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Introduction
The global distribution of plastic pollution in the aquatic 
environment is a current topic in pollution research and 
policy making. Though the presence of large-sized plastic 
wastes in the world oceans has been studied for decades, 
microplastics and their potential impacts on ecosystem 
functioning has recently come to prominence as a topic 
of serious concern (Ivar and Costa, 2014). A common 
source of primary microplastics are the microbeads found 
in consumer skincare products, such as facial cleansers, 

body and shower scrubs and tooth pastes. These can be 
characterized as synthetic, non-degradable, water insolu-
ble, solid materials comprising a range of polymers and 
additives (Leslie, 2014) which vary greatly in size (100 
µm to more than 1000 µm), shape (from amorphic to 
 spherical) and  quantity used in different commercial 
products ( Fendall and Sewell, 2009). After use, products 
containing  microbeads are designed to be washed down 
the drain with household wastewater (Tanaka and Takada, 
2016). Microbeads have been found in the Great Lakes, in 
rivers, on beaches, and in subtidal sediments,  wastewater 
effluents and the coastal and pelagic ocean worldwide 
(Eriksen et al., 2013; Leslie, 2014; Castañeda et al., 2014; 
 Eerkes-Medrano et al., 2015; Cheung and Fok, 2016; 
Isobe, 2016). Various studies have shown that waste water 
 treatment plants are often incapable of capturing micro-
plastics efficiently during the purification process (Chang, 
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2015; Rochman et al., 2015; Lechner and Ramler, 2015; 
Mintenig et al. 2017) and that freshwater systems trans-
fer plastic debris into the ocean (Moore, 2008; Thompson, 
2010). Microbeads are now recognised as a significant 
contaminant of the marine environment (Browne, 2015; 
Napper et al., 2015; Rochman et al., 2015).

Although numerous studies on identification, quanti-
fication and characterization of plastics at sea have been 
 published (e.g., Morét-Ferguson et al., 2010; Hidalgo-Ruz 
et al., 2012), the transport pathways and deposition sites 
(particularly for small microplastics) remain poorly under-
stood. A large proportion of produced plastics remain 
buoyant and are dispersed by winds and currents over 
long distances, accumulating in areas of confluence such 
as gyres, eddies and fronts (Moore et al., 2001; Hammer 
et al., 2012; Eriksen et al., 2013). The density of plastic 
varies greatly with composition and structure, commonly 
ranging from 0.83 to 1.38 g cm–3 (Andrady, 2011). This 
range of densities has resulted in debris being observed 
in many contrasting marine environments, including 
 neustonic (sea surface microlayer), benthic and  coastline 
environments (Barnes et al., 2009; Thomson, 2010; 
Andrady, 2011; Cole et al., 2011; Bergmann et al., 2012). 
The vertical distribution of plastic debris concentrations 
has been documented to drop exponentially with water 
depth, with smaller material plastic fragments tending to 
be less buoyant (Reisser et al., 2014). Quantities of micro-
plastics (< 4.75 mm) at the sea surface have been measured 
to be less than models have predicted, given the estimated 
release rates of material to the environment, suggesting a 
removal of plastic fragments of a few mm or less from sur-
face waters on a large scale (Cózar et al., 2014; Eriksen et 
al., 2014). These removal processes may result from rapid 
degradation of microplastics into microscale-sized objects 
not observed in these published studies or by ballasting 
processes such as biofouling, consumption by organisms, 
entrainment in settling detritus, downwelling and/or 
beaching. Although these processes are partially under-
stood, the localisation and quantification of microplas-
tics in the marine environment remains largely unknown 
(Thompson et al., 2004; Ballent et al., 2013).

The objective of this study was to experimentally inves-
tigate microplastic removal via entrainment in settling 
 phytodetritus and subsequent potential for transport 
within the benthic boundary layer. The hypothesis was that 
the aggregation of originally near-buoyant  microbeads 
(from commercial skincare products) with organo- mineral 
aggregates may result in vertical export from upper 
ocean layers to the seafloor, and subsequent lateral trans-
port  following resuspension. The output from the study 
should improve transport models for these plastic waste 
 materials, following their release from water treatment 
plants into the riverine and marine environments.

Methods
To improve our understanding of the transport and fate of 
microbeads in the environment, a number of experimen-
tal studies were conducted. These were aimed at  gauging 
the range in physical size of microbeads within and 
between different cosmetic products for facial cleansing, 

investigating how these microbeads behave in water and 
how they may aggregate in the environment with algal 
detritus or sediments. The behaviour of these aggregates 
was also examined to determine how microbead transport 
pathways may be changed by aggregation events. The 
methodologies employed, and the statistical approaches 
to analysis of the results, are described below.

Characterization of microbead size, shape and 
buoyancy
Six water-based facial and body cleansers containing 
microplastics (hereafter referred to as microbeads) were 
randomly selected, produced by a range of well-known 
companies and commonly available in German supermar-
kets (see Table S1 and Figure S1 for details). The total wet 
weight of each product was determined. Each product was 
then mixed with 0.75 L of warm water (40°C) and left to 
rest for 24 hours, to ensure full solubilisation of the creamy 
soap content of each product. The suspension was then 
filtered through a 63 µm filter, to extract the solid plas-
tic material. The extracted microbeads were then washed 
thoroughly with purified water to remove any soap and 
dried at 50°C for 24 hours. The percentage weight of the 
extracted microbeads of the product material as a whole 
was determined. The microbeads were then examined 
under a standard dark field microscope with 40× magni-
fication. The maximum lengths and widths of 150 indi-
vidual microbeads were measured using the ImageJ soft-
ware application (http://imagej.nih.gov). To determine 
the buoyancy variation between the microbeads from the 
different products, 50 mg of the plastic extracted from 
each product were added to small containers with 250 
ml freshwater (16°C) and mixed with a vortex mixer for 
30 seconds, to bring all material into suspension. These 
containers were then left to rest for 24 hours and verti-
cal (upward buoyant or downward settling) motion of the 
plastic was observed within each of the containers. The 
full procedure for measuring buoyancy was then repeated 
with filtered (0.7 µm GF/F) North Sea seawater (salinity of 
34; 16°C) for each product.

