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Zusammenfassung 

Die Arktis ist, bedingt durch den globalen Klimawandel, tiefgreifenden Veränderungen 

ausgesetzt. Die Erdoberflächentemperatur und Abflüsse steigen an, während 

Permafrost-Küsten stärker erodieren und der darin gespeicherte Kohlenstoff freigesetzt 

wird. Viele dieser Faktoren erhöhen die Menge an SPM (suspended particulate matter) 

auf den Arktischen Schelfen und bislang ist wenig darüber bekannt, wie die 

ökologischen und geologischen Reaktionen der Schelfe ausfallen werden. Um das 

Verständnis der Entwicklung der Arktischen Schelfe unter Einfluss des Klimawandels 

zu vertiefen, wird in dieser Masterarbeit ein Kartierungsversuch von Sedimentverteilung 

und Meeresoberflächentemperatur (SST) in den Küsten- und Ufergewässern von 

Herschel Island auf dem Kanadischen Beaufort Schelf präsentiert. 

30 Jahre Landsat Satelliten Bilddaten wurden unter wechselnden jahreszeitlichen 

Windbedingen (Ost- und Nordwestwind) analysiert und interpretiert. Da keine in – situ 

Messungen zur Kalibrierung der spektralen Daten vorliegen, wurden für beide 

gesuchten Größen Proxys gewählt, um einen relativen Überblick über den 

Untersuchungsbereich zu erhalten: Surface Reflectance des roten Bandes (655 nm) für 

Trübung, das als Proxy für die Sedimentverteilung benutzt wurde, und unkorrigierte At-

Sensor Temperaturen des Infrarotkanals (10,4–12,5 µm) für SST. Von allen Szenen mit 

vergleichbaren Windbedingungen wurde der Mittelwert berechnet, was in einer sehr 

guten Repräsentation über den gesamten Beobachtungszeitraum resultiert. 

Während konstanten Ostwinden sind sowohl die Werte der Trübung als auch der SST 

im Mittel höher als während stabilen NW-Winden. Ein Grund dafür könnte der Einfluss 

des Mackenzie River Plumes sein, der während stetigen Ostwinden Sediment und 

Frischwasser über das Kanadische Beaufort Schelf verteilt. Die niedrigen Werte 

während stabiler NW-Winde deuten auf die deutlich geringen Sediment- und 

Frischwassereintrag der anderen Quellen des Schelfs hin. Die Trübheit zeigt einen 

starken Gradienten von der Küste hin zum ‚offenen Ozean‘, was darauf hindeutet, dass 

ein Großteil der gelösten Sedimentfracht im Meerwasser in den Küstengewässern 

abgelagert und transportiert wird. Die SST zeigt keinen so starken Gradienten, obwohl 

Tiefenwasseraufstieg an der NW-Küste von Herschel Island zu großen 

Temperaturunterschieden während stabiler Ostwinde führt. 
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Die Ergebnisse wurden mit anderen Modellen verglichen, um auch ohne in-situ Daten 

einen Eindruck über die zu erwartende Größenordnung der absoluten Werte zu erhalten. 

Die Modellierung der Trübheitswerte und SPM-Konzentration erfolgte nach Vorgabe 

von Nechad et al. (2009, 2010), aus der entsprechende Trübheitswerte von weniger als 

30 FTU und SPM-Konzentrationen zwischen 10 – 30 g/m³ resultieren. Diese Werte sind 

in sehr gutem Einklang mit den Modellergebnissen von Doxaran et al. (2012). 

Die hauptsächlichen Einschränkungen des hier präsentierten Modells liegen in der 

geringen zeitlichen Auflösung der Landsat Satelliten (16 Tage) und der 

atmosphärischen Korrektur (Surface Reflectance), bedingt durch das geringe Signal-

Rausch-Verhältnis der älteren Landsat Sensoren. Während neuere Sensoren wie Landsat 

8 (OLI) oder Sentinel 2 letzteres Problem lösen können, ist die zeitliche Auflösung noch 

immer eine große Einschränkung von hochauflösender Ozean-Farb-Fernerkundung. Mit 

in-situ Messungen zur Kalibrierung der spektralen Daten wird erwartet, dass das hier 

präsentierte Modell konsistente Daten zur SPM Konzentration und SST auf dem 

gesamten Kanadischen Beaufort Schelf liefern kann. 
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Abstract 

The Arctic is subject to substantial changes due to the greenhouse gas induced climate 

change. Ground temperatures and river discharge are rising, (permafrost) coasts are 

eroded and the carbon stored in them is released. The aforementioned factors contribute 

suspended sediment to the Arctic shelves which represent an uncertainty regarding 

future ecological and geological reactions. In order to increase the understanding of the 

development of Arctic shelves due to the changes described, this Master’s thesis 

presents a mapping approach of sediment dispersal and sea surface temperature (SST) in 

the coastal and nearshore zone of Herschel Island on the Canadian Beaufort Shelf. 

In this regard, 30 years of Landsat satellite imagery were analyzed and interpreted under 

different seasonal wind conditions (E and NW wind). Due to the absence of in-situ 

measurements to calibrate the spectral data, proxys were chosen for both values to 

receive a relative overview of the study area: the surface reflectance of the red band 

(655 nm) for turbidity (which acts as proxy for sediment dispersal) and at-sensor 

(uncorrected) temperature from thermal infrared channels (10,4–12,5 µm) for SST. For 

scenes with similar wind conditions, the mean was calculated, resulting in a very good 

representation over the observation period.  

During stable E wind conditions, the mean values of both turbidity and SST were higher 

than during NW wind conditions. This may result from the influence of the Mackenzie 

River Plume, distributing suspended sediment and fresh water over the Canadian 

Beaufort Shelf during stable E wind conditions. The low values during stable NW wind 

conditions indicate that the sediment and fresh water input from other sources than the 

Mackenzie River to the Canadian Beaufort Shelf are of minor importance compared to 

it. Turbidity shows large gradients from the nearshore to the offshore zone, indicating 

that large parts of the suspended sediment are deposited and transported in the nearshore 

zone. SST does not have such a strong gradient; however, upwelling causes large 

differences at ne NE coast of Herschel Island during stable E wind conditions. 

The resulted values have been compared to other modelling approaches to assess the 

magnitude of absolute values representing the reflectance values. Modelling turbidity 

and SPM after Nechad et al. (2009, 2010) results in values of 20 - 30 FTU and 10 – 30 

g/m³ along the coast, respectively. These values are in good agreement with SPM 

modelling from Doxaran et al. (2012). 
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Limitations of the presented modelling method are the low temporal resolution of 

Landsat satellites of 16 days and the atmospheric correction to surface reflection due to 

the low radiometric resolution of the older Landsat satellite sensors. While newer 

sensors such as Landsat 8 (OLI) and Sentinel 2 can overcome the last limitation, the 

temporal resolution is still a limitation for high resolution ocean color remote sensing. 

With the calibration of the spectral data with in-situ measurements, this model is 

expected to derive consistent SPM concentration and SST data for the whole Canadian 

Beaufort Shelf. 
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1. Introduction 

The Arctic is an area of rising scientific interest, because the effects caused by global 

climate change are expected to be stronger in the Arctic than anywhere else on Earth  

(Holland and Bitz, 2003; IPCC, 2013). Even though climate changes are very common 

in the history of our planet, the human - induced greenhouse warming, which started in 

the 19
th
 century, seems to be unique in its pace. While past climate changes were often 

caused by tectonic or astronomic forcing, humans influenced the Earth’s climate 

significantly by producing large amounts of greenhouse gases since the onset of the 

industrial revolution (IPCC, 2013). This ongoing process cannot be stopped abruptly, 

even if greenhouse gas emissions are suddenly stopped. The risk of irreversible changes 

increases with advancing warming. 

The Arctic is one of the regions on Earth that is most affected by this warming (Barker, 

2007). The mean annual surface temperature is projected to rise by up to ~ 10°C during 

the 21 century (IPCC, 2013). This would have enormous consequences on terrestrial 

and marine ecosystems, as well as on the humans living in the high latitudes (Klein et 

al., 2016; Hansen et al., 2010; Günther et al., 2013; Lantuit et al., 2012; Walsh et al., 

2017; Romanovsky et al., 2010; Figure 1). A detailed description of the evidence, the 

driving forces and the implications of global climate change in the Arctic is given in 

section 2.4.  

Thawing and erosion of permafrost are associated with climate warming and will result 

in a large release of 𝐶𝑂2 (Romanovsky et al., 2010; Vonk et al., 2012). The Arctic area 

contains more than 50 % of the globally soil organic carbon (SOC, Dixon et al., 1994; 

Dittmar and Kattner, 2003). Most of it is stored in permafrost (terrestrial and subsea), 

which is sensitive to climate warming (Hugelius et al., 2014). The SOC is bound to soil 

particles and can be transferred into 𝐶𝑂2 in the soils by microorganisms when 

permafrost thaws. It can also be directly released into the nearshore zone when the 

sediment is eroded at the coast. 

Sedimentary input (from coastal erosion and from rivers) to the Arctic nearshore zone 

and shelf areas rose significantly in the past decades (Peterson, 2006; McClelland et al., 

2006). The mean annual discharge of the Eurasian rivers entering the Arctic Ocean 

increased by 10 -14 % in the latter half of the 20
th

 century. The annual discharge of the 
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Mackenzie River rose by 22 % together with an increase of SPM concentration of 46 % 

from 2003 to 2013 (Yang et al., 2015; Doxaran et al., 2015). Syvitski (2002)predicted 

an increase of 10 % in sediment load for every 20 % increase in discharge for Arctic 

rivers by climate modelling; in case of the Mackenzie River this value strongly 

underestimates reality.  

