau, 1997) and
bioturbation (Eq. (7)) into account ( = +D B Di i m i, ); ϑ is the volume
fraction for the aqueous (i.e. the porosity φ) or solid ( − φ1 ) phases; ω is
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the velocity of either the aqueous or the solid phase (v or w respec-
tively); αi is the bioirrigation coefficient (0 for solid species, Eq. (7));
∑ Ri j, is the sum of the reactions affecting the given species j.

The reaction-transport model consists of 8 geochemical species and

6 reactions (Supplementary material Table 1):

+ → + ++ +CH O NH O CO NH H O( )( ) 16
1062 4 16

106
2 2 4 2 (R1)

Fig. 2. Pore-water profiles of oxygen, dissolved Mn(II) and nitrate of the APEI3, IFREMER, GSR, IOM and BGR sites. The inset plot for the IFRE-1 site show oxygen
(black dots) and dissolved Mn(II) concentrations (open circles) on separate axes (upper axis: oxygen; lower axis: Mn(II)) between 2.5 and 7.5 m sediment depth.
Bottom-water oxygen concentrations measured by CTD are indicated (grey crosses).
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+ + → + + ++ − + +CH O NH NO H N CO NH H O5( )( ) 4 4 2 5 5 16
106

72 4 16
106 3 2 2 4 2

(R2)

+ + → + + ++ + + +CH O NH MnO H Mn CO NH H O( )( ) 2 4 2 16
106

32 4 16
106

2
2

2 4 2

(R3)

+ + → ++ +Mn O H O MnO H2 2 2 42
2 2 2 (R4)

+ → + ++ − +NH O NO H H O2 24 2 3 2 (R5)

+ + → + ++ + +MnO NH H Mn N H O3 2 4 3 62 4
2

2 2 (R6)

The chemical reactions during organic carbon degradation were
assumed to follow the Redfield ratio stoichiometry with the organic-
bound nitrogen to carbon ratio of 16:106 (Redfield, 1934). Biologically
induced mixing profiles were assumed to follow a modified logistic
function where the break attenuation depths were assumed to be the
same for both bioirrigation and bioturbation:

⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

⎛
⎝

+ ⎛
⎝

− ⎞
⎠

⎞
⎠

B B z z
z

z z
z

exp / 1 expi
mix

att

mix

att
0

(7)

⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

⎛
⎝

+ ⎛
⎝

− ⎞
⎠

⎞
⎠

α α z z
z

z z
z

exp / 1 expi
mix

att

mix

att
0

(8)

where α0 and B0 are constants representing the maximum biorrigation
and bioturbation coefficients at sediment-water interface, zmix is the
depth to where α0 and B0 become half their value and zatt is the at-
tenuation of the biogenically induced mixing with depth.

Porosity data were fit for each station and showed an exponential
decrease with depth typical of compacting sediment (not shown) and
were fit with the following equation:

= − −∞ ∞φ φ φ φ βz( )exp( )i 0 (9)

where ∞φ is the porosity at compaction, φ0 is the porosity at the sedi-
ment water interface, and β is the depth-attenuation coefficient.
Sediment thicknesses for the diagenetic model were extracted from
NCEI's global ocean sediment thickness grid (Whittaker et al., 2013).
For the BGR site, sediment thicknesses were inferred from nearby core
locations with similar pore-water Mn profiles (SO240-9KL, SO240-
96SL; Kuhn et al., 2017). The model was coded in R (version 3.2.4)
using the ReacTran package (Soetaert and Meysman, 2012) to solve Eq.
(6) and the marelac package (Soetaert et al., 2010) to solve the mole-
cular diffusion coefficients for the modeled species (Dm i, ). The advective
velocities of solid and pore water phases were solved using the compact
grid function within the ReacTran package, which takes sedimentary
compaction into account.

4. Results

4.1. Core description

All study sites show light brown clay-dominated siliceous ooze with
variable surface nodule coverage (Table 1). The sediments in the APEI3
site are dominated by dense and dry, dark brown sediment with a
comparably low degree of lithological variation. All other sites are
characterized by light brown sediments with irregular dark patches and
layers throughout.