Microbead aggregation and aggregation behaviour 
experiments
To investigate how microbeads may behave and aggregate 
in the marine environment, environmentally relevant 
concentrations of microbeads and appropriate algal and 
sediment material were required for the  experimental 
set-ups.

Microbead concentrations
Concentrations of 1,000 to 24,000 microbeads L–1 were 
prepared for the experiments. We considered this range 
sufficient to experimentally replicate plastic concentra-
tions reported from sewage disposal pipes to offshore 
North Sea sediments (Leslie et al., 2013; Castañeda et al., 
2014; Mintenig et al., 2017). We did not extract microplas-
tics directly from the environment for the experimental 
studies, as we aimed to conduct reproducible work with 
materials of a reasonably uniform nature which we could 
determine in the laboratory.

http://imagej.nih.gov
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Algal material
To simulate environmental exposure to algal material, 
the large pelagic centric diatom (~ 6–20 µm) Thalas-
siosira weissflogii (Bacillariophyceae) was selected as an 
appropriate phytoplankton species with which to carry 
out aggregation experiments. The species is abundant 
in the North Sea and tends to flocculate into marine 
snow during the decline of the annual spring bloom 
( Hoppenrath et al., 2007). Cultures of T. weissflogii were 
cultivated in filtered (0.7 µm GF/F) seawater at 16°C 
under daily illumination of 12 hours in a temperature-
controlled laboratory. The algae were diluted in 1.15-L 
roller tanks to achieve concentrations of 106 cells L–1 

prior to each experimental run (Seebah et al., 2014). 
Such a concentration is representative of a diatom bloom 
in coastal waters, where cell concentrations between 105 
and 108 cells L–1 have been reported, and therefore is 
ecologically relevant for aggregation studies (Raymont, 
1980;  Venrick, 1998).

Sediment material
To simulate exposure to organo-mineral particulate 
material in the water column, as may occur during peri-
ods of marine sediment resuspension or during riverine 
transport, riverbed samples from the Weser and Ems 
estuaries were used in experimental runs ( Riethmüller 
et al., 1988; Grabemann et al., 1997; Van de Kreeke 
et al., 1997).

Aggregation methodology
To determine how microbeads may aggregate with vari-
ous materials in the environment, a series of experimental 
aggregation experiments were carried out, in which differ-
ing concentrations of plastic microbeads, diatom cells and 
river sediments were used (Table 1). The first experimen-
tal set-up (set-up 1) involved a range of environmentally 
high concentrations of microbeads, with no diatom cells 
or river sediments added; set-up 2 used the same range of 
high microbead concentrations but with T. weissflogii cells 
also added. Set-up 3 involved a range of moderate con-
centrations of microbeads with T. weissflogii cells; set-up 
4 used the same range of moderate microbead concentra-
tions with T. weissflogii cells but with riverine sediments 
also added. In set-ups 2–4, one treatment was incubated 
with T. weissflogii cells only (no microbeads or  sediments) 
to obtain a standard for natural aggregation. For all aggre-
gation experiments, a standard roller tank setup was 
 utilized, with aggregations monitored over a 72-hour 
period. Aggregation tanks, housed in a temperature- 
controlled laboratory at 16°C, were filled with filtered (0.7 
µm GF/F) North Sea water (salinity of 34).

To assess how rapidly turbidity changed over time in the 
experimental runs (Table 1), 4.5 ml samples were carefully 
removed from each roller tank at discrete time intervals (0, 
1, 2, 4, 8, 12, 24, 48, 72 hours). Aggregates were allowed to 
settle for about 5 minutes before sampling, and  turbidity 
(in Nephelometric Turbidity Units, NTU) was measured 

Table 1: Design of multifactorial experiments with 15 treatments investigating aggregation rates of various microbead 
quantities with algal detritus and riverine sediments in seawater. DOI: https://doi.org/10.1525/elementa.317.t1

Set-upa Treatment 
#

Concentration of algae (T. weissflogii), plastic 
microbeads, and sediments

Algal 
 content 
(total # 
of cells)

Plastic content Sediment 
content 
(mg L–1)

(mg L–1) (estimated 
total # of 

microbeads)

1 1 0 261 24000 0

2 0 174 16000 0

3 0 87 8000 0

2 4 106 261 24000 0

5 106 174 16000 0

6 106 87 8000 0

7 106 0 0 0

3 8 106 43 4000 0

9 106 22 2000 0

10 106 11 1000 0

11 106 0 0 0

4 12 106 43 4000 130

13 106 22 2000 130

14 106 11 1000 130

15 106 0 0 0

a In all cases, 1.15-L experimental roller tanks were used, with North Sea water of salinity 34 at 16°C.

https://doi.org/10.1525/elementa.317.t1
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with an AquaFluor (Turnerdesigns.com) turbidity meter. 
Three replicate measurements were taken for each time 
interval during each experimental run. Results were then 
averaged and are provided with standard deviations in the 
supplementary materials (Table S2). As turbidity is a proxy 
for the concentration of fine particles in suspension, a 
reduction of turbidity over time was inferred to represent 
the removal of fine particles from suspension via aggrega-
tion. Aggregates were photographed in suspension using 
a fixed focal length particle camera (Imaging source DFK-
41F02) with back illumination at the end of the 72-hour 
incubation time. The camera took 20+ images of ~ 1 cm 
area with a shallow focal depth of ~ 1 mm. The maximum 
lengths of 50 ‘in-focus’ aggregates captured in these 
images were measured using ‘Image J’.

Settling velocity of aggregates
Settling velocities of the 72-hour aggregates formed in 
each of the experimental aggregation runs were deter-
mined following the method of Pabortsava et al. (2011). 
Aggregates were carefully siphoned with a tube of 1-cm 
diameter to the top of a 1-m settling column and allowed 
to settle through filtered (0.7 µm GF/F) North Sea water 
of salinity 34. Sinking aggregates were  photographed with 
the DFK-41F02 camera with back illumination. Images 
were taken every 2 seconds for a 60-minute period. A 
fishing line of 250-µm diameter was used for image 
size  calibration. Subsequent frames were combined into 
image stacks using ‘Image J’. For ‘in-focus’ aggregates 
within a stack image, the size and distance travelled by 
each aggregate through successive frames were measured. 
From these measurements settling rates (m day–1) were 
computed.