Arctic coasts are also actively degrading leading to an enhanced input of sediment 

(Lantuit et al., 2012). The mean annual erosion rate of arctic coasts is 0.5 m/a. Higher 

values up to 10 m/a occur near deltas of big rivers entering the Arctic Ocean 

(Mackenzie, Lena, Yenisei, Ob, Kolyma). 

 

Figure 1: "Impact of thaw and erosion of Arctic permafrost coasts: (1) climatic and biogeochemical 

consequences […] due to vertical and lateral carbon mobilization onshore, in the nearshore and 

offshore. (2) Marine ecosystem perturbations […] due to release of nutrients, pollutants, carbon and 

sediments to the nearshore zone […]. (3) Socio-economic impacts in the coastal zone […]: 

infrastructure damage, loss of cultural heritage, fishing and hunting grounds, and the threat of coastal 

community relocation” (Fritz et al., 2017). 
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Stable (or even aggrading) coasts are present in the American Chukchi Sea, the 

Canadian and Greenland Archipelago, Svalbard, the Barents Sea and the Kara Sea.  

Climate models project an increase in river discharge for the whole Arctic by up to 50 

% and regionally even more in the end of the 21st century compared to the end of the 

20th century (Van Vliet et al., 2013, Figure 2). These numbers and projections are 

available because rivers in the Arctic have been well studied during the last decades. 

However, pan – Arctic long-term datasets of changing coastal erosion do not exist 

(Lantuit et al., 2012). Therefore, climate models are not yet able to project coastal 

erosion rates in the future. However, an increase is likely, since increasing erosion rates 

have already been observed for short stretches of coast (Jones et al., 2009; Günther et 

al., 2013; Radosavljevic et al., 2015).  

Arctic shelves are very important for regional ecosystems and economy. They are the 

main area of primary production (Arrigo et al., 2008), which is highly dependent on 

light penetration into water and thus sensitive to changing discharge regimes of the 

entering rivers (Carmack and Wassmann, 2006). The amount of fresh water input to 

Arctic shelves is necessary for several species of amphidromous fishes that are essential 

food sources for native communities (Carmack and Wassmann, 2006; Dunton et al., 

2006). Coastal areas in the Arctic are of high regional economic interest and very 

vulnerable to climate warming due to industry, housing (Raynolds et al., 2014) and 

cultural heritage (Radosavljevic et al., 2015). These components are therefore highly 

susceptible to an increase and/or a decrease in the input of sediment and organic matter 

to the nearshore zone.  

Remote sensing provides a large amount of data for investigations of remote areas. Data 

can be acquired more easily over longer times without the need of personal presence at 

the sampling location. Yet, most sensors are limited either in spatial or temporal 

resolution, meaning high temporal coverage causes a loss of spatial resolution and vice 

versa (Hilker et al., 2009). In this study, the higher spatial resolution was identified to 

be more important than temporal coverage to investigate small scale hydrodynamic 

features. 

It is unknown, whether sediment mobilized by coastal erosion in the Arctic stays in 

nearshore areas or gets transported offshore. Additionally, the contribution of large 

rivers (which are experiencing rising discharge conditions) to these nearshore areas is 
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often poorly resolved. So far, only large-scale studies on these topics have been 

performed (Doxaran et al., 2012; Heim et al., 2014), which are not adequate for the 

investigations of smaller nearshore areas, which are often very local by nature and are 

not resolved by the large pixels used in these studies. In order to fill this gap, I present 

the first high resolution remote sensing study on sediment transport in Arctic nearshore 

areas.  

Identifying the driving forces and understanding the processes of climate change is one 

main objective of Arctic research. At the Alfred Wegener Institute in Potsdam, the 

southern Beaufort Sea, including the Yukon Coastal Plain and Herschel Island, are 

extensively studied by the Helmholtz Young Investigators Group COPER (“Coastal 

permafrost erosion, organic carbon and nutrient release to the Arctic nearshore zone”). 

The research of COPER focusses on organic material in permafrost sediments, coastal 

erosion in the Arctic and transport pathways of organic material in the coastal and 

nearshore zone.  

In this context, this Master’s thesis will operate as a test to provide a first qualitative 

overview of sediment transport pathways in the coastal and nearshore zone of Herschel 

Island. Specifically, this thesis has the objective to identify SPM and SST dispersal 

patterns depending on wind forcing. Therefore, 30 years of Landsat satellite image data 

was analyzed under changing seasonal meteorological conditions with a focus on SPM 

and SST. This study could be the first step in understanding transport regimes on Arctic 

shelves under rising discharge conditions.  

 

Figure 2:"Global projected change in mean flow for 2071 - 2100 relative to 1971 - 2000 averaged for 

the (...) GCMs for both the SRES A2 and B1 emissions scenario." For every used climate scenario, 

the mean flow in the Arctic will rise significantly  (Van Vliet et al., 2013). 
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2. Scientific Background 

2.1 Suspended Sediment Transport in Coastal Waters 

Water transports sediment in coastal waters as bedload or in suspension (Hjulström, 

1939). The main factor differentiating these two modes of transport is the flow velocity 

of water. The driving forces of flow velocity vary in different settings. While discharge 

is the main driving force of flow velocity in rivers, the tidal amplitude, wind stress and 

bathymetry are responsible for the flow velocity in coastal waters, except for estuarine 

regions, where all factors play an important role (Figure 3). The position of suspended 

particles in the water column is determined by the turbulence of water, i.e. the rate of 

internal lateral mixing of water. At increasing turbulence, the water has more energy 

available to transport suspended particles higher above the riverbed or seafloor. 

Sediment dispersal in coastal surface waters is linked to sediment transport. The flow 

velocity of water is mainly driven by water depth, small scale hydrographic features and 

climate, mainly wind patterns and rainfall due to varying discharge of delivering rivers 

(Doerffer et al., 1989). These parameters act upon sediment dispersal at different scales 

in space and time. At shallow water depths, less energy is needed to carry suspended 

sediment to the water surface. Increasing wind speed causes higher shear stress on the 

water surface, so that suspended particles can be transported over large distances, when 

water depth remains low (i.e. at shelves). Higher river discharges thus have a higher 

erosional potential, resulting in higher concentrations of suspended particles, combined 

with higher flow velocities, lead to increased turbulence. Small hydrographic features 

like underwater sills or sandbanks have the potential to modify larger scale processes 

regionally due to current changes. This may affect ecological processes like 

phytoplankton growth, sedimentation rates and resuspension (Simpson and Brown, 

1987; Doerffer et al., 1989). 
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Figure 3: Hjülstrom diagram. Approximations for erosion and deposition of uniform material in 

water. Transport is mostly limited to particles smaller than 1 mm in diameter. Note that there are 

several other factors influencing the transport of sediment in water, such as surface roughness of the 

particle, its weight and cohesion, but all of them are somehow correlated to the particle size 

(Roughness and weight: positive, cohesion: negative). Hjulström 1939. 

2.2 Turbidity, Suspended Particulate Matter (SPM) and Total Suspended 

Matter (TSM) 

Sediment dispersal refers to the transport of SPM in the water. Turbidity refers to the 

optical measurement of suspended particles within the water column. Turbidity and 

SPM values often correlate with each other, because increasing turbidity is caused by 

higher SPM concentration due to resuspension (Bustamante et al., 2009; Nechad et al., 

2009). Thus, it should be possible to derive SPM values from turbidity measurements 

(and the other way around), when in-situ measurements are available (Dogliotti et al., 

2015). Global algorithms to calculate turbidity have been proposed (Nechad et al., 

2009), but validation datasets are too limited to apply transfer functions between 

turbidity and SPM at the global level, even though several authors successfully applied 

transfer function at the local level (Dogliotti et al., 2015). Global TSM models still have 
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higher errors than turbidity models (30% compared to 6 %, Nechad et al., 2010; 

Dogliotti et al., 2015), hence are not that applicable, especially for low concentrations.  

TSM refers to the transport of SPM in water and ecological processes (Ruddick et al., 

2004). The expressions TSM and SPM are often used as synonyms, but they differ: 

TSM contains SPM plus organic components like algae. Even though SPM is more 

useful for sedimentation models, TSM is often derived directly from satellite images, 

because the differentiation of SPM and organic material based multispectral data is 

complicated (Dogliotti et al., 2015).  

2.3 Sedimentary transport at the Canadian Beaufort Shelf 

The goal of this thesis is to investigate sediment dispersal in coastal areas of the 

Canadian Beaufort Shelf. The Sediment of the Canadian Beaufort Shelf is nearly 

exclusively delivered by the Mackenzie River (Hill et al., 1991, Figure 4). Even though 

coastal erosion has nearly doubled compared to the 80’s (Jones et al., 2009; 

Radosavljevic et al., 2015), its input is still very low compared to the Mackenzie River.  

 

Figure 4: "Summary of the principal sediment sources to the Canadian Beaufort Shelf 

sediment" (Hill et al., 1991). 
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Reports about the mean annual discharge of the Mackenzie River vary substantially. 

Holmes et al. (2002) report a mean annual discharge of the Mackenzie River of 281 

km³/a, while O’Brien et al. (2006) report 333 km³/a and Doxaran et al. (2012) 330 km³ 

only during the ice-free season (3-4 months).  

According to Holmes et al. (2002), estimations on mean annual sediment flux for the 

Mackenzie River vary from 15 Mt/a to 230 Mt/a (Holmes et al., 2002 and citations 

therein). In the early years of Mackenzie River sediment flux observations (1960-80’s), 

only small observation periods were used (< 4 years). Since the database became more 

extensive during the 1990’s, several authors estimated a mean annual sediment flux of 

125 Mt/a. 

This wide span of mean annual sediment flux rates may result from the structure of the 

Mackenzie Delta and the placement of gauging stations. The most important gauging 

station, Arctic Red River (Tsiigehtchic), lies slightly upstream of the meeting point of 

the Mackenzie and the Arctic Red River, so discharge values at the river mouth are only 

derived from a gauging station located ~ 400 km upstream of it. Additionally, the Peel 

River discharges into the Mackenzie Delta too, but is technically not a tributary of the 

Mackenzie River. This results in widely different results in the literature, even though 

the discharge of the Mackenzie River is one of the best documented for the big Arctic 

Rivers (Holmes et al., 2002). 