4.2. Pore water

Bottom-water oxygen concentrations measured with the CTD (SBE
43 oxygen self-regenerative WetLabs Clark-sensor) are 156 µM in the
APEI3 area, 153 µM in the IFREMER area, 150 µM in the GSR area,
147 µM in the IOM area and 144 µM in the BGR area (Fig. 2). In the
surface sediments, oxygen concentrations usually decrease rapidly with
depth in the upper 30 cm (Fig. 2). However, in contrast to the other

sites, the surface sediments of the APEI3 and IFRE-1 sites show only a
slight decrease in oxygen. Oxygen concentrations below detection limit
are reached at various sediment depths while the sediments at the
APEI3 and the GSR sites remain oxic throughout. The oxygen pene-
tration depth (OPD) is 1m at the BGR site, 3 m at the IOM site, 4.5 m at
the IFRE-1 site and 3.8 m at the IFRE-2 site.

Pore-water Mn2+ occurs below the OPD within a wide concentra-
tion range of 0.2–25 µM (Fig. 2). At the IFRE-1 site, Mn2+ concentra-
tions< 1 µM are between 4.5 and 7m while the IFRE-2 site shows a
concave-up profile with higher concentrations of up to 5.5 µM. At the
IOM site, Mn2+ increases downward to 13 µM and slightly decreases
below 8m. Overall, the highest Mn2+ concentrations were measured at
the BGR site with up to 25 µM at 3.3m and a subsequent decrease in
concentrations with depth.

NO3
- concentrations generally increase with depth from bottom

water concentrations of 35 µM at the sediment surface to 45 µM in the
upper 30 cm (Fig. 2). The APEI3 and GSR sites show NO3

- concentra-
tions in the surface sediments of up to 53 µM and 70 µM, respectively. A
decrease of NO3

- with depth below 30 cm is detected at the BGR, IOM
and IFRE-2 sites to about 35 µM at the bottom of the cores. At the
APEI3, IFRE-1 and GSR sites, NO3

- concentrations remain mostly con-
stant throughout the deep sediment core.

4.3. Solid phase

4.3.1. Total organic carbon
The TOC contents generally decrease with depth in the upper 30 cm

(Fig. 3). The lowest surface sediment TOC contents of 0.2 wt% are
found in the APEI3. Both, the IFRE-1 and IFRE-2 sites, show 0.3–0.4 wt
% of TOC while the GSR site and the IOM site have 0.5 wt% of TOC. The
highest contents with 0.6 wt% are found at the BGR site. Below 30 cm,
the TOC remains< 0.2 wt% (Fig. 3). A drop to TOC contents of<
0.1 wt% is found at the GSR site below 5m sediment depth.

4.4. Sedimentation rates and bioturbation depth

Sedimentation rates range between 0.2 and 1.15 cm kyr-1 (Fig. 4).
The rates at the APEI3 and the GSR sites are at least threefold lower
than at the IFRE-1 and the IOM sites. Bioturbation is usually limited to
the upper 7 cm whereas the bioturbated layer at the IOM site reaches
down to 13 cm (Supplementary Fig. 1).

5. Discussion

5.1. POC flux to the seafloor and sedimentation rates

Pelagic deep-sea sediments receive little organic matter (OM) due to
generally low surface water productivity and great water depth (Heath
et al., 1977; Müller and Suess, 1979; Honjo, 1980). For the prediction of
carbon export production at any water depth, Suess (1980) developed
an empirical algorithm from sediment trap measurements and primary
production (PP) rates in the respective surface waters. Several studies
have applied modified algorithms after Suess (1980) (e.g., Dymond
et al., 1997; Tyrell, 1999) and Martin et al. (1987) (e.g., Emerson et al.,
1997; Fischer et al., 2000) for predicting the vertical POC flux. How-
ever, these commonly applied relationships between POC flux and
water depth generally overestimate the flux of OM to depth (Buesseler
et al., 2007; Buesseler and Boyd, 2009; Henson et al., 2011; Arndt et al.,
2013 and references therein). Lutz et al. (2002) developed regional
algorithms including region-specific sinking and remineralization rates,
i.e. labile and refractory POC fractions in the water column. Using this
empirical parameterization of the POC flux to depth, Lutz et al. (2007)
combined a time series of remotely sensed net PP in the surface waters,
sea surface temperature and sediment trap POC flux data to construct
models with global predictions of POC fluxes to the seafloor. According
to the model by Lutz et al. (2007), about 1.7 mg Corg m-2 d-1 is delivered
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to the seafloor at the BGR and IOM sites, 1.5 mg Corg m-2 d-1 reaches the
sediments of the GSR and IFREMER sites and 1.3 mg Corg m-2 d-1 settles
to the seafloor in the APEI3 area (Fig. 1). These fluxes may be biased
due to (1) significant uncertainties in the NPP estimates based on sa-
tellite data and (2) several potential errors in the trapping efficiency of
sediment traps (Lutz et al., 2007 and references therein). Furthermore,
with water depths of 4–5 km, the export production may be laterally
drifted during settling, especially by strong bottom currents in the
proximity of seamounts (e.g., Mewes et al., 2014). We implemented the
POC fluxes given by Lutz et al. (2007), which can be regarded as rough
estimates, into our reaction transport model and adjusted these values

