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Abstract. We present a dynamically consistent gridded data set of the

global, monthly-mean oxygen isotope ratio of seawater (δ18Osw). The data

set was created from an optimized simulation of an ocean general circula-

tion model constrained by global monthly δ18Osw data collected from 1950

until 2011 and climatological salinity and temperature data collected from

1951 to 1980. The optimization was obtained using the adjoint method for

variational data assimilation, which yields a simulation that is consistent with

the observational data and the physical laws embedded in the model. Our

data set performs equally well as a previous data set in terms of model-data

misfit but brings an improvement in terms of the seasonal cycle and phys-

ical consistency. As a result the data set does not show any sharp transitions

between water masses or in areas where the data coverage is low. The data

assimilation method shows high potential for interpolating sparse data sets

in a physically meaningful way. Comparatively big errors, however, are found

in our data set in the surface levels in the Arctic Ocean mainly because the

influence of isotopically highly depleted precipitation is not preserved in the

sea-ice model, and the low model resolution of about 285 km horizontally.

The data set is publicly available and it is anticipated to be useful for a large

range of applications in (paleo-) oceanographic studies.

Keypoints:

• Physically consistent data set of the global, 3-dimensional oxygen iso-

topic distribution of the ocean
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• Using the adjoint method to fit an ocean general circulation model to

observational data

• Data set available for potential applications in (paleo-)oceanography
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Plain Language Summary

The ratio of the heavier to the lighter oxygen isotope in seawater varies over different

areas and for different water masses in the ocean. In this study we present a global

gridded data set of the monthly-mean oxygen isotope ratio of seawater (δ18Osw). The

data set is publicly available and will be useful for a large range of applications. It can,

for example, help to reconstruct past ocean states, or be used as lower boundary for

an atmospheric model to investigate the isotopic composition of the atmosphere. The

data set is taken from a simulation of a numerical ocean model that is in consistency

with global δ18Osw observations collected from 1950 until 2011 and monthly salinity and

temperature observations collected from 1951 to 1980. To obtain the model simulation,

we used a data assimilation method that brings the model simulation into consistency

with the observational data. The ocean model is based on physical laws and therefore,

our data set is also in consistency with the ocean physics. Our data set is similarly close

to the observations than a previous data set, but brings an improvement because it is

based on the ocean physics and because it has a seasonal cycle.

1. Introduction

The oxygen isotopic ratio of water, expressed as δ18O =
(

18O/16O
RVSMOW

− 1
)
· 1000 ‰ with

respect to the Vienna Standard Mean Ocean Water [VSMOW, RVSMOV = 2005.2 · 10−6,

Gonfiantini , 1978], is a tracer of the Earth’s hydrological cycle. It depends on the origin

and composition of the respective water [Craig and Gordon, 1965; Gat , 1996] and can be

used, for example, as indicator of sea-ice melt, continental and glacial run-off, or as tracer

of ocean water masses [e.g. Jacobs et al., 1985; Khatiwala et al., 1999; Meredith et al.,

1999a; Macdonald et al., 1999; Paul et al., 1999].
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Additionally, δ18O is one of the most abundant proxies for the past climate as its signal

is stored in a wide range of climate archives. The oxygen isotopic ratio of precipitation, for

example, is preserved in continental ice or in speleothem records. In the ocean the oxygen

isotopic composition of seawater (δ18Osw) is preserved in the shells of calcareous organisms

such as planktonic and benthic foraminifera. The isotopic composition of their calcite

shells (δ18Oc) depends not only on the isotopic composition of ambient seawater but also on

its temperature [McCrea, 1950]. The signal stored in the shells can be used to reconstruct

past temperature [e.g. Emiliani , 1955] or δ18Osw [e.g. Duplessy et al., 1991]. Modern

data sets are important for the calibration of the relationship between δ18Osw, δ18Oc and

temperature in cases where in-situ measurements of δ18Osw are not available [e.g., Mulitza

et al., 2003], for the comparison with past climate δ18Osw or δ18Oc reconstructions [e.g.,

Lund et al., 2011], or for the calibration of other proxies [e.g., Groeneveld and Chiessi ,

2011].

A 3-dimensional gridded data set of δ18Osw was presented by LeGrande and Schmidt

[2006]. It is based on interpolating a large set of observational δ18Osw data using regional

linear relationships between δ18Osw and salinity evaluated for distinct regions and water

masses. This data set was used frequently, for example, as surface boundary condition

for an isotope-enable atmospheric model [e.g. Werner et al., 2011] or for the calibration

of proxies [e.g. Mathien-Blard and Bassinot , 2009; Cleroux et al., 2008; Groeneveld and

Chiessi , 2011].

Here, we present a new global, 3-dimensional gridded data set of δ18Osw that introduces

two major improvements. First, it includes a seasonal cycle and second, it is physically

consistent, that is, consistent with the physical laws implemented in an ocean general
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circulation model. The data set is based on an optimized 400-year quasi-equilibrated sim-

ulation of a water isotope-enabled global ocean general circulation model. The simulation

is obtained using the adjoint method for variational data assimilation and consistent with

monthly salinity, temperature and δ18Osw data within their respective uncertainties.

The adjoint method has recently been used to obtain a long (400-year) optimized simu-

lation of the modern and the Last Glacial Maximum (19-23 ka BP) ocean and its oxygen

isotopic composition below 150 m water depth [Kurahashi-Nakamura et al., 2017]. We ex-

tend their optimization in two ways. First, we use a general circulation model enhanced

with a water isotope module that allows us to simulate water isotopes at the surface as

well as in the deep ocean. Second, we introduce an adjustment to their technique to

obtain a quasi-equilibrated simulation.