The sedimentary transport on the Canadian Beaufort Shelf is strongly influenced by the 

presence of an ice cover for approximately 7-9 months per year (Hill et al., 1991). 

During winter, the fresh water accumulates under the ice, forming essentially a lake 

(unofficially Lake Herlinveaux, Macdonald et al., 1995; Doxaran et al., 2012), so 

sediment transport is probably not completely interrupted. Studies on sediment transport 

under the ice cover are rare, but it is likely, that it is limited because of i) the Mackenzie 

River discharge regime and ii) the elimination of wind stress (Hill et al., 1991).  

During summer, sedimentary transport is controlled by the Mackenzie River Plume 

dispersal, bottom currents and waves (Hill et al., 1991). The extent of the Mackenzie 

Plume, an up to 5 m thick mixed layer of fresh and shelf water, is controlled by the 

wind conditions and the Mackenzie River discharge. Sediment plumes of other rivers 

along the Yukon coast are much smaller. Their extent is often limited by barrier islands 

in front of their deltas (i.e. Malcom River, Firth River). 
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SPM concentrations are high in shallow waters (100 mg/L, up to 5 m depth) and 

decrease rapidly to less than 20 mg/L beyond the 10 m isobaths (Hill et al., 1991). In 

easterly wind conditions, the sediment plume may cover large parts of the Canadian 

Beaufort Shelf, while westerly winds keep the sediment near the delta. Most of the 

sediment settles down along the shelf; only small parts leave it (Doxaran et al., 2012). 

During the open water season, bottom currents are wind driven, with decreasing 

dependency at increasing water depths (Hill et al., 1991). Bathymetry is influencing the 

flow, which is strongest, if wind blows parallel to the isobaths.  

Wave energy in the Beaufort Sea is controlled by two factors: the available fetch and 

the wind direction (Hill et al., 1991). Even though fetch length may exceed 1000 km in 

late summer, wave heights are predominantly below 4 m (Thomson and Rogers, 2014; 

Hill et al., 1991). Most wave energy accumulates in wave heights below 2 m. Despite 

the bimodal wind pattern, the dominant moving direction is from west to east, while 

storm waves usually move from northwest to southeast. 

During NW wind conditions, the waves have more potential to transport sediment due 

to stronger winds (storms) and longer fetch. Thus, the wave induced sediment transport 

on the Canadian Beaufort Shelf depends on the number of storms per year, which varies 

between 0 and 9 (Couture, 2010). According to the morphology of the coast and its 

islands off the coast, areas with SE coastal exposure are in a wave shadow and less 

affected by wave induced sediment transport (i.e. Thetis Bay, Figure 6, Solomon, 2005; 

Forbes, 1997). 

2.4 Climate Change and its Consequences in the Arctic  

Even though the greenhouse gas induced climate change is mainly caused by 

communities living in the temperate regions of the Earth, its consequences are most 

amplified in the polar and tropical regions (Holland and Bitz, 2003). This leads to 

drastic changes in terms of sea ice extent, permafrost temperature, and ecosystem 

function. 

Arctic coastal ecosystems will mainly change due to permafrost thaw (Tanski et al., 

2017), sea ice extent changes (Walsh et al., 2017) and rising sea levels (Radosavljevic et 

al., 2015; Comiso and Hall, 2014). This will likely have substantial impacts on Northern 
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Communities (Serreze et al., 2007), Arctic fauna (Stirling and Parkinson, 2006) and the 

worldwide climate (Manabe, S. and Stouffer, 1980, Table 1). 

Reduced sea ice extent leads to bigger fetch lengths and higher wave energy with the 

potential to increase coastal erosion (Serreze et al., 2007; Fritz et al., 2017). Together 

with higher SST and air temperatures (Manabe, S. and Stouffer, 1980; Hansen et al., 

2010), melting coastal permafrost and thermokarst evolution will degrade human 

infrastructure (Raynolds et al., 2014) and cultural heritage throughout the Arctic 

(Radosavljevic et al., 2015; Fritz et al., 2017). This will lead to substantial costs in the 

future; Raynolds et al. (2014) estimated 6 billion $ from 2015-2030 only for Alaska. 

Considering the small Arctic Ocean coastline of Alaska (3.3 % of the whole Arctic 

Ocean coastline) and the predominantly low coastal erosion rates (< 1 m/yr, Lantuit et 

al., 2012), pan-Arctic costs could easily exceed 100 billion $ until 2030. 

Marine ecosystems will also be affected by changes in the coastal zone. The 

disappearance of sea ice and the rise in sea surface temperatures can lead to drastic 

impacts (Walsh et al., 2017). These include increasing primary production (Arrigo et al., 

2008), increased fresh water input from rivers (Yang et al., 2015; Doxaran et al., 2015) 

and borealization of marine species (Fossheim et al., 2015). Several of these amplify 

each other: increased river discharge transports more nutrients to the shelves, where 

primary production increases, producing food sources for bigger marine species. On the 

other hand, increasing primary production leads to higher turbidity and thus less light 

penetration in the water (Arrigo et al., 2008). 

2.5 Knowledge gaps 

Changes in river discharges and their impacts on Arctic coastal ecosystems are subject 

of several studies. These studies show, that mean daily flow rose in the past 30 years 

(Yang et al., 2015) and is projected to rise by up to 50 % until the end of the century 

(Van Vliet et al., 2013). Syvitski (2002) and Gordeev (2006) project an increase of 10 % 

of sediment load per 20 % increase of discharge and an increase of 30 % of sediment 

load per 2 °C warming in the drainage basin. Considering a projected warming in the 

Arctic of up to ~10°C until 2100 (IPCC, 2013), sediment load of Arctic rivers would 

rise up to 275 %. 
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Doxaran et al. (2015) measured discharge and sediment load of the Mackenzie River 

from 2003-2014. Their results show an increase of river discharge of 25 % together with 

an increase of 50 % of particulate export to the Beaufort Sea. SPM concentration in the 

river plume rose by 46 % in the same time. These values indicate that, in case of the 

Mackenzie River, the modelled values strongly underestimate reality. 

All these studies use either in-situ measurements, low spatial resolution remote sensing 

or modelling approaches (or a combination of them). Studies using high spatial 

resolution remote sensing are rare, because those sensors typically have a lower 

temporal resolution than low spatial resolution sensors. On the other hand, high spatial 

resolution remote sensing allows the investigation of coastal and nearshore areas, where 

dynamic processes act up on small spatial scales. 

Resuspension of sediments, SPM concentrations in coastal waters and coastal erosion 

have large potential impacts throughout the Arctic (Doxaran et al., 2015; Fritz et al., 

2017). Yet, only small spatial scale studies on these impacts have been made (Vonk et 

al., 2012). To investigate those processes in a whole coastal environment, high spatial 

resolution remote sensing is needed.  

In this study, we will use the extensive and powerful archive of Landsat satellite 

imagery and its high spatial resolution over more than 30 years to resolve nearshore 

sediment dispersal processes and SST in a test site located in the southern Beaufort Sea.  

2.6 Landsat satellite remote sensing 

The first Landsat satellite was started in July 1972, carrying the Multispectral Scanner 

(MSS), collecting data with a spatial resolution of 79 meters, which were resampled to 

60 meters (US Geological Survey, 2016). The spectral resolution was limited to 4 

bands, ranging from visible (green) to NIR wavelengths. Landsat 2 and 3, started in 

January 1975 and March 1978, respectively, carried the same sensor as Landsat 1. All 3 

satellites orbited at an altitude of 920 km. The resulting temporal resolution (repeat 

coverage) was 18 days.  

The Thematic Mapper (TM) was onboard of Landsat 4 and 5, started in July 1982 and 

March 1984, respectively (US Geological Survey, 2016). With TM, two additional 

bands in the SWIR part of the spectrum became available, as well as a thermal IR band. 

The spatial resolution was increased to 30 m, while the TIR band collected data with a 
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spatial resolution of 120 m, that were resampled to 30 m. Landsat 4 and 5 orbited the 

Earth at an altitude of 705 km. This results in a temporal resolution of 16 days. Both 

satellites had a temporal offset of 8 days, resulting in a temporal resolution of 8 days of 

any Landsat scene on the globe, when both satellites were working (March 1984 – 

December 1993). 

 

Table 1: Summary of the impacts of climate change on the biophysical and socio-economic 

environment, including the location of report, the time frame of report, evidence, climate drivers, 

implications and sources /citations. 

Landsat 6 carried the Enhanced Thematic Mapper (ETM), but it failed to reach its orbit 

in October 1993 (US Geological Survey, 2016). Landsat 7, started in April 1999, carries 

the Enhanced Thematic Mapper Plus (ETM+) that has, additionally to TM, a 

panchromatic band with a spatial resolution of 15 meters onboard. The spatial resolution 

of the TIR band was increased to 60 meters. Unusual artifacts began to appear on May 

Theme Location Time Frame Evidence Climate Drivers Implications Source, Citation

Alaska 1945-2008 δ
18 

O record Klein et al . 2016

Arctic 1970-2010

Goddard Institute 

for Space 

Studies (GISS) 

analysis

Hansen et al . 

2010

Permafrost and 

Thermokarst
Herschel Island 2013, 2014

Carbos loss at 

RTS degradation

Global warming, 

changes in snow

Mobilization of 

Carbon

Tanski et al . 