in order to fit the measured profiles of TOC and the oxidants. Our di-
agenetic model reproduces the Lutz et al. (2007) fluxes within 20%
(Table 2). Only a slight discrepancy occurs between the POC fluxes
derived from both models for the APEI3 and BGR sites. Compared to the
other studied contract areas, the water column in the APEI3 area is
characterized by a less pronounced OMZ (Martínez Arbizu and Haeckel,
2015). Thus, due to the significantly longer oxygen exposure time of
settling POC, which is the key parameter determining the degradation
efficiency of POC (e.g. Hartnett et al., 1998; Banse, 1990; Zonneveld
et al., 2010; Cavan et al., 2017), the degradation in the water column
may be enhanced in this area. The regional differences in the OMZ
thickness may limit the empirical algorithm used by Lutz et al. (2007)
for calculating the POC flux to the seafloor. Thus, POC fluxes in the
APEI3 area are most likely overestimated. Conversely, the POC flux in
the BGR area has likely been underestimated as the water column is
characterized by an extensive OMZ (Martínez Arbizu and Haeckel,
2015) aiding the POC preservation in the water column and triggering a
higher POC flux to the sediment (Table 2). This is consistent with our
20% lower fluxes at the APEI3 site and 20% higher POC flux at the BGR
site in comparison with the Lutz et al. (2007) fluxes.

Although considerably higher estimated POC fluxes between 1.5
and 11.5mg Corg m-2 d-1 have been reported from nearby stations
(Murray and Kuivila, 1990; Mogollón et al., 2016), the TOC contents at
the sediment surface at all sites are mostly in agreement with published
values from the CCZ ranging from 0.1 to 0.6 wt% (Müller, 1977; Müller
and Mangini, 1980; Jahnke et al., 1982; Murray and Kuivila, 1990;
Mewes et al., 2014, 2016). Mewes et al. (2014) have presented geo-
chemical data for sediments from the BGR contract area “East” with two
sites close (< 5 km) to a large seamount between the BGR and IOM area
(A1-1-MN, A1-2-NN) and two sites far away from seamounts (A5-1-BN,
A5-2-SN). While the surface sediment TOC contents are similar at all
stations, a comparably rapid decrease in TOC contents with depth oc-
curs at the sites adjacent to the seamount with relatively high POC
fluxes of 10mg Corg m-2 d-1 (Fig. 6; Mogollón et al., 2016). Our BGR site
shows up to 20% higher TOC contents in the upper 30 cm than the sites
studied by Mewes et al. (2014) which also decrease rapidly with sedi-
ment depth (Fig. 6). Khripounoff et al. (2006) reported 25% higher TOC
contents in the upper 30 cm at a site in the IFREMER area (Fig. 6).
Variations in local estimated POC fluxes, TOC contents and sedi-
mentation rates are potentially a result of strong local heterogeneities of
bottom water currents which can be intensified, attenuated and de-
flected in the vicinity of seamounts and ridges (Hogg, 1973; Gould
et al., 1981; Mohn and Beckmann, 2002; Xu and Lavelle, 2017; Juan
et al., 2018) and cause kilometer-scale differences in the supply and
composition of sediments (Turnewitsch et al., 2004, 2015; Mewes et al.,
2014). The relatively high sedimentation rates at the IOM site of
1.15 cm-1 kyr-1 may be associated with sediment focusing. Further-
more, sediments of different composition may be delivered from the
slopes of nearby seamounts and ridges by gravity-induced processes
(e.g., Stanley and Taylor, 1977; Jeong et al., 1994).