Critical shear velocity for aggregate resuspension
To determine experimentally the likely resuspension 
behaviour of the 72-hour aggregates following  settlement 
to the seafloor through the benthic boundary layer,  critical 
shear velocities of aggregates were measured  following 
the method described in Pabortsava et al., (2011). Briefly, 
the 72-hour aggregates from each aggregation experi-
ment were carefully siphoned into separate erosion 
chambers (Thomsen and Gust, 2000) in the temperature-
controlled laboratory at 16°C and allowed to settle to the 
chamber floor. Following settlement, flow velocities were 
slowly increased in each chamber to determine the flow 
conditions under which the various aggregates would 
resuspend and laterally advect. The critical shear velocity 
u*crit for bedload and suspended transport of these aggre-
gates was determined by raising the u* by 0.1 cm−1 every 5 
minutes. Qualitative observations of aggregate behaviour 
were also documented.

Statistical analysis of aggregate size, turbidity and 
settling velocity results
Rates of aggregation within each experimental set-up 
were compared with two-way ANOVA tests. The two 
independent variables used in each set-up test were 
‘time’ in hours since start of experimental run (9 levels: 
0, 1, 2, 4, 8, 12, 24, 48, and 72 hours) and ‘treatment’ 

(3–4 levels in each set-up, representing the various 
roller tank contents, as detailed in Table 1). The depend-
ent variable was ‘turbidity’ (NTU), as a proxy indicator of 
aggregation. A one-way ANOVA was used to determine 
whether there was a significant difference in aggregate 
sizes 72 hours after delivery of the contents to each 
roller tank used in experimental set-ups 1–4 (the inde-
pendent variable was ‘experimental treatment’, and the 
dependent variable was ‘aggregate size’ in µm). A fur-
ther one-way ANOVA was used to determine if particle 
settling rates differed significantly between treatments 
(the independent variable was ‘experimental run’, i.e., 
settling aggregates from each set-up, with the depend-
ent variable ‘settling rate’ in cm hour−1 as measured for 
each in-focus aggregate photographed in the experi-
mental runs). Where appropriate, post-hoc tests were 
used to determine which treatments resulted in statisti-
cally significant differences. Levene’s test of homogene-
ity was used to assess whether or not the variability in all 
comparisons of data was homogeneous or not. In situa-
tions where the data distribution differed significantly 
between treatments by Levene’s test, Welch’s robust F 
ANOVA test statistic is reported.

Results
Physical and hydrodynamic characteristics of 
microbeads
The percentage weight of microbeads in the products 
investigated ranged from 2.08 to 5.86% per milligram 
wet weight of the retail products. Products 1 and 5 had 
the highest plastic concentrations of 5.83 and 5.86% by 
volume, respectively (Table S1).

The shape and size distribution of plastic particles were 
highly heterogeneous. The majority of microbeads were 
not uniform and spherical but showed a variety of irregular 
shapes (Figure 1). All products had a groundmass consist-
ing of small, white, amorphous particles that were hardly 
visible to the human eye within the cleanser but could 
be sensed on the skin when used. In addition, most prod-
ucts (all but product 2) contained larger, coloured, spheri-
cally shaped microbeads that were easily distinguishable 
and visible to the human eye (Figure 1). Product 1 con-
tained many microbeads that were long and thin and, 
due to their high surface area, easily broken into smaller 
fragments (Figure 1a). The plastic content of product 2 
consisted of many (only) small, homogeneously sized par-
ticles, with the majority being round or elliptical in shape 
(Figure 1b). Product 3 contained primarily small particles, 
relatively uniform in shape, with a few larger blue spheres 
(Figure 1c). In product 4, diverse plastic particles were 
found: white amorphous shaped microbeads, light blue 
oblate spheroids and large, dark blue spheres (> 0.2 mm; 
Figure 1d). Product 5 contained primarily small parti-
cles, relatively uniform in shape, with a few larger green 
spheres also included in the mix (Figure 1e). Similar to 
products 3 and 4, product 6 consisted of amorphous plas-
tic fragments and threads (Figure 1f) intermixed with 
occasional larger blue spheres. Maximum particle lengths 
ranged from 22 to 1586 µm across all six products tested. 
A physical description and size distribution of individual 

http://www.turnerdesigns.com/
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microbeads prior to aggregation experiments are provided 
in Table 2 (see Dataset S1 for complete details).

Buoyancy observations in seawater showed that micro-
beads flocculated swiftly following cessation of vortex mix-
ing and accumulated in a matter of seconds at the surface 
of each container. In general, the large spherical particles 
(where present in a product) exhibited the strongest posi-
tive buoyancy, though a proportion of smaller amorphous 

particles also accumulated on the surface within the first 
30 seconds following mixing. Qualitative observations 
(Table S3) indicated that smaller particles remained the 
longest in suspension, rising to the surface within min-
utes rather than seconds. Across all products, a surface 
layer of microbeads had developed within all containers, 
with no particles visible in suspension after 24 hours. 
Microbeads from each product showed broadly similar 

Figure 1: Images of microbeads extracted from personal care products. Microbeads were imaged under a 
 standard dark field microscope with 40x magnification. All products contained small white amorphous particles 
(a–f), while five (all but product 2) contained large spherical beads (readily visible in c–e; the larger beads present 
in products 1 and 6 were not captured by respective images in a and f). Product 1 (a) contained large, often long 
and thin  microplastics. Panels a, b, c, d, e and f represent products 1, 2, 3, 4, 5 and 6, respectively. DOI: https://doi.
org/10.1525/elementa.317.f1

Table 2: Size, shape and buoyancy characteristics of 150 individual microbeads extracted from products 1–6. DOI: 
https://doi.org/10.1525/elementa.317.t2