2. Material and Methods

2.1. Model

We used the Massachussets Institute of Technology general circulation model (MIT-

gcm) in a configuration that solves the Boussinesq form of the hydrostatic Navier-Stokes

equations [Marshall et al., 1997; MITgcm Group, 2016]. The model uses a cubed-sphere

grid [Ronchi et al., 1996] with 192 × 32 horizontal grid cells encompassing the global

ocean, resulting in a horizontal resolution of about 285 km, and 15 vertical levels with

a resolution of 50 m at the surface to 690 m in the deepest level reaching a maximum

depth of 5200 m. The vertical resolution of 50 m at the surface was chosen because it is

the minimum value necessary to represent the mixed layer and to resolve the seasonal

cycle. The cubed-sphere grid avoids converging grid cells at the poles and, hence, polar

singularities. The boundary conditions at the ocean surface are prescribed as monthly at-
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mospheric forcing, namely air temperature, meridional and zonal wind velocities, specific

humidity, precipitation, downward short- and longwave radiation and river run-off, based

on the Coordinated Ocean-ice Reference Experiments [COREs, Griffies et al., 2009]. Bulk

formulae are used to compute outgoing radiation, wind stress and evaporation [Large and

Yeager , 2004]. The ocean model is fully coupled to a dynamic-thermodynamic sea-ice

model [Losch et al., 2010], which uses the same grid and the same atmospheric forcing.

Subgrid-scale mixing is parameterized with a GM/Redi scheme [Gent and Mcwilliams ,

1990]. Due to the low resolution of the model some physical processes, such as the coastal

and equatorial upwelling or the western boundary currents, are poorly resolved. The low

computational cost, however, allows us to obtain a long optimized simulation with the

adjoint method in a reasonable amount of time.

The MITgcm is extended with a water isotope module that comprises the fractionation

processes of water isotopes during evaporation over the ocean and allows the model to

simulate stable water isotopes in the entire water column [Völpel et al., 2017]. The module

does not include the simulation of the isotopic composition of sea-ice and therefore, the

isotopic composition of precipitation does not affect the seawater in areas with sea-ice.

In this study the concentration of the stable isotopes H16
2 O and H18

2 O are included in

the simulation such that the δ18Osw distribution can be computed. The climatological

monthly isotopic composition of precipitation and water vapor were obtained from a

water isotope-enabled simulation with the Community Atmosphere Model version 3.0

[IsoCAM3.0, Tharammal et al., 2013] and are prescribed as boundary conditions for the

water isotope module. The prescribed isotopic composition of precipitation was previously

used by Völpel et al. [2017], who compared it to observations from the Global Network of
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Isotopes in Precipitation (GNIP) and found a good agreement. The isotopic composition

of river run-off is defined in the model by the isotopic composition of precipitation at the

location of the river mouth because the model does not explicitly simulate the isotopic

composition of precipitation over river catchment areas [Völpel et al., 2017].

One main advantage of the MITgcm model code is that it is tailored to automatic differ-

entiation [Griewank and Walther , 2008]. This allows generating the adjoint of the MIT-

gcm model code with a source-to-source translator [Giering , 2000; Giering and Kaminski ,

1998] and, hence, applying the adjoint method. We adjusted the model code of the newly

added water isotope module [Völpel et al., 2017] to make it suitable for the generation of

the adjoint code.

2.2. Observational Data and Uncertainties

To constrain our simulation we assimilated climatological temperature and salinity data

that were previously prepared by Kurahashi-Nakamura et al. [2017]. They computed

monthly means from daily data from 1951 to 1980 from the World Ocean Atlas database

[Antonov et al., 2010; Locarnini et al., 2010]. The respective uncertainties were computed

from the standard deviation within the data set. An additional uncertainty of 1 K for tem-

perature and 0.1for salinity were added to account for data representativeness and model

error. Kurahashi-Nakamura et al. [2017] excluded data in the equatorial and coastal up-

welling areas, enclosed basins such as the Mediterranean, and the Arctic Ocean from their

data set (their Fig. A1). In these areas the model has a strong bias due to the low model

resolution and Kurahashi-Nakamura et al. [2017] found that unphysical adjustments of the

control variables would have been necessary to fit the model to the data in these regions.
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As we are using the same model grid we inherit the same changes in the temperature and

salinity data sets.

The simulated oxygen isotopic distribution is constrained by observational δ18Osw

data from the NASA GISS Global Seawater Oxygen-18 Database [version 1.21,

https://data.giss.nasa.gov/o18data/, Schmidt et al., 1999]. This data set, which was also

the basis of the data set by LeGrande and Schmidt [2006], contains more than 22,000 data

points collected from 1950 until 2011. We modified the data as suggested by LeGrande

and Schmidt [2006], excluding data that were partly read off a graph, highly anomalous

data, and data representing estuarine or river water or that were highly influenced by melt

water. Additionally, we excluded data that are not on our model grid, such as data from

the Baltic and the Black Seas and other single data points in the Canadian archipelago

for which no ocean grid cell was found within a radius of 300 km.

Monthly variations are taken into account and data points for which this time informa-

tion was not available were not used. After this quality control 19,683 valid data points

remained. The data were averaged onto our model grid. Whenever more than one data

point within a single grid cell for the same month was found we applied an inverse-distance

weighting using the vertical distance to the center of the grid cell. In this way, data val-

ues were assigned to 4305 grid cells, which corresponds to 0.6 % of the simulated global

monthly-varying ocean. The uncertainties of the δ18Osw data used in the cost function

are an estimate of the sum of the uncertainties that determine how well the model can

represent the data. These uncertainties include the measurement error of about 0.08 ‰

[Gat and Gonfiantini , 1981], time variations in δ18Osw within one month, representative-

ness uncertainties and model errors. We assume the sum of those errors to be spatially
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uniform with a value of 0.2 ‰ as suggested by Kurahashi-Nakamura et al. [2017] except

for the regions where temperature and salinity data had been removed. For these data

points we set the uncertainty to 0.4 ‰ to compensate for the comparatively large model

errors in these regions.