5.2. Organic matter degradation

Müller et al. (1988) have suggested that aerobic respiration is the
dominant biogeochemical process degrading sedimentary OM in the
CCZ and previous modeling studies for the BGR contract area “East”
(Table 2; Fig. 5; Mewes et al., 2016; Mogollón et al., 2016) have sup-
ported this assumption. Our model simulations are in line with these
findings and show that aerobic respiration consumes more than 90% of
the OM delivered to the seafloor while denitrification and Mn(IV) re-
duction together consume less than 1%. These numbers agree well with
rates derived from the previous modeling studies for the BGR contract
area “East” (Table 2; Fig. 5; Mogollón et al., 2016; Mewes et al., 2016).
The zone in which manganese and nitrate reduction co-occur will
hereafter be referred to as “suboxic zone” in which neither oxygen nor
hydrogen sulfide are present (Berner, 1981). Most of the ammonia

Fig. 3. Solid-phase profiles of TOC of the APEI3, IFREMER, GSR, IOM and BGR
sites.
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liberated from OM degradation becomes nitrified in the oxic zone so
that the nitrate concentrations increase with depth in the upper 30 cm
of sediment (Fig. 2; Fig. 5). Additionally to nitrification, the breakup of
nitrate-rich organic compounds may contribute to the relatively high
NO3

- concentrations in the surface sediments at the APEI3 and GSR sites
(e.g., Jørgensen and Gallardo, 1999). The bioturbated layer includes
the upper 6–13 cm of the oxic sediment which is in good agreement
with the average bioturbation depth of 10 cm (Boudreau, 1994). The
determined low sedimentation rates of 0.2–1.15 cm kyr-1 in combina-
tion with low POC fluxes to the seafloor (< 2mg Corg m-2 d-1) lead to
low carbon burial rates of less than 0.15mg Corg m-2 d-1 (based on
depth-integrated rates, cf. Table 2), which are consistent with other
organic carbon burial estimates for the CCZ (e.g., Jahnke, 1996). The
highly refractory TOC fraction of< 0.2 wt% below 20 cm is insufficient
to reduce nitrate (Table 2; Fig. 5; Supplementary Table 2; Mogollón
et al., 2016). These observations are in agreement with Müller and
Mangini (1980) and Müller et al. (1988) who state that with sedi-
mentation rates of 0.2–0.4 cm kyr-1 OM is almost completely reminer-
alized within the uppermost meter of the sediments. Mewes et al.
(2014) determined carbon respiration rates for sediments in the BGR
contract area “East” that showed twofold higher respiration rates in the
upper oxic sediments compared to the depth-integrated rates of aerobic
respiration derived from our diagenetic model (Table 2). This offset
may be caused by the alteration of the microbial communities during
sediment retrieval, i.e. decompression (e.g., Park and Clark, 2002), and
the different approaches of respiration rate determination. Moreover,
the discrepancy in the respiration rates may reflect the lateral hetero-
geneity in the supply of TOC related to the interaction of currents with
rough seafloor topography, in particular seamounts. Twofold higher
rates of aerobic respiration at the BGR site compared to the APEI3 site
are a result of twofold higher POC fluxes to the seafloor at the BGR site
than at the APEI3 site in the proximity of the carbon-starved North
Pacific gyre. Consequently, the APEI3 site does not represent the (bio)
geochemical conditions of the sites in the European contract areas in-
vestigated in the framework of this study. This observation is in
agreement with Vanreusel et al. (2016) who explained the significantly
lower faunal densities in the APEI3 with primary productivity being
much lower compared to in the contract areas.