Product 
#

Particle length (µm)a Buoyancy behavior in small containers

Maximum Minimum Mean ± STDb Microbead 
descriptiona

In  freshwater In seawater

1 1586 63 473 ± 231 white amorphous, 
blue spherical 

positive positive

2 636 82 177 ± 84 white amorphous, 
blue spherical 

positive positive

3 608 22 173 ± 131 white amorphous, 
blue spherical 

positive (white), 
 negative (blue)

positive (both)

4 555 76 242 ± 83 white amorphous, 
light blue elliptical, 
dark blue spherical 

positive positive

5 555 49 151 ± 68 white amorphous, 
green spherical 

positive positive

6 568 27 226 ± 118 white amorphous, 
blue spherical 

positive positive

a Determined by dark field microscopy.
b Standard deviation.

https://doi.org/10.1525/elementa.317.f1
https://doi.org/10.1525/elementa.317.f1
https://doi.org/10.1525/elementa.317.t2
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behaviour when placed in freshwater, though with less 
rapid buoyancy. Only product 3 demonstrated a slightly 
different behaviour: the large spherical beads in product 
3 stayed in suspension for hours, eventually sinking to the 
bottom, indicating that these product microbeads had 
a higher density than the surrounding freshwater. After 
these preliminary investigations of size, shape and buoy-
ancy of the microbead contents of these facial cleansing 
products, the majority of microbeads were characterized 
as buoyant, while only a small proportion of product 3 
(blue spherical beads, estimated < 5% of product micro-
beads) demonstrated neutral and negative buoyancy in 
freshwater only. Product 3 was selected for further experi-
mental studies to determine the aggregation, settling and 
lateral transport potential for the microbeads within this 
product in the environment.

Aggregate size distributions
The average and standard deviation of aggregate sizes 
formed in all roller tank runs are given in Table 3, with 
photographs of aggregates shown in Figure 2. Results are 
given below for each set-up, 1–4 (using microbeads from 
product 3) plus the phytoplankton-only control.

Set-up 1. After 72 hours in the roller tanks, experimental 
runs with an estimated 8000, 16000 and 24000 micro-
beads L−1 formed aggregates of a size range of < 400 to 
2100 µm, giving a larger average size (836 ± 365 µm) than 
that of the individual unaggregated microbeads (173 ± 
131 µm). An increase in microbead concentrations cor-
related positively with an increase in average aggregate 
size, though the comparably high standard deviations 

in these measurements rendered this observed increase 
 statistically insignificant (Table 3; Figure 3A).

Set-up 2. Exposing 106 cells L−1 of T. weissflogii phyto-
plankton with high densities of microbeads (estimated at 
8000, 16000, 24000 L−1) in the roller tanks resulted in the 
formation of larger aggregates than were formed by micro-
beads alone, though these were smaller than  aggregates 
formed by placing comparable cell densities of the algae 
in the roller tanks without any addition of microbeads 
(3194 ± 1917 µm; Table 3; Figure 3B). The mean size 
of these aggregates was 1991 ± 826 µm across all treat-
ments, considerably greater than the average aggregate 
size produced in the roller tanks containing only microbe-
ads (set-up 1). Aggregates formed in set-up 2 exhibited a 
greater size heterogeneity than those produced via set-up 
1, ranging from < 600 to 4400 µm. The lowest concentra-
tion of microbeads used in set-up 2 (8000 L−1) produced 
the greatest fraction of large aggregates, with the highest 
average aggregate length (Table 3).

Set-up 3. Moderate concentrations of microbeads 
( estimated at 1000, 2000, 4000 L−1) and phytoplankton 
(106 cells L−1) produced aggregates of smaller average size 
(1038 ± 342 µm) than those formed in set-up 2 (Table 3; 
Figure 3C).

Set-up 4. Moderate concentrations of plastic microbeads 
(estimated at 1000, 2000, 4000 L−1), and phytoplankton 
(106 cells L−1) additionally enriched with 130 mg L−1 of fine 
sediments, simulating aggregation processes in estuaries 
and coastal waters, resulted in formation of aggregates 
ranging from < 300 to 2800 µm diameter, with an  average 
size of 1248 ± 644 µm, (Table 3; Figure 3D).

Table 3: Aggregate size distribution, turbidity decrease and settling velocity following a 72-hour aggregation period in 
roller tanks. DOI: https://doi.org/10.1525/elementa.317.t3

Set-up Treatment Contents Estimated 
total # of 

microbeads

Resulting aggregates

Mean size 
(µm) ± STDa

Size range 
(µm)

Mean size 
(µm) ± 

STD across 
set-up

Turbidity 
decrease 
(%) over 
72 hours

Settling 
velocity 
(m d–1)

1 1 microbeads 
only

24000 935 ± 446 370–2090 836 ± 365 75 buoyant

2 16000 891 ± 347 480–2100 64

3 8000 682 ± 218 360–1270 72

2 4 microbeads, 
 phytoplankton

24000 1810 ± 807 520–3890 1991 ± 826 67 buoyant

5 16000 1915 ± 686 540–3620 57

6 8000 2248 ± 920 850–4410 56

3 8 microbeads, 
 phytoplankton

4000 1144 ± 342 490–2100 1038 ± 342 54 91 ± 27

9 2000 984 ± 375 380–1980 57

10 1000 987 ± 282 310–1810 48

4 12 microbeads, 
 phytoplankton, 
sediments

4000 1358 ± 731 270–2670 1248 ± 644 48 559 ± 178

13 2000 1206 ± 642 350–2610 43

14 1000 1180 ± 545 280–2810 51

2, 3, 4 7, 11, 15 phytoplankton 
only

0 3194 ± 1917 990–7650 3194 ± 1917 54 53 ± 22

a Standard deviation.

https://doi.org/10.1525/elementa.317.t3
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Aggregation of phytoplankton cells. For comparison, 
aggregates formed in runs with only phytoplankton (106 

cells L−1) placed in the roller tanks exhibited a wide size 
range of 990–7650 µm, with an average aggregate size of 
3194 ± 1917 µm (Table 3).