2.3. Optimization

The adjoint method [Errico, 1997; Wunsch, 1996] is used to minimize a cost function

that measures the model-data misfit in a least-squares sense. The minimization is achieved

by adjusting defined control variables, for example, initial or boundary conditions or

internal model parameters. A successful minimization of the cost function with the adjoint

method yields an estimate that is consistent with the model physics, as well as with the

data within their uncertainties as prescribed in the cost function. The method is based on

the “adjoint” model code, which computes the gradient of the cost function with respect

to the control variables. This gradient is used to adjust the control variables with an

iterative quasi-Newton descent algorithm [Nocedal , 1980; Gilbert and Lemaréchal , 1989]

to reduce the cost function. The adjoint code is obtained by applying a source-to-source

transformation tool [Giering and Kaminski , 1998].

Experimental Design

The optimization was realized in two phases. In the first phase the model was fit to the

temperature and salinity climatologies. An accurate simulation of these physical tracers

is essential to achieve a realistic simulation of the ocean circulation and, hence, for an

accurate simulation of water isotopes. In this first phase we did not include δ18Osw data

as we assumed that the temperature and salinity data sufficiently constrain the circulation.

Subsequently, in the second phase, the model was fit to the δ18Osw data by adjusting only
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the isotopic composition of precipitation and of water vapor and the initial conditions

of the isotopic tracers. The δ18Osw data, therefore, do not constrain the ocean general

circulation but only the simulated isotopic composition.

For a non-linear optimization to be successful, it is essential to start from a good first

guess of the control variables. Due to the tangent linear character of the adjoint method,

the longer the model run the more difficult it is to obtain a good reduction of the cost

function. Here, we aimed for a 400-year long optimized simulation such that the signal

from the adjusted control variables can be transported from the surface to the deep ocean.

Even though 400 years are not enough to fully equilibrate the deep ocean [Wunsch and

Heimbach, 2008], it was not possible to obtain a longer optimized simulation due to the

substantial computational cost. A typical simulation obtained from the adjoint method

with an ocean general circulation model spans 10 - 50 years [e.g. Forget et al., 2015; Köhl

et al., 2007; Köhl and Stammer , 2008]. To achieve the comparatively long optimized 400-

year run we adopted a ”carry-over” technique [Dail , 2012; Kurahashi-Nakamura et al.,

2017]. We started with an optimization of a 20-year run and in a sequence, the optimized

control variables from the shorter run are used as a starting point in the optimization of a

longer run, eventually reaching the desired length. This technique imposes a substantial

amount of computational cost but it is to our knowledge as yet the only way to obtain a

400-year optimized simulation with the adjoint method.

Phase 1

To create initial conditions for the optimization the model was spun-up for 4000-years

with the original first-guess control variables. For the first phase, following Kurahashi-

Nakamura et al. [2017], we chose the atmospheric forcing fields (i.e., air temperature,
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specific humidity, precipitation, zonal and meridional wind velocities, downward short-

wave and longwave radiation), the initial conditions for the physical tracers (salinity,

temperature) and the spatially-varying vertical diffusivity as control variables. The opti-

mization with the carry-over technique was started with a 20-year long run followed by a

35-, a 50-, an 80-, a 200- and finally a 400-year run. The cost function was computed for a

certain time interval at the end of each run. The carry-over intervals and the length of the

respective cost function interval (Table 1) were chosen such that they were not multiples

of one another to avoid an oscillation in the optimized simulation reflecting the length

of the carry-over intervals. We discovered such an oscillation in the optimized modern

simulation by Kurahashi-Nakamura et al. [2017].

The cost function in this phase consists of the three terms J1 = Jmisfit1 + Jctrl1 + Jeq.

The first term Jmisfit1 quantifies the misfit between model and data. It has the form

Jmisfit1 = (Smod − Sobs)
> WS (Smod − Sobs) + (Tmod − Tobs)

> WT (Tmod − Tobs) . (1)

Here, Smod, Sobs, Tmod and Tobs are vectors containing temperature and salinity, modeled

and observed values, respectively. The modeled values are long-term monthly means at

the observed grid cells. The length of the interval over which the mean is calculated

depends on the respective step in the carry-over phase. The weighting matrices WS,T

are the inverse of the error-covariance matrices of the respective data. We assumed the

uncertainties of the data to be spatially uncorrelated such that the matrices are diagonal.

The second term of the cost function Jctrl1 penalizes the adjustments of the control

variables. These penalty terms ensure that the optimized control variables do not depart

too much from their first guess values. Mathematically speaking the optimization without

these penalty terms is a highly under-determined problem, that is, the number of control
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variables is much higher than the number of model-data comparisons in Jmisfit and the

penalty terms serve to regularize the problem. Note that, for example, air temperature

alone corresponds to 192 × 32 grid cells times 12 months = 73728 control variables.

According to the control variables this part of the cost function is given by

Jctrl1 =
(
T orig

0 − Tmod
0

)>
WT0

(
T orig

0 − Tmod
0

)
+
(
Sorig

0 − Smod
0

)>
WS0

(
Sorig

0 − Smod
0

)
+

7∑
i=1

(
F orig
i − Fmod

i

)>
WFi

(
F orig
i − Fmod

i

)
+
(
Korig −Kmod

)>
WK

(
Korig −Kmod

)
. (2)

Each term represents the penalty on the deviation of the modified (mod) from the first

guess (orig) control variables. The weighting matrices W are, as before, the inverse of

the diagonal error covariance matrix of the respective first guess control variables. An

explanation for the different symbols (i.e., different control variables), and the assumed

standard deviations for the respective control variables can be found in Table 2.

