Pathways and modification of the upper and intermediate waters of the Arctic Ocean,
The purpose of this study is to investigate the pathways and the ventilation of source water masses of the upper and intermediate waters of the Arctic Ocean. For the Arctic and subarctic domain, a coupled ice-ocean general circulation model is set up to be integrated for several decades. It is driven by a climatological seasonal cycle of monthly mean atmospheric data from 1980-89 and by restored sea surface salinities. Passive tracers are used to visualise and interpret the modelled flow and to compare it with observations.The model is able to reproduce known features of the Arctic Ocean circulation like the inflow of two branches of Atlantic origin via the Fram Strait and the Barents Sea and their subsequent passage at mid depths in several cyclonic circulation cells. The fate of these Atlantic source water masses, river water and Bering Strait inflow water in the model are studied. The branch crossing the Barents Sea is subject to an intense heat loss and ice formation. As a result water of this branch leaves the shelf towards the central part of the Arctic Ocean not only at the surface but also in denser varieties which finally feed the central Arctic at halocline and mid depths. The lightest part turns northward and finally westward joining the Transpolar Drift, the densest part (200-1000 m depth) move eastward along the continental slope. A similar path is taken by the Atlantic water branch from the Fram Strait. The inflowing branch over the Barents Sea turns out to be the dominant source for the lower Atlantic Water layer in the Arctic Ocean in this investigation.Atlantic tracers starting in Fram Strait need 6 years to reach the northern Laptev Sea slope. Travel times to return to Fram Strait are 15 - 20 years along the Lomonossov Ridge and about 30 years along the continental slope of the Canadian Basin. Tracers which mark the Pacific Water or the Mackenzie river water flow eastward and leave the Arctic mainly via the Canadian Archipelago. The Siberian river water tracers at the surface penetrate far into the Canadian Basin before they join the Transpolar Drift. The travel times of the river water from the river mouths are 2-3 years to the shelf edge and 12-14 years to Fram Strait.
AWI Organizations > Climate Sciences > Climate Dynamics
AWI Organizations > Climate Sciences > Sea Ice Physics