5.3. Redox zonation and oxygen fluxes

The ex situ sediment oxygen concentrations are in good agreement
with other oxygen data for the equatorial Pacific Ocean (Murray and
Grundmanis, 1980; Jahnke et al., 1982; Berelson et al., 1990;
Hammond et al., 1996; Khripounoff et al., 2006; Mewes et al., 2014,
2016; Rühlemann et al., 2011). In accordance with oxygen measure-
ments by Mewes et al. (2014), bottom water oxygen measurements of
the overlying water of the MUC cores using amperometric Clark-type
oxygen sensors are systematically 10–20% higher than bottom-water
concentrations determined with the CTD 20–30m above the seafloor
(Martínez Arbizu and Haeckel, 2015). This offset is most likely a result
of sampling artifacts that occurred during retrieval of the MUC cores or
of atmospheric oxygen diffusion into the bottom water of the surface
sediments during ex situ measurements, which biases the oxygen con-
centrations down to about 0.4 cm sediment depth. The threshold of
0.4 cm has been determined in this study by triplicate profiling across
the water-sediment interface resulting in systematically higher oxygen
concentrations of each consecutively measured profile. Therefore, we
excluded oxygen concentrations in the uppermost 0.4 cm from the
calculation of oxygen gradients and fluxes and used the CTD oxygen
concentrations as bottom water values (Table 2; Table 3). The oxygen
data obtained for the IOM site indicate that oxygen is not completely
depleted throughout the sediment core (Fig. 2). However, the detection
of dissolved Mn2+ in pore water below 3m sediment depth suggests
that oxygen is absent in this interval. We attribute this discrepancy to
some calibration problems of one of the sensors at the beginning of the
cruise which affected the oxygen measurements at the BGR and IOM
sites. Additionally, the discrepancy between the GSR oxygen con-
centrations of the MUC and the GC is attributed to small-scale varia-
tions or to miscalibration of the oxygen sensor. Even though the oxygen
data shows sampling artifacts and miscalibration, which partly bias the
absolute oxygen concentrations, it can be used in combination with the
pore-water Mn2+ data to delineate the sedimentary redox zonation. As
the oxygen data at the bottom water-sediment interface is particularly
affected, oxygen fluxes into the sediment are given with an error
of< 5%.

The OPD inversely correlates with the POC flux (r2 = 0.85; Fig. 7).
The OPD of 1m at the BGR site is shallower than the OPD reported for
other sites studied in this region which range between 1.8 and 3m

Fig. 4. 230Th/231Pa-derived sedimentation rates for the uppermost 50 cm of the sediments of the APEI3, IFREMER, GSR and IOM sites.

Table 2
Fluxes of POC and oxygen into the sediment and depth-integrated rates of the predominant biogeochemical processes derived from the diagenetic model.

Biogeochemical process Unit BGR IOM GSR IFRE-1 IFRE-2 APEI3

POC flux [mg C m−2 d−1] 1.99 1.54 1.51 1.47 1.5 1.07
O2 flux top [mg O2 m−2 d−1] 5.18 4.24 3.61 4.3 4.37 2.58
O2 reduction [mg C m−2 d−1] 1.92 1.44 1.38 1.3 1.45 0.93
NO3

- reduction [mg C m−2 d−1] 1.5E−03 1.7E−03 3.3E−02 5.5E−03 5.0E−03 8.7E−04
Mn(IV) reduction [mg C m−2 d−1] 1.5E−03 6.1E−04 1.6E−02 5.7E−04 4.6E−03 1.4E−03
Nitrification [mg N m−2 d−1] 0.01 0.13 0.14 0.10 0.14 0.03
Mn2+ oxidation [mg O2 m−2 d−1] 0.062 0.026 0.06 0.025 0.029 0.016
Mn-annamox [mg Mn m−2 d−1] 0.14 0.005 0 0 0 0
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depth (Rühlemann et al., 2011; Mewes et al., 2014). Such small-scale
variation is reflected in the oxygen gradients with 2.6–5.6 µM O2 mm-1

in the sediments in the BGR area (Table 3). OPDs are generally deeper
at sites with medium-sized or big (3–10 cm) nodules at the sediment
surface than at sites with small-size (1–8 cm) or without nodules at the
surface (Mewes et al., 2014). The two IFREMER sites (IFRE-1 and IFRE-

2) are ~ 6 km apart with medium-sized surface nodules at the IFRE-1
site and no nodules at the IFRE-2 site (Table 1) and in accordance with
the findings of Mewes et al. (2014), the OPD at the IFRE-1 site is located
70 cm deeper than at the IFRE-2 site (Fig. 2). However, the depth-in-
tegrated rates of Mn(IV) and nitrate reduction are not significantly
higher at the IFRE-2 site compared to the IFRE-1 site (Table 2; Fig. 5)

Fig. 5. Model results for all sites including the biogeochemical processes of aerobic respiration, Mn(IV) reduction, denitrification, Mn2+ oxidation, nitrification and
Mn-annamox (R1-R6).

J.B. Volz et al. Deep-Sea Research Part I xxx (xxxx) xxx–xxx

10



which disagrees with the results presented by Mewes et al. (2014). This
discrepancy may be connected to almost twofold higher sedimentation
rates proposed by the authors for the nodule-free sites compared to the
sites with medium-sized/big nodules while in the IFREMER area, se-
dimentation rate at the IFRE-1 site exceeds the rate at the IFRE-2 site. In
accordance with the low respiration rates at the APEI3 site, the oxygen
gradient over the upper 0.4–1 cm of sediment is low at 0.2 µM O2 mm-1

(Table 3). At depth, oxygen concentrations are scattered at the APEI3
site. We interpret this as an analytical artifact because the sediments at
the APEI3 site were very dry and consolidated and have therefore very
likely impacted the sensor measurements.