The third term of the cost function

Jeq = wT

tend−1∑
t=1

(T t − T t+1)2 + wη

tend−1∑
t=1

(ηt − ηt+1)2 + wAMOC

tend−1∑
t=1

(AMOCt − AMOCt+1)2

(3)

forces the model to obtain a stable, equilibrated ocean circulation. It penalizes drift

in the yearly mean temperature (T ), yearly mean global sea surface elevation (η) and

the Atlantic Meridional Overturning Circulation (AMOC) measured by the yearly mean

strength of the southward transport at 45◦N in the Atlantic Ocean (AMOC) between each

year (1, .., tend) in the respective cost function interval. The respective weighting factors
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wT , η, AMOC (Table 3) were determined empirically such that the penalty restrained the

drift but did not interfere too much with the reduction of Jmisfit1 .

Phase 2

To generate initial conditions for the isotopic tracers the model was spun-up for 4000

years with the optimized controls from Phase 1 starting from a spatially constant isotopic

distribution. Subsequently, the optimization started with a 100-year run using the pre-

viously optimized controls, carried-over to the optimization of a 200- and subsequently a

400-year run. In Phase 2 an oscillation cannot develop because the optimized physical

controls from Phase 1 were held fixed, that is, no further adjustments were made to the

previous controls in Phase 2. The model was fit to the δ18Osw data by adjusting the

isotopic ratios in precipitation and water vapor, and the initial conditions of the isotopic

tracers H16
2 O and H18

2 O. The cost function consists of the two terms

J2 = Jmisfit2 + Jctrl2

=
(
δ18Omod − δ18Oobs

)>
Wδ18O

(
δ18Omod − δ18Oobs

)
(4)

+
∑
i=1,2

(
Φorig

0,i − Φmod
0,i

)>
WΦ0,i

(
Φorig

0,i − Φmod
0,i

)
(5)

+
∑
i=8,9

(
F orig
i − Fmod

i

)>
WFi

(
F orig
i − Fmod

i

)
, (6)

which are, as above, the model-data misfit (4) and the penalty terms on the control

variables ((5) and (6), see Table 2 for symbol explanation). As the control variables that

have an influence on the active tracers (temperature and salinity) are fixed in this phase

no constraint on the drift is necessary.

Following Kurahashi-Nakamura et al. [2017], we additionally used the following three

techniques to achieve a successful optimization. First, the optimization is pre-conditioned
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through a normalizing of the control variables with factors according to their characteristic

size, so that all control variables are adjusted evenly relative to their scale. Second, the

control variables are smoothed with a 9-point spatial smoothing filter and finally, to

avoid unphysical adjustments of the control variables, minimum and maximum values for

precipitation, specific humidity, downward shortwave radiation, air temperature, and the

isotopic ratios in precipitation and water vapor were fixed and adjustments of the control

variables exceeding these limits were reset to the respective limit before the next iteration

(Table 4).

3. Results

3.1. Optimization

The most straightforward measure for the success of the optimization is the reduction

of the cost function. Table 1 shows the cost function contributions Jmisfit (model-data

misfit, Eq. (1) and (4)) and Jctrl (deviation of the control variables from their first

guess, Eq. (2),(5) and (6)) during the carry-over optimization process. The first phase

optimization greatly reduced the model-data misfit for temperature and salinity. In Phase

2 the model was additionally successfully fit to the δ18Osw data. The model-data misfits

for temperature, salinity and δ18Osw were reduced by 68 %, 72 % and 62 %, respectively.

The drift of the global mean sea surface elevation and the global mean potential tem-

perature are 0.39 cm and 0.027◦C over the last 100 years of the 400-year optimization

at the end of Phase 2. The 100 year-mean maximum southward transport in the center

of the AMOC is 16.6 Sv, which is well within the range of previous estimates based on

observations and inverse studies [Ganachaud , 2003; Lumpkin et al., 2008]. It increases by

©2018 American Geophysical Union. All Rights Reserved.



1.1 Sv in the last 100 years but does not show any oscillation. The southward transport

reaches a depth of approximately 3000 m.

The term Jctrl grew during the optimization process as the control variables were ad-

justed. The normalized value J ′ctrl stayed well below 1 in both phases for all control

variables together (Table 1) and each individual control variable field (Table 2) indicating

a reasonable amount of global adjustment. However, J ′ctrl is a global measure and does not

ensure that the local adjustments to the control variables are plausible. We note that val-

ues of J ′misfit > 1 indicate that on average the model-data misfits are larger than the prior

error estimates. We had to accept the achieved substantial but not optimal reduction of

the model-data misfit, because a further reduction of the cost was either not possible at

all or only possible with implausibly large local adjustments of the control variables.

The long-term monthly mean over the last 100-years of the final 400-year optimization

was used to create the data set and is analyzed in the following sections.

3.2. δ18Osw Data set

Model-data Misfit

In addition to the global measure Jmisfit we computed two other metrics to analyze

the spatially varying model-data misfit. As described in Section 2, we assigned a higher

uncertainty to the δ18Osw data in some problematic regions to avoid unphysical changes in

the control variables during the optimization as described by Kurahashi-Nakamura et al.