2017

Herschel Island 1952-2011

Rising coastal 

erosion since 

2000

Radosavljevic et 

al . 2015

Alaska 1955-2007

Increased 

coastal erosion 

since 1955

Jones et al.  2009

1975-2011 Yang et al . 2015

2003-2013
Doxaran et al . 

2015

Glaciers Worldwide 1971-2009
Decreasing 

coverage area
Global warming

Sea level rise, 

increased Albedo

Cosimo et al. 

2014, IPCC 2013

Vegetation
Eurasia, North 

America
1970-2000

Changed 

vegetation types

Global warming, 

changing 

precipitation

Reduced boreal 

forest

Buermann et al . 

2014

Barents Sea 2004-2012
Borealization of 

fish

Rising sea 

surface 

temperatures

Species turnover
Fossmann et al. 

2015

Arctic 2006, 2007

Increased 

primary 

production

Decreased sea 

ice extend

Changes in marine 

ecosystems, 

changed marine 

biochemistry

Arrigo et al . 

2008

Alaska 1949-2011
Raynolds et al. 

2014

YCP, Herschel 

Island
1952-2011

Radosavljevic et 

al.  2015, Fritz et 

al . 2017

changed synoptic 

patterns
Weather

expansion of 

thermokarst

Fauna

Infrastructure 

degradation, loss 

of cultural 

heritage

Loss of moneyGlobal warmingHumans

Rivers Mackenzie

Higher seasonal 

variability, higher 

mean annual 

flow

Increasing 

precipitation

Higher flood risk, 

higher erosion 

rates

Coastal Erosion

Changing strom 

regime, increased 

summer SST, 

rising sea-leavel

Loss of cultural 

heritage and 

infrstructure
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31, 2003, which are caused by the failure of the Scan Line Corrector (SLC), resulting in 

a loss of ~22 % of the initial image data (Storey et al., 2005). All efforts in fixing the 

SLC-problem were unsuccessful; however, Landsat 7 is still in its orbit and acquires data 

worldwide. 

Landsat 8, started in February 2013, is the most recent Landsat satellite in space (US 

Geological Survey, 2016). It carries the push-broom Operational Land Imager (OLI) 

and the Thermal Infrared Sensor (TIRS). OLI contains similar spectral bands as ETM+, 

with additional ones in the deep blue part of the spectrum and a Cirrus band, located 

between the NIR and the SWIR parts of the spectrum. TIRS contains two TIR bands 

that were designed to allow split-window surface temperature retrieval algorithms. 

Landsat 7 and 8 use the same orbits as Landsat 4 and 5. Landsat 9 is planned to be 

launched in 2020. 

Landsat has been used to quantify suspended particles for many decades (MacFarlane 

and Robinson, 1984; Doerffer et al., 1989; Ritchie et al., 1990; Vanhellemont and 

Ruddick, 2014), even though the Landsat sensors were initially built for land surface 

applications (8 bit radiometric resolution for ETM+ and earlier sensors). The high 

spatial resolution (30 m from Landsat TM on) was deemed critical by many 

investigators to investigate local coastal environments or lakes, because sensors 

designed for sea surface applications commonly have much coarser spatial resolution 

(Coastal Zone Color Scanner (CZCS, 1978): 800m; Sea-Viewing Wide Field-of-View 

Sensor (SeaWIFS, 1997): 1.1 – 4.5 km; Moderate-resolution imaging spectroradiometer 

(MODIS, 1999): 250 – 1000 m). The main difficulties associated with the use of 

Landsat satellite image data at the sea surfaces arise from the small signal-to-noise ratio 

associated with the radiometric resolution (Doerffer et al., 1989), as well as the low 

temporal resolution (repeat coverage) of 16 days (MacFarlane and Robinson, 1984).  

The use of Landsat to retrieve suspended sediment information has been associated with 

many challenges. While MacFarlane and Robinson (1984) received satisfactory results 

by correlating Landsat MSS data to suspended sediment concentrations, Doerffer et al. 

(1989) report about the limitations of Landsat TM , concerning sensitivity, radiometric 

resolution and spectral bandwidth. According to their results, Landsat TM could only be 

used with an averaging over 5x5 pixel, resulting in a resolution of 150 m, which is still a 

much higher spatial resolution than the sensors commonly used for these applications, 
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but not as high as expected. In contrast, Ritchie et al. (1990) found that the correlations 

of Landsat MSS and TM with suspended sediment concentrations do not differ 

significantly from reality. The usage of Landsat MSS and TM to extract suspended 

sediment concentrations remain a contentious issue until today. 

Landsat 8 greatly improved on former Landsat platform for SPM retrieval applications. 

Vanhellemont and Ruddick (2014) showed the enormous advantages of the 12 bit 

radiance digitalizing system and longer integration times of the scanner for marine 

applications (resulting in higher signal-to-noise ratio, Figure 5), even though the 

spectral bands have not changed significantly. Together with the high spatial resolution, 

Landsat 8 is a very powerful all-rounder for land and sea surface remote sensing. 

However, the temporal resolution is still as low as before.  

 

Figure 5: Compared Signal – to - Noise Ratio over Water of Landsat TM (left) and Landsat OLI 

(right). The longer integration time of the push – broom – scanner and the increased radiometric 

resolution increases the signal – to - noise ratio of Landsat OLI significantly compared to Landsat 

TM. 

For coastal applications, Landsat provides features that are not offered by other 

satellites. The most important one may be the extensive archive of comparable data that 

is very useful to detect multi-year surface changes. Its high spatial resolution is also an 

asset to resolve small scale current features in the nearshore zone. However, as this 

sensor was originally designed for land surface applications, the retrieval of suspended 

sediment concentrations is still a challenging task. 

Signal 
Signal 

Noise 

Noise 

Landsat 5 TM 
Landsat 8 OLI 
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3. Regional Setting 

The Canadian Beaufort Shelf covers less than 2 % of the Artic coast shelf area (~64 000 

km²) and is narrow (100 km) compared to the Eurasian shelves (Stein and MacDonald, 

2014; O’Brien et al., 2006). It extends from the Alaskan peninsula to the Canadian 

archipelago (Hill et al., 1991). The shelf has a gentle relief up to approximately 80 m 

water depth, where the shelf break is located. Notable exceptions are the Mackenzie 

Trough (often called Mackenzie Canyon), an up to 300 m deep glacial valley located 

north east of Herschel Island, and several smaller valleys with low relief. Throughout 

the Holocene, the seafloor has been covered with up to 30 m of sediment, 

predominantly clay-sized with some silt (Pelletier, 1975). 

The Mackenzie River is the main fresh water and sediment source of the Canadian 

Beaufort Shelf (Doxaran et al., 2012; O’Brien et al., 2006; Holmes et al., 2002). It 

drains an area of approximately 1 805 000 km². The average discharge at Arctic Red 

River (Tsiigehtchic) gauging station is 9 910 m³/s. Its ice-free season starts typically in 

mid-May, when warm fresh water arrives at the delta, providing enough heat to break 

up the ice 1-2 weeks prior to comparable coasts without significant river inflows 

(Mulligan et al., 2010). However, it is not unusual to find sea ice at the Canadian 

Beaufort Shelf until mid-July (Doxaran et al., 2012). The peak discharge is typically in 

early June (up to 25000 m³/s), while discharge in winter is as low as 4000 m³/s 

(December-May).  

The Yukon Coastal Plain (YCP) is the above sea level lying extension of the Canadian 

Beaufort Shelf. It extends from the Mackenzie Delta in the east to the Canada - Alaska 

border in the northwest, where it becomes the Arctic Coastal Plain of Alaska (Fritz et 

al., 2012). Large parts of the YCP form an erosional surface cutting into Tertiary 

sandstones and shale, which are covered by a thin layer of unconsolidated sediments 

(Brigham-Grette and Carter, 1992; Fritz et al., 2012). During the Late Wisconsin, the 

YCP was partly covered by the Laurentide Ice Sheet, which reaches its maximal 

extension probably between 23 and 18 ka BP, when it extended slightly west of 

Herschel Island (Dyke and Prest, 1987). The western parts of the YCP, which probably 

were not covered by glaciers during the whole Quaternary, are characterized by alluvial 

fans formed by streams from the British Mountains, merged deltas and coastal lagoons 
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(Scudder, 1997). Permafrost on the YCP is continuous; ice content is high and ice 

wedges are abundant (Mackay, 1971).  

The focus of this study is on the coastal and nearshore zone of Herschel Island (69°36′ 

N; 139°04′ W, Figure 6), located at the most northern point of the Yukon Territory, 

Canada, in the western part of the Canadian Beaufort shelf, covering an area of 108 km² 

(Lantuit and Pollard, 2008). It is part of the Yukon Coastal Plain and is an ice-pushed 

structure that formed during the westward advance of the Laurentide ice sheet in the 

Buckland Stage of the Wisconsin Glaciation. The island is separated from the mainland 

by the very shallow Workboat Passage (< 3 m deep, ca. 2 km wide), where longshore 

currents often cause resuspension of sediments. The north coast is exposed to the 

maximum wave energy of the Beaufort Sea in late summer, while the east coast gets 

protected by the island itself (Hill et al., 1991). The coast of Herschel Island is 

dominated by steep cliffs, which are up to 50 m high (Mackay, 1971; Fritz et al., 2012). 

The coastal slopes are affected by excessive thermo-erosion, with several retrogressive-

thaw-slumps and active-layer detachment slides (Lantuit and Pollard, 2008). 