A one-way ANOVA test of aggregate size measurements 
across treatments indicated that there was a significant 
difference in aggregate diameters by treatment (at the 
95% threshold): ANOVA, F (9,490) = 44.46, p < 0.001. The 
Bonferroni test determined that all aggregates formed in 
set ups 1–4 were significantly smaller than those formed in 
roller tanks dosed only with algal cells (p < 0.05). Aggregate 
sizes formed in set ups 1–4 were not significantly differ-
ent from each other, given the large  standard deviations 
associated with the measured aggregates (n = 50) and the 
great variability in aggregate form. This variability led to 
an occasional considerable overlap in individual measure-
ments across treatments, even in cases where tank-pro-
duced aggregate types exhibited very different diameter 
means, such as between treatment 12 (4000 microbeads 
L–1 plus sediment) with a mean  diameter of 1358 ± 731 
µm and treatment 4 (24,000 microbeads L–1 without sedi-
ment) with a mean of 1810 ± 807 µm.

Turbidity changes during aggregation
During all roller tank aggregation experiments, a decrease 
in turbidity over time was observed over the 72-hour 
aggregation period (Table 3). For complete turbidity data 
recorded at each measurement point, please see Table S2.

Set-up 1. A significant decrease in turbidity was observed 
during aggregate formation of microbeads only (ANOVA, 
F(8,72) = 14.215, p < 0.001) by 72, 64 and 75%, respec-
tively, for the estimated 8000, 16000, and 24000 microbe-
ads L–1 over the full aggregation period of 72 hours.

Set-up 2. With an estimated 8000, 16000, and 24000 
microbeads and phytoplankton (106 cells L–1), turbid-
ity decreased by 56, 57 and 67%, respectively, over 72 
hours. Statistical results indicated that significant factors 
in determining the measured turbidities were: time in 
hours (ANOVA, F(8,72) = 48.082, P < 0.001), treatment 
(ANOVA, F(3,72) = 106.316, P < 0.001) and interaction 
effects between hours and treatment (ANOVA, F(24,72) = 
1.486, P < 0.001). Turbidity reduction over the aggregation 
period was less rapid and less pronounced within roller 
tanks containing only phytoplankton (set-up 2, treatment 
7; ANOVA, F(3,72) = 73.398, P < 0.001).

Set-up 3. With an estimated 1000, 2000, and 4000 
microbeads L–1 and phytoplankton (106 cells L–1), turbidity 
decreased by 48, 57 and 54%, respectively, over 72 hours 
of aggregation. Even with these reduced concentrations of 
microbeads available for aggregation, turbidity reduction 
differed by treatment (ANOVA, F(3,24) = 1.991, P < 0.001). 
The Bonferonni post-hoc test indicated that reference 
 values from unenriched roller tank samples differed 
significantly from the other tanks and by time (ANOVA, 
F(8,72) = 13.480, p < 0.001; Table S2).

Set-up 4. With an estimated 1000, 2000, and 4000 
microbeads, phytoplankton (106 cells L–1) and sedi-
ments (130 mg L–1), turbidity decreased over time from 
the initial elevated turbidity values by 51, 43 and 48%, 
respectively. As with set-up 1, significant determinants of 
the observed turbidities were the time of measurement 

Figure 2: Photographs of aggregates following a 
72-hour aggregation period in the roller tanks.  Set-up 
1 (a, b) included high concentrations of  microbeads only, 
estimated at 24000 and 16000 L−1 ( treatments 1 and 2, 
 respectively); set-up 2 (c, d), same high  concentrations of 
microbeads, aggregated with 106 cells L−1 of T. weissflogii 
(treatments 4 and 5, respectively); set-up 3 (e, f), moder-
ate concentrations of microbeads,  estimated at 4000 and 
2000 L−1 ( treatments 8 and 9, respectively), aggregated 
with 106 cells L−1 of T.  weissflogii; and  set-up 4 (g, h), same 
moderate  concentrations of microbeads, aggregated 
with 106 cells L−1 of T.  weissflogii, and 130 mg sediments 
( treatment 12). Images in panels a–f were taken in aggre-
gation tanks for treatments 1, 2, 4, 5, and 8, 9, respec-
tively (Table 1). Images in panels g and h were taken in 
the settling columns from treatment 12. A fishing line 
of 250 µm in diameter (as in panels g and h) was used 
to calibrate image size. DOI: https://doi.org/10.1525/
elementa.317.f2
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(ANOVA, F(8,72) = 229.734, p < 0.001) and interaction 
between time and treatment effects (ANOVA, F(24,72) 
= 22.603, p < 0.001). Bonferroni post-hoc tests indi-
cated that turbidities within roller tanks not enriched 
with sediment and/or microbeads differed from those 
enriched with these additives, but that turbidity did not 
differ  significantly between treatments by the microbead 
 concentrations used in set-up 4 (Table S2).

Settling velocity
In set-ups 1 and 2, the aggregates formed in the roller 
tanks over 72 hours were positively buoyant and returned 
to the surface of the settling column upon delivery into 
the first few cm of column water. Therefore, settling 
rates could only be determined for aggregates formed in 
roller tanks dosed only with algal cells and those formed 
in roller tanks containing a moderate microbead con-
centration (4000 L−1, set-up 3, treatment 8) or moderate 

microbead concentration and sediments (4000 L−1, set-up 
4, treatment 12) (Table 3; Figure 4). The fastest settling 
velocities of up to 831 m d–1 (mean of 559 ± 178 m d–1) 
were observed for the organo-mineral and low-plastic 
concentration aggregates (set-up 4, treatment 12). Micro-
bead-phytoplankton aggregates (set-up 3, treatment 8) 
exhibited settlement velocities of 32–169 m d–1 (mean of 
91 ± 27 m d–1). Aggregates formed in the roller tanks by 
phytoplankton alone exhibited the lowest observed set-
tling velocities with a mean of 53 ± 22 m d–1.