[2017]. In the following analysis we use a global uncertainty of 0.2 ‰. The first metric

is the normalized cost function per depth level (Fig. 1, left panel). The second is the

normalized cost function in observation space, that is, we compared each individual data

point to the simulated value in the model grid cell it falls in, as opposed to computing
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the mean from all data points in one grid cell (Fig. 1, right panel). Metric 2 aims at

making the model-data deviations visible that result from subgrid-scale variations in the

data. For the optimization we mapped the observational δ18Osw data onto our model

grid and computed the mean where multiple values were assigned to one grid cell. The

model is fit to this mean and naturally, it is unable to resolve subgrid-scale variations as

found in the original data. A comparison between Metric 1 and 2 indicates how much

the resolution of the model contributes to the model-data misfit and how variable the

observational data are within a single model grid cell. To compare our data set to that of

LeGrande and Schmidt [2006], we mapped the observational δ18Osw data onto their grid

and applied the same two metrics to their data set (Fig. 1). Both data sets fit the data

within the assumed uncertainty of 0.2 ‰ below a depth of approximately 500 m. At the

surface, however, both data sets deviate too much from the observational data. These

deviations are especially high for our data set when the model-data comparison is made

in observation space (Fig. 1, right panel).

Surface Ocean

The optimized simulation shows a very good agreement with the observational data

in most areas of the global ocean (Fig. 2). Areas that are typically highly enriched in

δ18Osw, the subtropical gyres in the Atlantic and the Mediterranean Sea, are accurately

reconstructed in the simulation. The highest values in our data set are reached in the

Mediterranean Sea with 2.0 ‰ and in the subtropical gyres in the Atlantic reaching 1.4 ‰

compared with 2.2 ‰ and 1.4 ‰ in the observations, respectively. The gradient between

high and low latitudes is well represented in the simulation. Only in the Arctic Ocean our

reconstruction deviates substantially from the data implying that the Arctic Ocean is the
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main cause for the high model-data misfit indicated in Fig. 1 for the surface layers. The

simulated δ18Osw in the Arctic Ocean is not depleted enough compared to the data. The

minimum simulated value is -3.7 ‰ compared to -4.9 ‰ in the data.

Figure 3 shows the seasonal variations of the simulated δ18Osw at the surface. Areas

with the highest seasonal variability are in the North Atlantic south of Greenland, in the

northern part of the Indian Ocean, between Indonesia and Japan, and in the Arctic Ocean

along the Russian coast. The global mean value of simulated seasonal variation is 0.1 ‰.

The highest values of about 0.9 ‰ are reached off the coast of Nova Scotia and off South

India.

Deep Ocean

The optimized simulation is consistent with the δ18Osw data in the deep ocean; the

model-data misfit below a depth of approximately 500 m is smaller than the uncertainty

of the data (Fig. 1). Figure 4 shows a vertical transect of δ18Osw through the Atlantic

at 32.5◦W from our data set (upper panel) and that of LeGrande and Schmidt [2006]

(lower panel). The water mass structure is clearly represented. In our data set the North

Atlantic Deep Water (NADW) reaches about 4000 m depth and has a mean δ18Osw value

of 0.17 ‰, which is slightly too light compared with the observations (Table 5). The less

enriched Antarctic Intermediate water (AAIW) overlies the NADW at a depth of about

1000 m (mean δ18Osw of −0.07 ‰). The Antarctic Bottom Water (AABW) is the most

isotopically depleted water mass with a mean value of −0.12 ‰.

Figure 5 shows depth profiles from our simulation, the data set of LeGrande and Schmidt

[2006] and observational data at four locations in the Atlantic Ocean. The first two are

at GEOSECS stations [Östlund et al., 1987] where δ18Osw data was available over most
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of the water column. The third depth profile shows a set of unpublished δ18Osw data

from the M57/2 METEOR cruise [Mulitza and Paul , 2003], which was not used for the

optimization. The fourth depth profile shows data from one station of the WOCE A11

section [Meredith et al., 1999b]. The δ18Osw data from the GEOSECS and the WOCE A11

stations are included in the GISS data set and were therefore used in the optimization.

Both gridded data sets agree with the observational data at all four stations (root mean

square error (RMSE) between 0.05 ‰ and 0.16 ‰). At GESOSECS station 29 our data

set shows slightly too depleted values in the deep ocean, which corresponds to the slightly

too light NADW (Table 5, RMSE of 0.11 ‰ compared to 0.08 ‰ for the data set of

LeGrande and Schmidt [2006]). At GEOSECS station 56 the values of 0 ‰ at a depth of

about 4000 m in our data set agree well with the observational data (RMSE of 0.07 ‰).

The data set of LeGrande and Schmidt [2006] is slightly too enriched in this depth at this

location (RMSE of 0.10 ‰). The depleted values in our simulation reflect the influence

of the AABW, which extends approximately to the equator in our simulation (Fig. 4).

The influence of the AABW is also visible in the depth profile at the location of the

unpublished data set close to the Namibian coast and in the data profile from the WOCE

A11 section. Our simulation and that of LeGrande and Schmidt [2006] are consistent

with the data at the M57/2 sites (RMSE of 0.08 ‰ for our simulation and 0.05 ‰ for

the data set of LeGrande and Schmidt [2006]). Below a depth of 3000 m our simulation

and the data set of LeGrande and Schmidt [2006] deviate, but no observational data is

available for these depths. In the most southern profile the observational data show the

influence of the more depleted AABW, which is well represented in our simulation (RMSE
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of 0.09 ‰). The data set of LeGrande and Schmidt [2006] shows too enriched values in

this area (RMSE of 0.16 ‰).

4. Discussion

Surface Ocean

The optimized simulation agrees very well with the data as measured by the cost func-

tion and by the additional metrics. It yields a substantial improvement from the first guess

simulation (cost function reduction from 3.9 to 1.4 for δ18Osw, Table 1). Our first-guess

simulation had less enriched waters in the subtropical gyres and in the Mediterranean

Sea than our optimized simulation and the observations (not shown). Völpel et al. [2017]

found similarly low enriched waters in their simulation and attributed this bias to the

interaction of precipitation, evaporation, and the isotopic composition of evaporation.