The arctic climate at Herschel Island and the southern Beaufort Sea is characterized by 

long, cold winters and short summers. Temperatures vary from about -30 °C in winter 

(December-February) up to 15 °C in summer, with a peak in July and a mean annual 

temperature of -9.4 °C (Giovando and Herlinveaux, 1981; Burn and Zhang, 2009; 

Figure 8). During open water seasons, winds dominantly blow from E and NW 

directions, while NW wind conditions are more common in August and September, 

when storms become more frequent (Hill et al., 1991; Figure 7). Although fetch lengths 

in the Beaufort Sea may extend 1000 km and significant wave heights may exceed 4 m, 

thereby enhancing coastal erosion, the sedimentary input from coastal erosion to the 

Beaufort Sea is very low compared to the one of the Mackenzie River (below 5 %, Hill 

et al., 1991; Radosavljevic et al., 2015). 
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Figure 6: Map of the study area. 

Upper right: Location of the 

study area (white rectangle) near 

the northernmost border of 

Canada and the USA. Lower 

center: closer view on the white 

rectangle from the upper right 

picture, including the Mackenzie 

Delta, the southern Canadian 

Beaufort Shelf, the Yukon 

Coastal Plain and Herschel 

Island. Upper left: area of 

interest of this study. A Landsat 

8 (OLI) true color (band 

composition 432) image is 

underlying by a hillshaded 2 m 

DEM at Herschel Island and a 

hillshaded 16 m DEM at the 

Yukon Coastal Plain. Important 

geographical locations are 

mentioned around Herschel 

Island, as well as the highest 

point in the western central part 

of the island (185 m, Burn and 

Hattendorf, 2011). 
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Figure 8: “Mean monthly temperature and 

precipitation for Komakuk Beach and Shingle Point, 

Yukon Territory. The mean annual temperatures at 

Shingle Point and Komakuk Beach are - 9.9°C and – 

11°C, respectively, and mean annual precipitation 

totals are 254 and 164 mm.” (Burn and Zhang, 2009). 

Data is provided by Environment Canada. 

                                            

Figure 7: "Wind direction and frequency in the ice-free 

period (June-September), observed at the weather station 

on Simpson Point, Herschel Island, from 2009 to 2012." 

(Radosavljevic et al., 2015). 
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4. Materials & Methods 

4.1. Landsat Images Acquisition 

Landsat images were downloaded from the United State Geological Survey (USGS; 

http://usgs.gov/). Included are images with data from Landsat TM (Thematic Mapper) 

from 1986 to 2011, ETM+ (Enhanced Thematic Mapper +) from 1999 to 2016 and 

OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) from 2013 to 2016. 

Images from Landsat ETM+ after 2003 were mostly excluded, since the SLC failed 

onboard. Only ETM+ image data from path 67 was used in this study, because the AOI 

lies within the central part of the image, where the loss of data is minimal (Storey et al., 

2005). Considering the long arctic winter with continuous ice cover, only images from 

June, July, August and September without significant sea ice and cloud cover has been 

chosen. Due to the temporal resolution of all used Landsat satellites (16 days), five 

images could be used per year in maximum. In total there were 68 useable images (TM: 

48, ETM+: 12, OLI/TIRS: 8). 

4.2. Landsat Images Pre-Processing 

To get at-sensor radiance, level 1G data was calibrated with the published coefficients 

(ETM+, OLI) or with the scene-specific calibrator values (onboard, TM, Masek et al., 

2006). Calibrated images were then corrected to top-of-atmosphere (TOA) reflectance 

through correction for solar zenith, Sun-Earth distance, bandpass (sensor-specific) and 

solar irradiance. To get an accurate estimation of Surface Reflectance (SR), scattering 

and absorption of radiance by the atmosphere need to be compensated. The Landsat SR 

product is acquired from TOA reflectance (ρTOA), which can be expressed as 

𝜌𝑇𝑂𝐴 = 𝑇𝑔(𝑂3, 𝐶𝑂2, 𝑁𝑂2, 𝐶𝐻4) ∙ [𝜌𝑅+𝐴 + 𝑇𝑅+𝐴 ∙ 𝑇𝑔(𝐻2𝑂) ∙ 𝜌𝑆 ∙ (1 − 𝑆𝑅+𝑆 ∙ 𝜌𝑆) − 1] 

with 

ρS = surface reflectance 

Tɡ = gaseous transmission 

TR+A = Rayleigh and aerosol transmission 

ρR+A = Rayleigh and aerosols atmospheric intrinsic reflectance 



20 

 

SR+A = Rayleigh and aerosols spherical albedo. 

For a more detailed description of the atmospheric correction of Landsat images, see 

Masek et al. (2006). It is known, that Landsat SR is well correlated to MODIS SR, even 

though Landsat ETM+ SR values tend to be ~1% higher in mean, with decreasing offset 

at rising wavelengths (blue band: nearly 100 % higher values; NIR band: nearly 

identical values). Nonetheless, this atmospheric correction is still the best one known 

(Nazeer et al., 2014), with the best approximation for land and sea surfaces. 

4.3. Landsat Images Processing 

The SR pre-processed images were classified using the USGS cf-mask to eliminate 

land, sea ice, clouds and cloud shadow. This masking is not perfect; cloud shadows 

cannot be masked fully without hitting the absorption of suspended particles. The result 

is a raster image with (nearly) only water surfaces (sea, lakes and rivers). A pre-defined 

area of interest (AOI) around Herschel Island was used to extract the image to save 

computing resources. All scenes without artefacts and matching wind conditions (see 

below) were used to calculate mean statistical parameters for visualization. 

Thermal Infrared image data from all Landsat satellites do not receive an atmospheric 

correction, thus they are only available as L1T data product. According to Wukelic et al. 

(1989), the conversion from digital numbers to spectral radiance (Rλ) and then to 

uncorrected temperature (at-sensor temperature, 𝑇𝑈, [K]) is given by 

Rλ =  RM  × DN + RA 

and 

TU =  K2  × [ln (
K1

Rλ 
) + 1] − 1 

with 

RM = radiance multiplier 

RA = radiance add 

K1, K2 = thermal constants 
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where RM, RA, K1 and K2 are given by the Landsat Metafile (MTL). These at-sensor 

temperatures are not surface temperatures, but are good approximations of sea surface 

temperatures. Even though corrected temperature values get closer to measured surface 

temperatures, they are still not exact. The higher computation investment was not 

considered to warrant the slightly increased accuracy, hence uncorrected temperatures 

are sufficient for this study. The conversion to corrected temperatures using the 

downwelling sky irradiance for a clear sky and measured surface temperatures is 

described in Wukelic et al. (1989). All calculations were made with ESRI ArcMAP 

10.4.1. 

4.4. Boxplots 

In order to facilitate interpretation of the imagery, a set of test areas was established 

along the coast of Herschel Island. 17 zones were defined in total to cover different 

coastal orientations and distances from the shoreline (Figure 13). Each of these zones 

was made of 200 cells, which were then averaged to aggregate means or medians to 

form indices representative for each zone. These values were extracted using raster to 

point in the spatial analyst toolbox in ArcMap. The attribute tables were then exported 

as .txt and processed in Microsoft Excel. Boxplots were compiled in MATLAB. 

4.5. Wind Data 

Wind data was collected from the climate archive of the Canadian government 

(http://climate.weather.gc.ca). The investigated weather stations were Herschel Island 

and Komakuk Beach. Data from Komakuk Beach was used, when the station on 

Herschel Island failed and before 1994, when hourly weather monitoring on Herschel 

Island started. Hourly weather monitoring on Komakuk Beach started in 1994, too, but 

4 measurements/day were collected from 1973 on (00:00, 06:00, 12:00 and 18:00). To 

receive consistent data, only measurements from 00:00, 06:00, 12:00 and 18:00 were 

extracted from this dataset from 1994 on. 

Wind speed and direction were acquired for the date of the Landsat scene and two days 

in advance, in total 12 measurements per scene. When six out of the last eight 

measurements (date of the scene plus one in advance) or 9 out of 12 had comparable 

wind directions, the conditions were assumed to be continuous and the scene was used 

in this study. In total, 18 scenes show continuous ESE wind conditions (TM: 13, ETM+: 
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4, OLI: 1), 8 continuous NW wind conditions (TM: 4, ETM+: 3, OLI: 1) and 9 

changing wind conditions (TM: 9, ETM+:1). 

4.6. SPM Algorithms 

Even though no in –situ data was available in this study, an attempt to calculate a SPM 

model based on Landsat SR data was initiated. Two MODIS scenes processed by 

Doxaran et al. (2012) based on field data were used to validate these attempts, since 

usable Landsat scenes of the same date existed (August 21, 2009 and September 12, 

2011). 

Even though the results of the SPM algorithm may differ due to different atmospheric 

correction methods (SR and RRS), SR Landsat data products were used, because the 

low signal-to-noise ratio over water surfaces makes RRS data products unusable 

(Doerffer et al., 1989).  

The model was based on SR data from the red and NIR channels. Different 

combinations of these bands were used to calculate SPM to cover a wide range of 

concentrations: the red band was used to calculate low concentrations (~ < 10 g/m³); the 

band ratio (red/NIR) for medium concentrations (~ 10 – 30 g/m³); the halved sum of 

both bands showed the best results for high concentrations (~ > 30 g/m³). The whole 

model can be expressed as 

𝑆𝑃𝑀 [
𝑔

𝑚³
] =  

𝐶𝐿𝑀𝐿 × 𝐶𝑀𝑀𝑀 × 𝐶𝐻𝑀𝐻

𝐶𝐿 + 𝐶𝑀 + 𝐶𝐻 + 𝐶1
 

where CL, CM and CH are constants for low, medium and high concentrations and ML, 

MM and MH their respective models. C1 counteracts the unlikely case, if CL + CM + CH  

being 0, the calculations wont fail, which was sometimes apparent in cloud shadows. 

The exact equations for CL, CM, CH, ML, MM and MH are given in the Appendix.  