Levene’s test indicated that the homogeneity of the 
settling velocity data was significantly different across 
treatments, though by using the robust equality of means 
Welch’s F to report the test output, the use of the ANOVA 
test was considered appropriate given the considerable 
differences in velocities observed between treatments. 
The ANOVA test indicated a significant difference in set-
tling velocities across treatments at a 99.9% threshold: 

Figure 3: Aggregate size distributions (set-ups 1–4) following a 72-hour period in roller tanks. For experimen-
tal aggregations with microplastics, only those extracted from product 3 were used. Set-up 1 (A) included high con-
centrations of microbeads (estimated at 8000, 16000 and 24000 L−1), with unaggregated microbead diameters shown 
for comparison. Set-up 2 (B) used the same high concentrations of microbeads additionally aggregated with 106 cells 
L−1 of T. weissflogii, with the size distribution of phytoplankton-only aggregates shown for comparison. Set-up 3 (C) 
used moderate concentrations of microbeads (1000–4000 L−1) and 106 cells L−1 of T. weissflogii, with the size distribu-
tion of phytoplankton-only aggregates shown for comparison. Set-up 4 (D) used the same moderate concentrations 
of microbeads, 106 cells L−1 of T. weissflogii and 130 mg sediments, with the size distribution of phytoplankton-only 
aggregates shown for comparison. See Table 3 for details of the treatments (color-coded in A–D). DOI: https://doi.
org/10.1525/elementa.317.f3
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F (2, 147) = 356.25, p < 0.001. The Bonferroni test indi-
cated that this settling rate difference was significant 
between the aggregates formed from phytoplankton only 
and those formed from the organo-mineral and plastic 
additives in the roller tanks of set-up 4 (p < 0.001), and 
between the set-up 3 and set-up 4 aggregate settling 
velocities (p < 0.001). No significant difference in settling 
velocity was indicated between the phytoplankton-only 
and low-plastic concentration aggregates formed in set-
up 3 (phytoplankton and 4000 microbeads L–1).

Critical shear velocity
Phytoplankton aggregates formed in roller tanks with-
out the addition of microbeads or sediments demon-
strated homogeneity in resuspension behaviour. For these 
aggregates, a low shear velocity of 0.2 cm s–1 initiated 
bedload transport, with most organo-aggregates enter-
ing suspended mode at shear velocities of 0.3–0.4 cm s–1. 
Aggregates with enrichments of 4000 microbeads L–1 and 
sediments (set-up 4) exhibited a markedly different resus-
pension behaviour, with bedload transport commencing 
at u*cri = 0.6–0.7 cm s–1, saltation occurring at u*cri of 0.8–1 
cm s−1 and full resuspension observed at u*cri = 1.3–1.4 cm 
s–1. An overview of particle behaviour is given in Table 4.

Discussion
The results from this laboratory investigation suggest that 
microbeads extracted from a number of products aimed at 
the same cosmetic purpose, namely facial cleansing, may 
well exhibit distinct and contrasting transport behaviours 

within the environment. All except one fraction of one 
facial cleanser were buoyant. Nevertheless, the degree of 
buoyancy differed by product and appeared to be largely 
dependent on both particle size and density. These experi-
mental observations support the pervasive view that the 
majority of microplastics are buoyant, with much research 
to date focused on the monitoring of their presence by 
sampling surface waters and beach shore sediments 
(Hidalgo-Ruz et al., 2012; Cózar et al., 2014; Lusher et al., 
2014). However, studies have also reported microplastics 
in deep-sea sediments (Van Cauwenberghe et al., 2013; 
Woodall et al., 2014), suggesting that removal of millim-
eter-sized plastic fragments from the sea surface is occur-
ring on a large scale (Kukulka et al., 2012; Eriksen et al., 
2014) and that the sea surface and beaches are not the 
ultimate or exclusive sinks for plastic pollution.

One focus of our study was to investigate entrainment of 
selected plastic microbeads into aggregates with algal and 
coastal lithogenic material, and whether such entrainment 
would lead to increasingly rapid settlement of microplas-
tic particles. Our results indicate that plastic microbeads 
can indeed aggregate with algal biomass rapidly, with 
even high concentrations of microplastics being removed 
from suspension swiftly by phytoplankton concentrations 
typically found in coastal waters. When microbeads were 
exposed to both phytoplankton and riverine sediments, 
aggregations also took place rapidly. The settling rate 
observations indicated that a ballasting mechanism, such 
as the incorporation of microbeads into organic (phyto-
plankton) or organo-mineral (sediment) aggregates, is 

Figure 4: Relationships between aggregate settling velocity and aggregate size. Settling velocity vs. aggregate size 
for aggregates of phytoplankton-only (T. weissflogii) in green, aggregates with phytoplankton and 4000  microbeads 
L–1 (set-up 3, treatment 8) in red and aggregates with phytoplankton, 4000 microbeads L–1 and 130 mg L–1  sediments 
(set-up 4, treatment 12) in black. The aggregate sizes presented are the size of the aggregates settling past the  camera 
in the settling tube, with some breakage and further aggregation possible during transport from roller tank to  settling 
tube and within the settling tube prior to passing the camera. Solid lines indicate data fit to a logarithmic regression, 
with line equations given in the figure. DOI: https://doi.org/10.1525/elementa.317.f4
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necessary to initiate sinking of (near)  buoyant microbeads 
(Thomsen, 2005).