The isotopic composition of evaporation directly depends on the isotopic composition of

water vapor, which is prescribed as a boundary condition and a control variable in our

optimization (Phase 2). After the optimization in Phase 1 the model agrees with salinity

and temperature data, but the too low δ18Osw values remain in the subtropical gyres and

in the Mediterranean Sea. During the optimization in Phase 2 the isotopic composition

of water vapor was adjusted to slightly higher values in the subtropical areas, supporting

the explanation of Völpel et al. [2017].

In the optimized simulation the isotopic composition of the surface waters in the Arctic

Ocean still deviates from the data. Compared with our first guess simulation the optimized

simulation is more depleted, but not depleted enough compared to observations. Völpel

et al. [2017] found that their simulated surface waters in the Arctic Ocean are not depleted

enough and attributed this to the fact that the highly depleted precipitation in the Arctic
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does not have an influence on the isotopic composition of the seawater in areas with sea-ice.

The isotopic signal of precipitation is not preserved in the sea-ice model and is therefore

not transported into the ocean when sea-ice is melting. As this study uses the same model

code as Völpel et al. [2017], this deficiency is also apparent in our simulation. The low

horizontal and vertical model resolution may lead to additional biases. The model does not

include a land model and therefore does not explicitly simulate the isotopic composition

of precipitation over river catchment areas. Instead the isotopic composition of river run-

off is defined in the model by the isotopic composition of precipitation at the location of

the river mouth. Völpel et al. [2017] analyzed the simulated isotopic composition of river

run-off (their Figure 13) and its discharge amount. A model-data comparison showed a

good agreement and they inferred that insufficient river discharge and the small errors in

the simulated isotopic composition of river run-off have an insignificant influence on the

simulation in coastal regions. The missing fractionation processes during sea-ice formation

were also not thought to be important [Völpel et al., 2017]. The run-off and the first guess

of the isotopic composition of precipitation used in this study are identical to those used

in Völpel et al. [2017] . Our optimization leads to a negative adjustment (lower δ18Osw) of

the isotopic composition of precipitation in the Arctic close to the Canadian coast between

the Canadian Archipelago and the Bering Strait (not shown) resulting in locally slightly

more depleted δ18Osw values. The adjustment of the isotopic composition of precipitation

directly affects the simulated δ18Osw through both precipitation and river run-off. The

bias in the Arctic Ocean, however, is not completely balanced by the change of δ18Osw in

precipitation close to the coast and no adjustments are found in the center of the Arctic.

We suppose that the reason for this is that the isotopic composition of precipitation does
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not have an influence on the seawater in the center of the Arctic where sea-ice is present

throughout the year. This supports the conclusion that the bias in the Arctic Ocean

is not due to errors in the run-off and its isotopic composition, which is optimized in

our simulation through precipitation at the coast, but mainly due to the missing isotopic

surface flux in areas with sea-ice. This deficit cannot be improved by our control variables.

Simulations of other water isotope-enabled ocean-only and coupled atmosphere-ocean

models deviate from the observational data typically in the enriched areas of the subtrop-

ics, in the northern part of the Indian ocean, and/or in the isotopically depleted Arctic

Ocean [e.g., Delaygue et al., 2000; Roche and Caley , 2013; Werner et al., 2016]. A com-

paratively good agreement with the observational data is shown in the ocean-only model

simulations by Xu et al. [2012], who prescribe the isotopic composition of precipitation

and evaporation and used a salinity restoring, or by Paul et al. [1999], who prescribed a

δ18Osw surface field as boundary condition.

If subgrid-scale variations of the data are taken into account in the model-data com-

parison (Fig. 1, right panel), errors in the surface levels are especially high. We attribute

this error to the stratification of Arctic surface waters that are not properly resolved by

the coarse vertical resolution of the model. A comparison of the data set of LeGrande

and Schmidt [2006] with the observations shows overall similar patterns but a smaller

mismatch (Fig. 1) than our data set. Their data set has a finer horizontal and verti-

cal resolution and the difference between Metric 1 and 2 (Fig. 1, left and right panel)

is smaller for their data set indicating that small scale variations in the data are better

represented in their data set. Highest errors in their data set are found in the Arctic
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Ocean in areas with sea-ice. Their data set represents a yearly mean and they attribute

the errors in the Arctic Ocean to the missing seasonal influence.

Deep Ocean

The water masses in the deep ocean are well represented in our data set (Fig. 4, 5, 6 and

Table 5) and show a clear improvement compared to our first guess simulation and to the

simulation of Völpel et al. [2017] (their Table 3). In our first guess simulation the NADW

was shallower, reaching until a depth of approximately 3300 m, and less enriched in δ18Osw

(mean value of 0.02 ‰). A too shallow simulation of the NADW is a common problem in

coupled and ocean-only models [e.g. Weber et al., 2007; Yeager and Danabasoglu, 2012;

Jia, 2003]. The problem is thought to be caused by the incorrect simulation of density in

areas of deep water formation. Constraining the simulation by temperature and salinity

data leads to a more accurate representation of density and hence, after the optimization

in Phase 1, the depth of the NADW cell appropriately reaches 4000 m. However, the mean

δ18Osw value in the NADW is still too low (0.01 ‰) after Phase 1. This likely reflects

the missing influence of the enriched δ18Osw from areas of deep water formation. After

the optimization in Phase 2, the surface waters in the North Atlantic and the NADW are

more enriched in δ18Osw and agree better albeit not perfectly with the data (mean value of

0.17 ‰ in the NADW compared with 0.21 ‰ in the data). Figure 6 shows that the typical

temperature and salinity values of the NADW are well represented in the model, which

implies that the too low δ18Osw values of the NADW in our simulation are not due to an

inaccurate simulation of the water mass, but rather only due to an inaccurate simulation

of its isotopic composition. The AABW, on the other hand, is slightly too cold and too

fresh in the optimized simulation. The computed mean δ18Osw value of −0.12 ‰ is too
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high compared to −0.14 ‰ in the data. Figure 6, however, indicates that the isotopic

composition is in fact accurate but the most depleted values were not included in the

calculation of the mean value because the temperature and salinity ranges of the AABW

in our simulation are slightly different to the typical values [Emery and Meincke, 1986].