The model results show good agreements with the MODIS calculated SPM at 

September 12, 2011 (Figure 9). Both low and high concentrations were well 

represented, while medium concentrations were slightly overestimated (concentrations 

~ 10 g/m³ are calculated as ~ 15 g/m³). All spatial SPM features were well displayed. 
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The SPM calculations from the Landsat scene of August 21, 2009, showed weak results 

for medium and high concentrations, which were mostly overestimated (Figure 10). 

Only low concentrations were well calculated by the model. Spatial SPM features were 

moderately displayed.  

 

Figure 9: Comparing SPM calculations on September 12, 2011, between (a) SPM calculations based 

on MODIS RRS data from Doxaran et al. (2012) and (b) SPM calculations based on Landsat TM SR 

data with the model introduced in section 4.6. Both models have a logarithmic scale. No data is 

displayed in grey. The resulting datasets are in good agreement for low and high SPM 

concentrations, while medium concentrations are overestimated in (b). 

After comparing the results for both pairs of scenes and numerous tuning attempts, 

development was stopped. Even though the results were satisfying, further development 

of an overall SPM model would have to rely on in-situ data.  

Since no model attempt, including subsequent fine tuning of the algorithm, resulted in 

good agreements for both compared scenes, we compared data from the red band (655 

nm, Figure 11) from the Landsat TM scene from August 21, 2011 with the modelling 

results from Doxaran et al. (2012). Generally, reflectance in the red band is well 

correlated to turbidity (Dogliotti et al., 2015) and thus, it should be well correlated to 

SPM concentrations. Comparing Figure 11 to Figure 9, the same spatial dispersal 
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patterns are displayed. The correlation in high, medium and low SPM concentrations is 

moderate. However, there are no absolute values available for turbidity in Figure 11.  

 

Figure 10: Comparing SPM calculations on August 21, 2009, between (a) SPM calculations based 

on MODIS RRS data from Doxaran et al. (2012) and (b) SPM calculations based on Landsat TM SR 

data with the model introduced in section 4.6. Both models have a logarithmic scale. No data is 

displayed in grey. The resulting datasets are in good agreement for low SPM concentrations, while 

medium and high concentrations are overestimated in (b). 

The comparison between the SPM model and the red band showed that the red band 

was sufficient to resolve dispersal patterns in the nearshore zone. The advanced SPM 

model did not bring significantly superior additional information. Moreover, the 

computation of absolute values without in-situ measurements remains difficult, even 

though the developed model computed partly good results. Furthermore, the 

applicability of Landsat SR data for the development of related models is uncertain. 

Therefore, all the aforementioned factors led to the omission of the developed SPM 

model, leaving only the dataset of the red band for usage of this thesis. 
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Figure 11: Spectral data from the red band from the Landsat TM scene taken on September 12, 2011. 

The spectral data is displayed in a logarithmic scale. No data is displayed in grey. Due to the absence 

of in-situ measurements and validation datasets, no absolute values were calculated. The comparison 

with Figure 9 shows similar dispersal patterns. High, medium and low SPM concentrations are 

moderately displayed. 



26 

 

5. Results 

5.1. Landsat scene processing 

35 images were used in total for the analysis (TM: 25; ETM+: 8; OLI: 2, Table 2). 

Several ‘anomalies’ had to be removed from the image before processing. These 

anomalies are caused by small sea ice floes (in early summer and late autumn) or by 

small clouds and their shadows that were not recognized by the USGS cf-mask. They 

had to be removed manually.  

Furthermore, the USGS cf-mask had problems in recognizing small or thin parts of 

water or land surfaces (Figure 28). This often resulted in wrong statistical calculations 

in Pauline Cove and, at E wind conditions, west of Avadlek Spit, while Avadlek Spit 

itself is often not recognized as land surface. These areas have been masked afterwards. 

Acquitsition Date (YYYY-MM-DD) Sensor Path/Row Winddirection 

1986-09-14 TM 67/11 changing 

1990-08-17 TM 66/11 E 

1990-09-16 TM 68/11 NW 

1990-09-25 TM 67/11 NW 

1992-08-06 TM 66/11 E 

1992-08-20 TM 68/11 changing 

1992-08-29 TM 67/11 changing 

1994-07-27 TM 66/11 changing 

1994-08-12 TM 66/11 changing 

1994-09-11 TM 68/11 E 

1995-07-12 TM 68/11 E 

1997-07-19 TM 66/11 E 

1998-07-22 TM 66/11 E 

1997-08-02 TM 68/11 NW 

1998-07-13 TM 67/11 E 

1999-08-08 TM 68/11 E 

1999-08-10 TM 66/11 E 

1999-09-02 TM 67/11 E 

1999-09-10 ETM+ 67/11 E 

1999-09-18 TM 67/11 E 

1999-09-26 ETM+ 67/11 NW 

2001-08-30 ETM+ 67/11 changing 

2002-09-11 ETM+ 66/11 NW 

2004-08-22 ETM+ 67/11 E 

2006-07-26 TM 68/11 E 
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2007-08-23 TM 67/11 changing 

2008-06-30 ETM+ 67/11 E 

2009-07-27 TM 67/11 NW 

2009-08-21 TM 66/11 changing 

2009-09-05 ETM+ 67/11 NW 

2010-08-15 TM 67/11 E 

2011-09-12 TM 66/11 changing 

2013-07-15 OLI 66/11 E 

2014-07-02 OLI 66/11 NW 

2016-08-07 ETM+ 67/11 E 

Table 2: Used Landsat scenes after eliminating all anomalies. Data was acquired from the USGS. 

The retrieve of wind data and the classification is described in section 4.  

5.2  Turbidity 

The mean surface reflectance in the red band, which was used as proxy for turbidity, 

shows highest values during stable E wind conditions and lowest values during stable 

NW wind conditions (Figure 12). An area of high turbidity is consistently present at the 

NE coast of Herschel Island, which is dominated by high cliffs. Another area along the 

SE coast was also characterized consistently by high turbidity. Under stable E wind 

conditions, dispersal patterns at the NE coast showed longshore drift extending towards 

the west, resulting in a broader area of high turbidity at the NW coast than in (a) and (b).  

The Workboat Passage is, under all three conditions, an area of increased turbidity and 

shows clear sediment pathways patterns (Figure 16), even though they are best 

displayed in (c) and very hardly recognizable in (b). A thin area around the whole 

island, showing high turbidity values under all conditions, can be attributed to coastal 

erosion and resuspension due to waves.  

Interestingly, panels (a) and (b) (changing wind direction and NW winds) show quite 

similar dispersal patterns and a large difference to (c). Satellite images from the whole 

Canadian Beaufort Shelf indicate that the larger extent of the Mackenzie River Plume 

may be the major influence causing this difference. On the other hand, other rivers 

entering the Arctic Ocean, such as the Firth River, entering the Arctic Ocean SW of 

Herschel Island, may only have minor influence on sediment dispersal. 
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Figure 12: Mean surface reflectance in the red band, that was used as proxy for turbidity, for (a) changing 

wind conditions, (b) stable NW wind conditions and (c) stable E wind conditions. Prevailling wind 

conditions are mentioned with arrows in the centre of each picture. The number of used scenes per wind 

condition can be seen in Table 2. Red areas indicate areas of high turbidity, white areas indicate land 

surfaces or areas of failed atmospheric correction. Turbidity is highest in (c) and lowest in (b). Note the 

similar dispersal patterns in (a) and (b) compared to (c). 
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The comparison of the values retrieved at selected test areas spread along the Herschel 

Island coastline show similar patterns along the NE coast of Herschel Island during both 

NW and E wind conditions: turbidity decreases with increasing distance to the coast 

(zones 1-3, 5-7, 8-9), even when overall sediment concentration values are higher 

during E wind conditions (Figure 14, Figure 15). The same trend is present at the 

Workboat Passage during E wind conditions (zones 11 – 13), while during NW wind 

conditions, the values do not change significantly with increasing distance from the 

coast. Zones 14 and 15 do not show significant differences at both conditions. Under E 

wind conditions, zone 16 (Thetis Bay) has much higher values than zone 17 (Collinson 

Head), while during NW wind conditions, the contrary is the case. Interestingly, zones 

11-17 show no significant differences during NW wind conditions, while the same 

zones show high variations during E wind conditions.  

Generally, the range of the values (size of boxes and length of whiskers) observed in the 

test areas increases with decreasing distance to the coast; the only exception being zone 

11 during E wind conditions. Additionally, the range of values (length of lines 

extending the boxes) for NW wind conditions is higher than at E wind conditions. There 

are also more outliers (red crosses) outside the 99 % confidence interval present for NW 

wind conditions. 

 

.
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Figure 13: Naming and positions of the zones that were used to extract values from for the box and 

whisker plots. Zones 1 to 7 (blue) are located at ne NE coast, 8 to 10 (green) at the NW coast, 11 to 

13 (cyan) in the Workboat Passage, 14, 15 (yellow) next to the eastern outflow of the Workboat 

Passage, 16 (yellow) at the SE coast in the Thetis Bay and 17 (yellow) at the SE coast near Collinson 

Head. Each number corresponds to the zone right of it. The coastline of Herschel Island is displayed 

in black. 
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Figure 14: Box and whisker plot showing the surface reflectance values in the extracted zones 

displayed in Figure 13 for stable E wind conditions. 200 values are used per zone. Notches indicate 

the median value of the zone, the edges of the box indicate the 75 (upper edge) and 25 (lower edge) 

percentile. Whiskers (lines extending the boxes at the top and bottom) show the range of the data. 