The volumes of microplastic pollution in the environ-
ment reported in the literature differ greatly by study and 
research area: a recent study examined treated wastewater, 
sewage sludge and separated light solids from 12 sewage 
plants all over Germany. The authors detected consider-
able amounts of microplastics in wastewater effluents, 
of which many items could be classified as microbeads 
(Mintenig et al., 2017). The authors estimated an annual 
discharge of 9 × 107 to 4 × 109 microplastic particles and 
fibres per wastewater treatment plant. Castañeda et al. 
(2014) found microbeads in varying abundances in the sed-
iments of the St. Lawrence River, with the highest density 
of 103 microbeads L–1, a figure of comparable magnitude 
to microplastic concentrations reported from contami-
nated marine sediments. In a microplastics survey of the 
Dutch environment, between 9000 and 91000 micro-
plastic particles per m3 were found in treated wastewater 
samples, whereas estuarine and North Sea sediments con-
tained 3300 ± 420 to 440 ± 160 microplastic particles per 
kg dry weight sediment (Leslie et al., 2013). These plastic 
particles can resuspend easily under elevated coastal and 
tidal current velocity conditions and re-enter the benthic 
boundary layer (Leslie et al., 2013). The plastic concen-
trations selected for set-ups 3 and 4 in the current study 
were from the higher spectrum of concentrations that 
have thus far been reported from the environment (103 
microbeads L–1). Lower concentrations would have been 
difficult to detect in the roller tanks during experimen-
tal runs, and therefore aspects of microbead behaviour 
would remain obscured. Higher concentrations used in 
experimental set-ups 1 and 2 were used to study the inter-
action of microbeads between each other (set-up 1) and 
with phytoplankton at point sources in coastal waters (set-
up 2). Moderate concentrations of microbeads L–1 when 
exposed to phytoplankton in the roller tanks (set-up 3) 

resulted in swifter aggregation than in  experimental runs 
with higher concentrations of microbeads, possibly as a 
result of mechanical disassociation of aggregates increas-
ing with higher microbead concentration, or as a result of 
a greater entrapment of particles by larger fluffy aggre-
gates than can be achieved by the mutual entanglement 
of smaller microbeads with each other. The morphology of 
T. weissflogii aggregates that incorporated microbeads dif-
fered greatly from those formed in roller tanks not dosed 
with plastics. Organic-only aggregates of T. weissflogii were 
fluffy, fragile with a high porosity and translucent form. In 
contrast, aggregates that incorporated plastic microbeads 
(1000–4000 L–1) were generally more compact and lower 
in porosity. These aggregates were also more rounded, rea-
sonably homogeneous in size, less translucent and green-
yellow in colour.

Laboratory measurements of settling velocities of 
aggregates were conducted in still water conditions. 
Therefore, potential environmental hydrodynamic effects 
(e.g., mixing by wave action, tides, seasonal stratifica-
tion, etc.) on settling rates were not taken into account. 
Despite this, our results clearly indicate that the observed 
rapid incorporation of plastic and inorganic material 
into phytoplankton aggregates alters the settling veloci-
ties of these natural aggregates, implying further influ-
ence on both the rate of phytoplankton detritus supply 
and the volume of plastic reaching the seafloor. In our 
study we observed that on average microplastic-free 
organic aggregates were sinking at the lowest observed 
velocities (Figure 4). Sinking velocities for marine snow 
documented in the literature vary by location, season 
and study. Measured sinking speeds at the decline of the 
plankton bloom in the Porcupine Seabight in the Atlantic 
have been reported to be between 100 and 150 m day–1 

(Lampitt, 1985); in Monterey Bay, California, Pilskaln et al. 
(1998) reported 16–25 m day–1. For marine snow collected 
by Thomsen and Van Weering (1998), sinking velocities 

Table 4: Resuspension behaviour of aggregates generated from moderate concentrations of microbeads with 
 phytoplankton and sediments and those from phytoplankton only. DOI: https://doi.org/10.1525/elementa.317.t4

Resuspension 
stage

Replicate 
#

Set-up 4,  
treatment 12a

Phytoplankton  
only

u*cri
b 

(cm s–1)
Average u*cri 

(cm s–1)
u*cri  

(cm s–1)
Average u*cri  

(cm s–1)

Beginning of 
resuspension

1 0.6 0.67 0.2 0.20

2 0.7 0.2

3 0.7 0.2

Bedload trans-
port

1 0.9 0.90 0.4 0.33

2 0.8 0.3

3 1.0 0.3

Suspended 
load transport

1 1.4 1.33 0.5 0.50

2 1.3 0.5

3 1.3 0.5

a Roller tanks contained ~ 4000 microbeads L–1, 106 cells phytoplankton (T. weissflogii) L–1 and 130 mg L–1 sediments.
b Critical shear velocity.
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of 432 m day–1 were reported for the North East Atlantic. 
Our results for phytoplankton-only aggregates (23–103 m 
day–1, mean = 53 ± 22 m day–1) are comparable with these 
ranges of  settling velocities. Plastic-only aggregates with 
no algal content (set-up 1) did not sink, most likely due 
to the lack of a sufficient ballasting mechanism. Addition 
of high microplastic concentrations (set-up 2) inhibited 
the sinking of organic matter, likely due to the high-
buoyant plastic content lowering the inherent density 
of the aggregates. These results indicate that high con-
centrations of plastics in the natural environment may 
increase the buoyancy of any naturally occurring aggre-
gates that may incorporate the microbeads. Addition of 
moderate microbead concentrations (set-up 3) resulted 
in the produced aggregates sinking at rates of 32–169 m 
day–1 with an average settling velocity of 91 ± 27 m day–1 
(Table 3; Figure 4). Further investigations are required to 
accurately define the degree of change in settling velocity 
associated with microplastic enrichment.

Long et al. (2015) studied the aggregation of micro-
plastics with two different algae species: the diatom 
Chaetoceros neogracile and the cryptophyte Rhodomonas 
salina. Interestingly, they determined that the sinking 
rates of the diatom aggregates strongly decreased follow-
ing aggregation with microplastics, while the sinking rates 
of cryptophyte aggregates increased after microplastic 
incorporation. Cole et al. (2016) examined the effects of 
microplastics on faecal pellet properties and found that 
the microplastics-fed copepod Calanus  helgolandicus 
egested faecal pellets with reduced densities, a 2.25-
fold reduction in sinking rates, and a higher propensity 
for fragmentation. These various results indicate that 
microplastic incorporation into natural aggregates of 
 phytoplankton and detritus will affect the transport of 
organic matter within the marine environment, which 
may have impacts on the functioning of the marine food 
web and ecosystem, potentially resulting in a change in 
faunal  distributions as ecosystem niches are altered by the 
change in particle flux and food supply.

