Ocean bottom pressure (OBP) variability serves as a proxy of ocean mass variability. A question how well it can modeled by the present general ocean circulation models on time scales of 1 day and more is addressed. It is shown that the models simulate consistent patterns of bottom pressure variability on monthly and longer scales except for areas with high mesoscale eddy activity, where high resolution is needed. The simulated variability is compared to a new data set from an array of PIES (Pressure Inverted Echo Sounder) gauges deployed along a transect in the Southern Ocean. We show that while the STD of monthly averaged variability agrees well with observations except for the locations with high eddy activity, models lose a significant part of variability on shorter time scales. Furthermore, despite good agreement in the amplitude of variability, the OBP from the PIES and simulation show almost no correlation. Our findings point to limitations in geophysical background models required for space geodetic applications. We argue that major improvements in OBP modelling require data assimilation in order to increase the coherence between modelled and observed signals.

OBP variance

- We use the FESOM [1] (a locally eddy resolving (10 km in the Agulhas region) and coarse setups), and MITgcm (Massachusetts Institute of Technology General Circulation Model) [2] (18 km mesh).
- Mesoscale eddies and baroclinic waves contribute to the OBP variability. We study their signal by comparing simulations done with climate-type (coarse) and eddy resolving versions of models.
- In situ OBP measurements (Fig. 1) are used to judge about the realism of modelled variability.

The OBP variability on monthly timescales simulated on eddy resolving/permitting (upper panel) and coarse (lower panel) meshes differ in zones of enhanced eddy activity.

Comparison models results with observations - I

PIES observations are available for a four-year period from December 2010 [3]. They are compared with OBP simulated by FESOM-coarse and MITgcm, driven by the NCEP forcing.

A comparison of the one-day averaging of the OBP shows a fairly good agreement between models and observational data (Fig. 3) in almost the entire frequency range. Wavelet analysis (Fig. 4) indicates that the main frequency of the maximum signal is close to the sub-monthly signal. A significant part of variability is on periods around 20-30 days, which may lead to aliasing if monthly averaging is used. Wavelet analysis for monthly average output (Fig. 5) shows that both models reproduce only the seasonal or semi-annual cycle in the regions of weak eddy activity (PIES ANT 9-3, 17-1).

At locations eddy variability is high (PIES ANT 3-3), the coarse model does not reproduce the behaviour of OBP variability.

Comparison models results with observations - II

Middle panel (Fig. 6) presents comparison based on monthly averaging. The simulated STD agrees well with observations except for two stations that are close to the Agulhas retroreflection region, where it is noticeably lower. The simulated STD with a shorter window (1 day) is everywhere weaker than observed. The 6-hourly forcing used to drive the model is perhaps insufficient to properly excite high-frequency motions. Besides, global ocean circulation models commonly introduce some damping of surface gravity waves, which may be also playing the role here.

The right panel of Fig. 6 shows the RMS error between the model and observations.

Correlation between OBP and the residuals of the inversion

Figure 7 (left) shows remarkable correlations between modelled OBP and the GRACE-altimetry inversion residual: 19.3% of all correlations are higher than 0.5. Mass anomalies, expressed as water equivalent [m] were furthermore compared to in situ measurements. We present results for the eddy rich region in the Agulhas retroreflection (ANT 3-3). The residuals of the inversion, derived from GRACE and Jason data correlate well with the in-situ data, which means that a great part of the residuals can be explained by a proper modelling of ocean bottom pressure. Current model results from MITgcm are shown in orange.

Conclusions

- Modelling of OBP needs higher resolution. The intensity of eddies is underestimated in the Agulhas region and is marginally sufficient in the core of the ACC.
- A sub-monthly mode of OBP variability is observed in the period of PIES observations in the Antarctic region which may alias monthly-averaged signals.
- Simulated variability is consistent in magnitude, but is poorly correlated with the observed variability. It is likely that the ocean internal variability dominates the signal.

References


Abstract


(1) Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany; (2) Institute für Geoinformation, Universität Bonn, Germany; (3) Institut für Erdmessung, Leibniz Universität Hannover, Germany; (4) Marine Research Institute, Reykjavik, Iceland

Fig. 1. Location of PIES stations. Red dots - PIES stations for analysis.