Outliers (red crosses) are data points outside the 99 % confidence interval. Box and whisker plot was 

created using MATLAB. 
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Figure 15: Box and whisker plot showing the surface reflectance values in the extracted zones 

displayed in Figure 13 for stable NW wind conditions. 200 values are used per zone. Notches 

indicate the median value of the zone, the edges of the box indicate the 75 (upper edge) and 25 

(lower edge) percentile. Whiskers (lines extending the boxes at the top and bottom) show the range 

of the data. Outliers (red crosses) are data points outside the 99 % confidence interval. Box and 

whisker plot was created using MATLAB. 
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Figure 16: Mean surface reflectance from Workboat Passage in the red band, that was used as proxy for 

turbidity, for (a) changing wind conditions, (b) stable NW wind conditions and (c) stable E wind 

conditions. Prevailling wind conditions are mentioned with arrows in the centre of each picture. The 

number of used scenes per wind condition can be seen in Table 2. Red areas indicate areas of high 

turbidity, white areas indicate land surfaces or areas of failed atmospheric correction. The Workboat 

Passage shows increased turbidity values under all three conditions, but turbidity is not as high as along 

the north coast. 
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5.3 Sea Surface Temperature 

The uncorrected SST was calculated from the thermal infrared channels of Landsat TM, 

ETM+ and TIRS. The highest values were detected during stable E wind conditions 

along the SE coast of Herschel Island, as well as the lowest values near the NW coast 

(Figure 17 (c)). Figure 17 (a, changing wind conditions) shows nearly as high values at 

the SE coast as for E wind conditions, while values nearly as low as for E wind 

conditions were detected along the NW coast during stable NW wind conditions (Figure  

(b)). However, both do not contain the wide span of Figure  (c), so the distribution of 

SST is much more uniform.  

The SST spatial distribution show similar dispersal patterns compared to the ones for 

turbidity under changing and stable NW wind conditions, but absolute values are higher 

under changing wind conditions. This can be recognized at the SE and NW coasts 

(decreasing SST with increasing distance from the coast), as well as NE of Collinson 

Head. In contrast, when there are E wind conditions, SSTs rise with increasing distance 

from the coast along the NE coast and low SST are more uniformly distributed near the 

NE coast. 

The Workboat Passage shows, in contrast to Figure 16, quite uniform SSTs for all three 

wind conditions (Figure 18). The SSTs behind the barrier islands near the Yukon coast 

is higher than in the Workboat Passage for all three wind conditions, but the freshwater 

input of the Firth River is not large enough to heat up the whole Workboat Passage. In 

contrast, the warm water from the Mackenzie River has the ability to heat it up. 
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Figure 17: Mean at-sensor (uncorrected) temperature from thermal infrared channels, for (a) changing 

wind conditions, (b) stable NW wind conditions and (c) stable E wind conditions. Prevailling wind 

conditions are mentioned with arrows in the centre of each picture. The number of used scenes per wind 

condition can be seen in Table 2. Red areas indicate areas of high SST, white areas indicate land surface 

areas. Land surface areas were eliminated using the difference of land and SST. Mean SST is highest in 

(c) and lowest in (b). Note the very cold SST in (c) at the NW coast of Herschel Island and the large 

contrast to the SE coast. 
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Figure 18: Mean at sensor (uncorrected) temperature from thermal infrared channels of Workboat 

Passage, for (a) changing wind conditions, (b) stable NW wind conditions and (c) stable E wind 

conditions. Prevailling wind conditions are mentioned with arrows in the centre of each picture. The 

number of used scenes per wind condition can be seen in Table 2. Red areas indicate areas of high 

temperature, white areas indicate land surfaces. Land surface areas were eliminated using the difference 

of land and SST. The Workboat Passage shows increased SST values under all three conditions, with 

highest values under E wind conditions. 
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Figure 19: Box and whisker plot showing the at-sensor (uncorrected) temperatures in the extracted 

zones displayed in Figure 13 for stable E wind conditions. 200 pixels are used per zone. Notches 

indicate the median value of the zone, the edges of the box indicate the 75 (upper edge) and 25 

(lower edge) percentile. Whiskers (lines extending the boxes at the top and bottom) show the range 

of the data. Outliers (red crosses) are data points outside the 99 % confidence interval. The box and 

whisker plot was created using MATLAB. 

The comparison of values retrieved from selected test areas around the coast of 

Herschel Island (box and whisker plots, Figure 19, Figure 20) extracted from SST 

calculations highlights the different dispersal patterns along the NE coast and the 

similar patterns in the Workboat Passage and along the SE coast of Herschel Island. The 

SST show a clear increasing trend with increasing distance from the NE coast during E 

wind conditions, while it is the contrary under NW wind conditions (zones 1-7). The 

SST at the NW coast is higher under NW wind conditions than E wind conditions 

(zones 8-10). 
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Figure 20: Box and whisker plot showing the at-sensor (uncorrected) temperatures in the extracted 

zones displayed in Figure 13 during stable NW wind conditions. 200 pixels are used per zone. 

Notches indicates the median value of the zone, the edges of the box the 75 (upper edge) and 25 

(lower edge) percentile. Whiskers (lines extending the boxes at the top and bottom) show the range 

of the data. Outliers (red crosses) are data points outside the 99 % confidence interval. The box and 

whisker plot was created using MATLAB. 

In the Workboat Passage, SST is much higher under E wind conditions and shows a 

smaller range. Generally, the range of values (size of boxes and length of whiskers) is 

higher under NW wind conditions, while there are more outliers outside the 99 % 

confidence interval under E wind conditions. In contrast to the turbidity, SST for E 

winds show no large variations in the zones 11 – 17 (Workboat Passage, Thetis Bay, 

Collinson Head), while the variations at NW wind conditions are higher for SST. 
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6. Discussion 

6.1 Acquisition of Wind Data 

Wind data was acquired in 6 h intervals to minimize the effects of different sampling 

methods over time (before 1994 it was measured in 6 h intervals; after 1994 hourly). 

The wind data was used to reconstruct the general wind direction patterns over several 

days, so the number of data points is sufficient for this task, even though some data is 

lost in the process. However, manually controlled random samples in the hourly dataset 

showed no significant anomalies compared to the 6 h interval used values per day. 

Moreover, this technique is the only way to provide consistent and comparable results 

for the whole observation period. 

Wang et al. (2013) have shown that wind direction and wind speed changed 

significantly in the Beaufort region between 1970 and 2013. While mean wind speed in 

the coastal areas of the Canadian Beaufort Sea decreased slightly, maximum wind speed 

increased in June for most parts of the Canadian Beaufort Sea and in September in the 

Mackenzie Delta region. Wind direction changed in July and August slightly clockwise 

and in September anti-clockwise, meaning the wind direction in July and August 

changed to some degree to more easterly winds and to more northwesterly winds in 

September. 

Fichot et al. (2013) argued, based on the S275–295 algorithm, that the general transport 

direction on the Canadian Beaufort shelf changed between 2002 and 2011 from 

eastward (NW wind) to northwestward (E Wind). The data used in this study does not 

show this trend; the number of used scenes with stable E wind conditions from 1997 – 

2002 is even higher than from 2011 – 2016. This could show that the S275–295 algorithm 

is not the best method to distinguish fresh water from ocean water; nonetheless, it 

delivers sufficient results in detecting organic matter (Mannino et al., 2014). 

The number of used scenes in this study before 2000 (21) is higher than the ones used 

after 2000 (14). The applied acquisition method might lead to the conclusion of a more 

variable wind regime after the year 2000; however the poor temporal resolution of 

Landsat satellites requires a comprehensive dataset for final confirmation. The used 



40 

 

Landsat dataset, despite its caveats, cannot confirm or infirm the wind pattern changes 

observed in the literature. 

6.2 Significance of the results without in-situ data 

In remote sensing, ground validation is an essential part of the retrieval of land or sea 

surface information. However, in remote locations such as the Arctic coast, field 

validation is often challenging and remote sensing studies often rely on the relative 

comparison of spectral data to introduce new analytical approaches. Considering the 

aim of this thesis (performing a test study), this approach provides satisfactory results. 

An estimation of absolute turbidity and SPM values remains difficult with the used 

dataset, but relative differences of turbidity and SST can be resolved. Therefore, the 

products are a good basis method developing models in the absence of in-situ data. The 

results of this thesis clearly show differences in turbidity and SST under different wind 

conditions in the nearshore zone of Herschel Island.  

The strong gradients of turbidity from the nearshore to offshore zone indicate that most 

of the suspended material in the nearshore zone of Herschel Island is transported 

alongshore and only limited amounts are transferred offshore. Estimations on the 

amount of suspended sediment transported away from the coast are rare; Pfalz (2017) 

estimated that ~ 20 % of the eroded material by the Yukon rivers (Mackenzie excluded) 

and coastal erosion is stored in Herschel Basin, meaning large parts of the rest would be 

deposited in coastal areas.  

Bailard (1982) suggests, that the discrimination between onshore and offshore 

sedimentation of suspended sediment is a function of wave height. His modeling results 

indicate a threshold value of significant wave height of 1 m to transport suspended 

sediment offshore. According to Hill and Nadeau (1989), significant wave height in the 

Beaufort Sea exceeds 1.2 m only during strong storm events and the majority of waves 

are below 0.8 m of significant wave height. Even though Bailards model was 

constructed for a tropical beach, general material behavior is comparable and thus, the 

model is appropriate for this comparison. This supports the hypothesis, that most of the 

suspended sediment in the nearshore zone of Herschel Island gets not transported 

offshore. 
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Bloesch (1982) measured resuspension in Lake Erie (Ontario, Canada) using sediment 

traps in several water depths: 9 m (nearshore), 25 m (mid-shore) and 40 m (offshore). 