The AAIW is also partly too cold compared to the typical values and has a too high mean

δ18Osw value (−0.07 ‰ compared to −0.09 ‰ in the data).

The too small δ18Osw values of the NADW might be related to the length of the opti-

mization (400 years), which is not enough to fully transport the signal from the surface

to the deep ocean [Wunsch and Heimbach, 2008]. Alternatively, a better result for the

deep ocean might be obtained if spatially non-uniform observational uncertainty estimates

are used in the cost function. Smaller errors for the deep ocean might result in a more

accurate representation of the isotopic composition of the AAIW and the NADW or a

more accurate simulation of the temperature and salinity ranges of the AABW and the

AAIW.

To create their data set LeGrande and Schmidt [2006] used linear salinity-δ18Osw rela-

tionships based on observational δ18Osw data for distinct regions at the surface and water

masses in the deep ocean. They additionally used a horizontal and vertical smoothing

and subsequently, combined the data set with nearby observational δ18Osw data for each

depth level. Their data set agrees very well with the observational data (Fig. 1). In

particular, their NADW ismore enriched than the NADW in our data set agreeing better

with the observational data (Fig. 5, station 29). In areas with low data coverage, however,

their technique results in sharp transitions at the borders of water masses, for example, at

the border of the Southern Ocean (Fig. 4, lower panel), and between depth levels. As a
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result the influence of the AABW is very small north of approximately 55◦ S (Fig. 4), and

the deepest waters in that area are too enriched compared to the data (Fig. 5, WOCE

A11 station). Even though the isotopic composition of the NADW is not as accurately

represented in our data set as it is in the data set of LeGrande and Schmidt [2006], our

data set provides clear improvements in other areas such as the South Atlantic Ocean.

The adjoint method provides the opportunity for interpolating sparse data in a physically

meaningful way, that is, based on the model physics, and the resulting model simulation

shows smooth transitions between water masses, for example, from the depleted waters

of the Southern Ocean to the AAIW and AABW (Fig. 4, upper panel).

5. Conclusions

We presented the first physically consistent gridded data set of the seasonal δ18Osw

distribution of the global ocean. The data set is based on the dynamically consistent

combination of observations and an ocean general circulation model with the adjoint

method. It is obtained from a 400-year long optimized simulation of the model that is

in agreement with a large number of monthly observational temperature, salinity and

δ18Osw data. In terms of model-data misfit, the data set is similar to that of LeGrande

and Schmidt [2006], but it brings major improvements in terms of the seasonal cycle and

physical consistency. Our data set provides a smooth and physically meaningful inter-

polation of the observational data and, especially in areas where the observational data

coverage is low, it brings a large improvement in terms of smooth water mass transitions.

In the surface levels in the Arctic Ocean, however, the data set still deviates substan-

tially from the observational data, mainly because the highly depleted isotopical signal of

precipitation is not preserved in sea-ice and due to the low resolution of the model.

©2018 American Geophysical Union. All Rights Reserved.



Applying the method with a higher resolution model would likely provide better results,

but also incur much higher computational costs. The isotopic composition of sea-ice, and

especially the influence of the isotopic composition of precipitation falling onto the sea-

ice, appear to be crucial for modeling Arctic surface δ18Osw accurately. Including these

explicitly in the model will likely lead to better results in the high latitudes.

We demonstrated high potential of the adjoint method for interpolating sparse data

in a physically meaningful way and for substantially improving model simulations. The

method makes it possible to create a data set that is based on the physical laws imple-

mented in the model and that includes a seasonal cycle.

Our data set is publicly available and can serve in many applications where δ18Osw

data is required, for example to calibrate the relationship between δ18Osw, δ18Oc and

temperature, or to calibrate other paleoclimatological proxies. Especially in applications

with proxy data with monthly resolution, for example from corals, the data set will be

valuable.
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Table 1. Overview over the reduction of the cost function and lengths of the cost function

intervals during the carry-over optimization process. The terms J ′misfit and J ′ctrl are the normalized

values, that is, the model-data misfit (Jmisfit) and the deviation from the first guess control

variables (Jctrl) divided by the respective number of model-data comparisons/control variables.

Note that for the optimization the original terms Jmisfit and Jctrl were used. For Jmisfit respective

values for temperature, salinity and δ18Osw are given. According to the theory of a χ2-test a value

of one indicates agreement of the model with the observations within their respective uncertainties

or an adjustment of the control variables within the assumed uncertainties. Note that J ′ctrl is

zero at the beginning of the optimization as the control variables were not yet modified.

J ′misfit

Run length Cost function interval Temperature Salinity δ18O J ′ctrl

1st guess spin-up 100 years 3.4 6.1 3.9 0
(4000 years)

Phase 1

20 years 15 years 0.9 1.1 - 1.4 · 10−1

35 years 30 years 0.9 1.0 - 1.7 · 10−1

55 years 40 years 0.9 1.2 - 1.8 · 10−1

80 years 50 years 1.0 1.5 - 1.8 · 10−1

200 years 150 years 1.0 1.3 - 2.0 · 10−1

400 years 100 years 1.1 1.7 - 2.0 · 10−1

Spin-up after Phase 1 100 years 1.5 2.2 4.4
(4000 years)

Phase 2

100 years 10 years - - 1.5 4.7 · 10−4

200 years 10 years - - 1.5 4.8 · 10−4

400 years 100 years (1.1) (1.7) 1.4 4.8 · 10−4
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Table 2. Control variables with assumed prior uncertainties (one standard deviation, σ) used

in the optimization and normalized cost for the deviations from the first guess of the respective

control variable at the end of the optimization (J ′ctrl).