Addition of inorganic material in the current study 
resulted in strongly increased settling velocities ranging 
from 158 to 831 m day–1, with a mean velocity of 559 
± 178 m day–1. These results are comparable to the set-
tling velocities of phytoplankton aggregating with drill 
cuttings (100–175 mg L–1 dry weight) measured by 
Pabortsava et al. (2011). The entrainment of the inorganic 
material increases the overall density of aggregates and 
results in elevated settling, with a linear relationship of 
settling velocity and size. The model of Armstrong et al. 
(2002) on mineral ‘ballast’ attached to organic aggregates 
also explains generally elevated values of settling veloci-
ties of aggregates exposed to inorganic material. Studies 
from continental margins (Thomsen, 2005) showed that 
once organo-plastic aggregates enter river plumes or 
reach the seafloor, they most likely incorporate litho-
genic material and increase settling velocities. Our results 
show that plastic microbeads are rapidly scavenged from 
suspension by aggregates. This rapid incorporation of 
low density buoyant plastics into aggregates therefore 
offers a transport route downwards through the water 

column which cannot be achieved by plastic microbeads 
without aggregation with settling algal detritus, with 
incorporation of suspended sediments further increasing 
the settlement rates. Our results therefore support the 
hypothesis that vertical transport of microbeads to the 
benthic environment following phytoplankton aggrega-
tion represents a sink for microplastics from the upper 
waters, explaining the low concentrations that have 
been measured in the ocean surface (Thompson et al., 
2004; Eriksen et al., 2014; Long et al., 2015). Modelling 
 transport pathways for microplastics using buoyancy 
alone, without the inclusion of the potential aggrega-
tion factor, is likely to underestimate the potential rate of 
downward transport.

Several factors such as size, density, porosity, shape, 
and stickiness of aggregates play roles in determining the 
resuspension behaviour of aggregates following settling 
(Beaulieu, 2003). Our results show that aggregates com-
posed only of T. weissflogii resuspended at lower shear 
velocities than aggregates with entrained plastics and 
sediments. Our results were within the range observed 
in literature: Beaulieu (2003) determined values for criti-
cal shear velocity, which ranged from 0.4 to 0.6 cm s–1 for 
Chaetoceros-derived detritus and from 0.5–0.8 cm s–1 for 
Skeletonema-derived detritus. Jago et al. (1993) measured 
values of 0.45–0.55 cm s–1 for organic-rich aggregates 
deriving mainly from Skeletonema costatum. Similar values 
were also determined by Thomsen and Gust (2000) and by 
Pabortsava et al. (2011) for the resuspension behaviour of 
organic aggregates treated with 175 mg L–1 of drill cut-
tings. The results of these resuspension experiments sug-
gest that phytodetrital aggregates with entrained plastics 
and lithogenic material are less mobile following deposi-
tion than those not containing such inclusions and that 
the sediment content is a particularly prominent factor in 
determining subsequent transport in the benthic bound-
ary layer.

Resuspension of benthic detritus, bacteria, and  settled 
phytoplankton presents a potentially high-quality food 
source for suspension feeders (Grant et al., 1997). Many 
suspension and deposit feeders may ingest resuspended 
organo-plastic and organo-plastic-lithogenic aggregates 
as readily as plastic-free organo-aggregates (Moore, 2008; 
Graham and Thompson, 2009). Ingestion of microplastics 
has been documented for various intertidal  invertebrates, 
including filter-feeding polychaetes, blue mussels, 
 echinoderms, bryozoans, bivalves and  barnacles, as well 
as deposit-feeding lugworms (Thompson et al., 2004; 
Ward and Shumway, 2004; Moos et al., 2012; Setälä et al., 
2016) and fish, phytoplankton and zooplankton (Boerger 
et al., 2010; Cole et al., 2013; Hämer et al., 2014; de Sá 
et al., 2014). Adverse effects on overall  fitness, tissue and 
cells, feeding efficiency, reproduction,  photosynthesis and 
 mortality have been documented repeatedly (Browne et al., 
2008; Burkhardt-holm, 2012; Moos et al., 2012; Besseling 
et al., 2014; Cole et al., 2015). Given that plastics have a 
high affinity to adsorb PCBs and other organic pollutants 
in aquatic environments, ingestion of plastic particles 
may also expose benthic marine invertebrates to toxins 
(Graham and Thompson, 2009) that can be transferred 
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to higher trophic levels and bioaccumule in the food web 
(Moore et al., 2001; Eriksson and Burton, 2003; Farrell 
and Nelson, 2013). Our study reveals that plastics do not 
readily disassociate from aggregates  during the resus-
pension process (though aggregates may  fragment to a 
minor degree), and therefore the incorporated plastics are 
 rendered  available to various fauna for direct ingestion.

Conclusion
Discharge of plastic microbead wastes from cosmetic 
products following use has been identified as a poten-
tially important primary source of microplastics into the 
marine environment. These products are washed down 
the sink after usage and consequently end up in our water-
ways, where they present various hazards in estuarine 
and marine environments. Our laboratory experimental 
study indicates that even microbead-utilizing products 
with a similar cosmetic application contain plastic mate-
rial with great diversity of form, density, size, coloration, 
aggregation potential and hydrodynamic behaviour. To 
better quantify the likely transport pathways of such 
material into and within the world oceans, further work 
is needed. A better description of the contents of these 
products made available by the manufacturers may assist 
policy makers in regulating discharge of materials into 
rivers and water bodies. Our results indicate that for the 
products investigated, the contained plastics were gen-
erally positively buoyant and scavenged quickly by algal 
material in the experimental water column which acts as 
a ballasting mechanism to the intrinsic buoyancy of the 
microbeads. When incorporated into marine aggregates, 
the microplastic particles used in this study may have an 
impact on  sinking rates by changing aggregate density 
and  morphology. That vertical transport of microbeads 
following aggregation with phytoplankton material is 
likely a key transport mechanism for this waste product 
should be taken into account when establishing predic-
tive transport models for this pollutant, as well as by 
 legislative bodies that determine the best approaches to 
pollution minimisation.
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