In the suboxic zone, Mn2+ concentrations between 0.2 and 25 µM
agree well with reported values in the CCZ (Emerson et al., 1980;
Jahnke et al., 1982; Mewes et al., 2014). Mn2+ is mainly mobilized by
the dissimilatory reduction of Mn(IV) phases below the OPD (Figs. 2
and 5). As proposed by Mogollón et al. (2016) for adjacent sites, the
observed concomitant decrease of nitrate in the suboxic zone of the
sediment core from the BGR area suggests that the biogeochemical
cycles of manganese and nitrogen are coupled. Excess ammonium
produced by OC degradation in the oxic zone may escape aerobic ni-
trification and diffuse downwards into the suboxic zone where it can act
as electron donor during manganese oxide reduction (Mn-annamox,
Luther et al., 1997). Mn-annamox may induce the liberation of Mn2+

into the pore water of the sediments of the BGR and IOM sites with
reaction rates similar to the rates published by Mogollón et al. (2016)
(Table 2; Fig. 5). The nitrate concentrations determined within the
framework of this study are in correspondence with previously pub-
lished nitrate pore-water data from the CCZ ranging from 30 to 70 µM
(Jahnke et al., 1982; Jeong et al., 1994; Mewes et al., 2014, 2016;
Mogollón et al., 2016). Nitrate reduction is very weak at these sites due
to the low and refractory OM content (Table 2). Iron and manganese
oxidation coupled to nitrate reduction is probably also not feasible due
to the low Mn2+ concentrations and Fe2+ levels below detection limit.

5.3.1. Deep Mn2+ oxidation
Decreasing-with-depth profiles of Mn2+ at the IFRE-1, IOM and

BGR sites indicate that Mn2+ is consumed by either precipitation of an
authigenic carbonate mineral (e.g., Gingele and Kasten, 1994) or by
oxidation at depth (Fig. 2). Due to the fact that alkalinity is low in these
sediments (data not shown), and thus, precipitation of a Mn carbonate
phase is unlikely, we suggest that at depth, Mn2+ is most likely oxidized
by oxygen diffusing from the underlying basaltic basement. Such up-
ward diffusive supply of oxygen from oxic seawater circulating in the
oceanic crust was first shown for the German contract area “East” by
Mewes et al. (2016) and has recently been documented to be

Fig. 6. Comparison of the TOC contents of surface sedi-
ments (upper 30 cm) within the different contract areas
CCZ. The data for the BGR sites A1-1-MN, A1-2-NN, A5-2-
SN, A5-1-BN from cruise SO205 are taken from Mewes
et al. (2014). The range of TOC contents comprises the
lowest to highest measured contents throughout MUC
cores taken at the individual sites. The highest TOC con-
tent at each site was determined at the sediment surface,
i.e. in the uppermost centimeter of the sediment.

Table 3
Oxygen gradients calculated from oxygen profiles for the uppermost
0.4–1 cm of sediment. Negative gradients indicate the oxygen flux into
the sediment. The data from SO205 were taken from Mewes et al.
(2014). Note that the oxygen gradient at the GSR site is biased due to
miscalibration of the sensor.

Station Oxygen gradient [µM mm-1]

SO205–05MUC − 3.5
SO205–06MUC − 2.6
SO205–46MUC − 5.6
SO205–48MUC − 9
BGR − 5
IOM − 7
GSR − 8.3
IFRE-1 − 3.5
IFRE-2 − 1.7
APEI3 − 0.2