Symbol Control variable Unit σ J ′ctrl

T0 Initial temperature ◦C 3.16 · 100 5.0 · 10−1

S0 Initial salinity - 3.16 · 10−1 3.7 · 10−1

Φ0,1 Initial tracer Φ1 = H16
2 O mol ·m−3 3.16 · 102 1.8 · 10−3

Φ0,2 Initial tracer Φ2 = H18
2 O mol ·m−3 1.00 · 101 2.5 · 10−5

F1 Surface (2-m) air temperature K 3.16 · 100 5.3 · 10−2

F2 Surface (2-m) specific humidity kg · kg−1 3.16 · 10−3 1.4 · 10−1

F3 Precipitation m · s−1 3.16 · 10−8 2.7 · 10−1

F4 Surf. (10-m) zonal wind vel. m · s−1 3.16 · 100 2.1 · 10−1

F5 Surf. (10-m) meridional wind vel. m · s−1 3.16 · 100 2.6 · 10−1

F6 Downward shortwave radiation W ·m−2 1.00 · 101 2.9 · 10−3

F7 Downward longwave radiation W ·m−2 1.00 · 101 3.3 · 10−3

F8 Isotopic ratio of precipitation - 1.00 · 10−3 1.1 · 10−5

F9 Isotopic ratio of water vapor - 1.00 · 10−3 1.7 · 10−5

K Vertical diffusion coefficient m2 · s−1 1.00 · 10−5 8.1 · 10−2
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Table 3. Weights (w) used in the cost function term Jeq (Phase 1 of the optimization).

Symbol Variable w

T yearly mean temperature 108

η yearly mean sea surface elevation 108

AMOC yearly mean strength of southward transport 104

at 45◦N in the Atlantic Ocean
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Table 4. Imposed minimum and maximum values for the control variables. The values were

chosen either by the model developers or by the authors (isotopic ratios) for physical meaning-

fulness (minimum values for precipitation, specific humidity and downward shortwave radiation)

or plausibility.

Variable Unit Minimum Maximum

Precipitation m · s−1 0 2.0 · 10−6

Specific humidity kg · kg−1 0 1.0 · 10−1

Downward shortwave radiation W ·m−2 0 600

Air temperature K 183 343

Isotopic ratio in precipitation - 1.92 · 10−3 2.02 · 10−3

Isotopic ratio in water vapor - 2.13 · 10−3 2.215 · 10−3
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Table 5. δ18Osw characteristics of the main water masses in the the Atlantic (AAIW -

Antarctic Intermediate Water, NADW - North Atlantic Deep Water, AABW - Antarctic Bottom

Water) in our optimized simulation and in the GEOSECS data. The water masses are defined

according to the temperature and salinity limits of Emery and Meincke [1986].

AAIW NADW AABW

Optimized simulation

δ18Osw range (‰) −0.47 - 0.13 0.05 - 0.30 −0.20 - −0.01

δ18Osw mean (‰) −0.07 0.17 −0.12

δ18Osw standard deviation (‰) 0.10 0.04 0.04

Observational data [Völpel et al., 2017]

δ18Osw range (‰) −2.50 - 1.41 −0.49 - 0.88 −0.31 - 0.00

δ18Osw mean (‰) −0.09 0.21 −0.14

δ18Osw standard deviation (‰) 0.42 0.09 0.08
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Figure 1. Normalized cost function per depth level on respective grid (left panel, Metric 1)

and in observation space (right panel, Metric 2) for our data set (red) and that of LeGrande and

Schmidt [2006] (blue). Note the change in scaling in the x-axis. Values are plotted at the depth

of the center of the respective grid cell. The vertical line indicates where the normalized cost

is one. Values below this line imply agreement of the model with the observations, that is, the

model-data misfit is smaller than the uncertainty of the data.
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Figure 2. Upper panel: Simulated 100-year average δ18Osw surface field (0-50 m) and assimilated
observational δ18Osw data above 50 m. Note, that the δ18Osw data are from specific times during the
years. Lower panel: Respective model-data difference. Absolute values lower than 0.2 ‰, i.e. locations
where our model is in agreement with the data, are displayed in white. Each δ18Osw data point is
compared with the simulated 100-year mean value from the respective month and model grid cell the
data points lays in.
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Figure 3. Simulated monthly δ18Osw variations (difference between two extreme months of

the long-term monthly means per grid cell) in the surface level (0 - 50 m).
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Figure 4. Vertical transect through the Atlantic Ocean at 32.5◦W of the simulated 100-year

average δ18Osw (upper panel) and the data set of LeGrande and Schmidt [2006] (lower panel,

adapted according to their Fig. 2).
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Figure 5. Depth profiles at four locations in the Atlantic Ocean of simulated δ18Osw (red),

δ18Osw from the data set of LeGrande and Schmidt [2006] (blue) and observational data from the

GEOSECS data set (station 29 at 35◦N, 47◦W, station 56 at 21◦ S, 33◦W), from two stations of

the M57/2 cruise [Mulitza and Paul , 2003] at 23◦ S, 11.5◦ E and 23◦ S, 12◦ E, and from one station

of the WOCE A11 section [Meredith et al., 1999b] at 45◦ S, 34.8◦W.
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Figure 6. T - S - δ18Osw diagram for GEOSECS stations (left panel), and the optimized model

simulation (middle panel) in the Atlantic Ocean. The right panel shows the locations of the

GEOSECS stations. GEOSECS data points are displayed in white where no δ18Osw data were

available. Simulated values are from model grid cells closest to the respective GEOSECS location.

Boxes show the AAIW, NADW and AABW ranges according to the salinity and temperature

limits of Emery and Meincke [1986].
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