Fig. 7. Correlation between the oxygen penetration depth (OPD) and the POC
fluxes used as boundary conditions for the diagenetic model. Based on inter-
polation of the oxygen profile at the APEI3 site, oxygen may be consumed at
11.5 m. The linear regression through the BGR (blue), IOM (yellow), *IFRE-1
(red), +IFRE-2 (red) and APEI3 (grey) sites shows a coefficient of determination
of r2 = 0.85.
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widespread in the area by Kuhn et al. (2017). At the IFRE-1 site, Mn2+

is consumed at 7m depth. Based on interpolation of the Mn2+ profiles,
Mn2+ is reoxidized at ~ 9.25m depth at the BGR site while it is con-
sumed at ~ 20m depth at the IOM site. The low-temperature circula-
tion of seawater through the basaltic crust (e.g., Fisher and Wheat,
2010; Ziebis et al., 2012) underlying the sediments of the CCZ had so
far only been shown for the BGR area “East” on the base of increasing-
with-depth oxygen and decreasing-with-depth Mn2+ profiles (Mewes
et al., 2016; Kuhn et al., 2017). Numerous seamounts and faults in the
eastern CCZ have been shown to facilitate the recharge and subsequent
discharge of oxic seawater into and from oceanic crust and diffusion of
oxygen into the overlying sediments. The BGR, IOM, and IFRE-1 sites
are located about 5 km, 3 km and 1 km, respectively from the adjacent
ridge flanks (Fig. 1). At these sites, the sediment drape thicknesses
range between 20 and 83m (Supplementary Table 2). In comparison,
the sites studied by Kuhn et al. (2017) in the BGR area had an average
sediment thickness of 48m. The Mn2+ profile at the IFRE-2 site does
not indicate Mn2+ oxidation at depth while the sediments at the APEI3
and GSR sites are oxic throughout. The extended oxic zones at the
APEI3 and GSR sites probably result from low organic carbon supply
and respiration (Table 2), which is insufficient to fully consume the
oxygen diffusing into the sediment from both the overlying seawater
and the underlying basaltic crustal fluids. However, the retrieved core
lengths of up to 7.5 m do not allow the identification of deep oxidative
processes at these locations. Based on our pore-water data, widespread
deep Mn2+ oxidation occurs at three sites of various contract areas
within the CCZ.

6. Conclusion

We studied six abyssal sites in the Clarion-Clipperton Zone of five
European contract areas for the exploration of polymetallic nodules and
one site in an Area of Particular Environmental Interest (APEI3) over a
distance of about 1300 km. The sites differ in POC fluxes to the seafloor
(1–2mg Corg m-2 d-1) and sedimentation rates (0.2–1.15 cm kyr-1) while
the bioturbation depth is mostly limited to the upper 7 cm of the se-
diment. Solid-phase contents, pore-water profiles and the applied
transport reaction model demonstrate significant inter-areal differences
in sedimentation rates, the extension of oxic and suboxic zones and
rates of organic matter remineralization. We show that the observed
variability in redox zonation at the study sites is determined by dif-
ferences in (1) surface water productivity and associated POC flux to
the seafloor, (2) sediment accumulation rate and (3) the oxidation of
pore-water Mn2+ at depth. Diagenetic modeling indicates that due to
the low sedimentation rates, the labile fractions of organic carbon are
restricted to the upper 20 cm of the sediment where OC degradation is
dominated (90%) by aerobic respiration. Mn(IV) reduction and deni-
trification each consume less than 1% of the refractory organic matter.
The suboxic zone is characterized by a wide range of Mn2+ con-
centrations where the sites with the highest POC fluxes indicate further
production of Mn2+ by Mn-annamox. Mn2+-mediated denitrification is
absent at all sites due to insufficient Mn2+ concentrations. Downward
decreasing Mn2+ concentrations at three sites indicate the widespread
oxidation of Mn2+ at depth throughout the CCZ. Due to very low POC
fluxes of 1mg Corg m-2 d-1 to the seafloor in the APEI3 area, respiration
rates at this site are about twofold lower than in the investigated
European contract areas. Consequently, we infer that the preservation
area APEI3 does not represent the depositional conditions and bio-
geochemical processes that are dominating in the investigated
European contract areas. The POC fluxes to the seafloor and the sedi-
mentation rates generally correlate with surface water productivity,
however, within a given contract area, small-scale spatial (intra-areal)
variations in geochemical conditions and biogeochemical processes are
caused by (1) various extents of POC degradation processes in the water
column and (2) small-scale interactions of bottom water currents and
topography affecting the sedimentation pattern.

This study represents the first biogeochemical baseline study that
advances our knowledge about regional variations of natural deposi-
tional and geochemical conditions as well as biogeochemical processes
in the sediments of the vast deep-sea area of the CCZ. Our findings may
deliver important baseline data to be used for the assessment of the
impact of potential deep-sea mining activities. They will also serve as
an input for the further development of the Environmental
Management Plan by the International Seabed Authority (ISA).
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