His results show that resuspension in the nearshore zone occurs more frequently than 

offshore. In the nearshore zone, resuspension is mainly caused by waves, while bottom 

currents are the main cause for offshore resuspension. Héquette and Hill (1993) 

measured strong seaward directed bottom currents caused by strong NW storms along 

the Beaufort Sea coast. The string currents reach speeds up to 0.5 m/s (mean currents 

speed: 0.08 – 0.16 m/s, Fissel and Birch, 1984), playing a possible role in offshore 

sediment dispersal. 

Unfortunately, the resuspension caused by these bottom currents cannot be detected by 

multispectral satellite imagery. However, it supports the hypothesis, that suspended 

sediment is transferred offshore during storm events and transported alongshore during 

moderate wind conditions. 

6.3 Controlling factors 

Brenon and Le Hir (1999) pointed out several factors influencing turbidity in coastal 

and estuarine waters. Those are (i) bathymetry, (ii) material behavior, (iii) tides and (iv) 

freshwater input by rivers. Bathymetry may be the major influencing factor, while it’s 

the only factor influencing the other ones listed (Hill et al., 1991). 

Comparing bathymetric data to the mean turbidity around Herschel Island, substantial 

differences around the island are visible under stable E winds (Figure 21). While high 

turbidity along the SE coast is mostly restricted to areas of depths below 6 m, high 

turbidity along the NE coast is present until depths of 30 m. Towards Herschel Basin in 

the SE of Herschel Island, turbidity rapidly decreases, as well as towards the NE below 

30 m depth. At the W coast, a harsh break is present along the 20 m isobath. 

The high resolution bathymetry of the Workboat Passage shows high depths at the in- 

and outflow (up to 10 m) and increasing depths from the Yukon main land towards 

Herschel Island, until the coast raises out of the ocean (Figure 22). Interestingly, 

turbidity is higher in areas of higher depths and lower in the center of the Workboat 

Passage. This may indicate that water flows throughout the Workboat Passage 

predominantly in the northern parts, causing resuspension and ‘carving out’ small 
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scaled valleys at the seafloor. Turbidity at the in- and outflow is low compared to the 

rest of the Workboat Passage. 

 

Figure 21: Bathymetry in the region of Herschel Island, with underlying turbidity calculations from 

this study during stable E wind conditions. Areas of high turbidity reach depths of up to 30 m along 

the NE coast and 20 m along the NW coast. Along at the E coast, high turbidity is detected until 

depths of 6 m. Nautical charts of the Beaufort Sea, Federal publications Inc. 

Wind speed is the main driving force of nearshore bottom currents (Hill et al., 1991; 

Héquette and Hill, 1993). In surface and coastal waters, currents strongly correlate with 

wind direction and strength. This correlation is weaker, when bottom water becomes 

decoupled from the wind affected surface water. According to Hill et al. (1991), the 

entrainment of sediment by bottom currents is common in the nearshore zone and rare 

offshore. It’s influence on sediment dispersal is suggested to be relatively high in the 

nearshore zone, but difficult to measure (Hill et al., 1991). Since tidal range is small in 

the Beaufort Sea (0.4 m), their effects on resuspension of sediments only affects a small 

fringe around the coasts. 

The influence of the material behavior is mainly based on physical parameters such as 

its mass and particle cohesion (Hjulström, 1939). An increase in the mass of particles of 

the Mackenzie River was suggested by Doxaran et al. (2015). Sediments in the 
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nearshore zone of Herschel Island shifted from predominantly silty (Pelletier et al., 

1984) to coarser grain sizes (higher content of sand and gravel, Jerosch, 2013) in the last 

decades, while finer grain sizes are deposited offshore. According to Bailard (1982), 

this might be caused by an increase of significant wave height to > 1.15 m, where 

suspended sediment gets transported farer offshore than bedload (here assumed as 

gravelly sediments). The impact of these bigger particle mass of nearshore sediments on 

the resuspension to the water surface (where it is detectable by multispectral satellite 

imagery) is not yet investigated. Due to its higher mass, the particles experience a 

shorter times in suspension. Therefore, turbidity detectable by satellite imagery should 

be reduced. 

 

Figure 22: Bathymetry in the Workboat Passage (area between the Yukon main land and Herschel 

Island) with underlying turbidity calculations from this study during stable E wind conditions. 

Turbidity is higher in areas of higher depths near Herschel Island than in the center of the Workboat 

Passage, where depths are smaller. Turbidity at the in- and outflow of the Workboat Passage, where 

depths up to 10 m are reached, is low compared to the interior of the Workboat Passage. Nautical 

charts of the Beaufort Sea, Federal publications Inc. 

6.4 Comparison to other Modelling Approaches 

To assess the accuracy of the results of this study, comparisons to the turbidity model 

from Nechad et al. (2009), the SPM model from Nechad et al. (2010) and the TSM 
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model from Tang et al. (2013) were made comparing output from these models and 

ours, as well as to the results of Doxaran et al. (2012, Figure 26). 

The turbidity model from Nechad et al. (2009) uses the remote sensing reflectance 

(RRS) in the red band. Therefore for this study, RRS in the red band was calculated for 

all Landsat scenes with stable E wind conditions that were used in this study. The 

results received a low pass filter over 9x9 cells to eliminate all no data points resulting 

from the low signal – to – noise ratio over water (Landsat TM and ETM+).  

The turbidity dispersal patterns are very similar, since both models use reflectances 

from the red band (Figure 23). The magnitude of the difference of the highest to lowest 

values is similar in both images. The two images are well correlated: the ArcMAP 

calculated correlation coefficient is 0.71 for the whole study area, including areas of 

high differences, for example in the delta of the Firth River SW of Herschel Island, 

where the lowpass filter modified the shape of the delta (Figure 23 (b)). The similarity 

of these two images shows the minor impact of the different atmospheric correction 

methods (SR and RRS), when calculating mean statistical parameters over a large 

number of scenes. 

The red band SR values were compared to the derived turbidity values from the Nechad 

et al. (2009) model. The SR value of 550 corresponds to 15 FTU, which can be assigned 

to nearly clear water (a collection of turbidity formazin standards is given in the 

Appendix). Nonetheless, the turbidity values are higher in the vicinity of the coast, but 

rarely exceed 30 FTU (Figure 23, Figure 25). Despite the given error in such models (~ 

6 %), this comparison shows low turbidity values along the coast of Herschel Island, 

although the E-winds transports material from the Mackenzie Delta to the study area. 

According to this comparison, our model is very sensitive to low turbidity values but 

should have issues in detecting high values, i.e. in the Mackenzie Delta.  

The TSM model developed by Tang et al. (2013) uses two band ratios from the visible 

spectra: for low values, the ratio of (RRS green / RRS blue) is used and for high values 

(RRS red / RRS green). The threshold for low to high values is set to ~ 3 g/m³, 

corresponding to the band ratio (RRS red / RRS green) value of 0.6. The SPM model by 

Nechad et al. (2010) runs with either RRS from the red or the NIR band. Both bands 

received a 5 × 5 lowpass filter to eliminate failed atmospheric corrections. SPM was 

calculated for Landsat TM scene from September 12, 2011, to compare the results with 
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the ones from Doxaran et al. (2012), who calculated SPM from a MODIS scene of the 

same date (Figure 26). 

 

Figure 23: Optical comparison of (a) the mean surface reflectance in the red band derived in this 

study and (b) the modelled turbidity derived by the model from Nechad et al. (2009) under stable E 

wind conditions. The turbidity model from Nechad et al. (2009) uses mean remote sensing 

reflectance in the red band calculated with ACOLITE. Both modelling approaches show similar 

dispersal patterns. The calculated values in (b) indicate low turbidity values along the coast of 

Herschel Island in comparison to the ones detected in the Mackenzie Delta area (up to 90 FTU). 

TSM results show high values in the vicinity of the coastline (> 77 g/m³, Figure 27 (a)), 

with a strong gradient towards very low values in the nearshore zone (1- 2 g/m³). These 

values are lower than calculated SPM values from Doxaran et al. (2012), while TSM 

values should be higher than SPM values at the same place (chapter 2.2). Calculated 

TSM values at a stripe extending from Collinson Head SE-wards are also lower than the 

ones calculated by Doxaran et al. (2012). 
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Figure 24: Turbidity profile along the coast of Herschel Island, extracted from the modelled turbidity 

from Nechad et al. (2009). Turbidity values rarely exceed 30 FTU in the nearshore zone. The 

transect profile is displayed in Figure 25. Geographical locations are roughly given along the profile. 

Highest values are present along the NE coast near Collision Head and in Thetis Bay. The area of 

Pauline Cove is neglected here, because the lowpass filter erased the coastline, so exact drawing of 

the profile line was not possible (~ 20000 – 24000 m). The highest value (39 FTU; ~ 31000 m) is 

expected to be a mixed pixel of water and land surface, so the turbidity value might not reflect 

reality.  

SPM calculated from the NIR band shows very high background values of the coast and 

noisy striping (Figure 27 (b)). This is caused by the high absorption of water in the NIR, 

where low SPM values cannot be recognized. Near the coast, calculated SPM values are 

very high, with maximum values > 77 g/m³. These values have been calculated close to 

the Mackenzie Delta (Doxaran et al., 2012) and are thus unrealistic at remote areas such 

as Herschel Island.  

SPM calculated from the red band shows much lower background values off the coast 

than the NIR calculated SPM (< 5 g/m³, Figure 27 (c)). This corresponds well to the 

results from Doxaran et al. (2012), who calculated similar SPM values in this area. 

Additionally, the noise disappeared in the low value areas due to the lower absorption of 

water in the red wavelengths. Calculated SPM values near the coast of Herschel Island 

are around 10 – 30 g/m³, with a maximum at the NE coast. High values are also present 

at a stripe from Collision Head to the SE. Both features were similarly calculated by 

Doxaran et al. (2012). 



47 

 

The results from Doxaran et al. (2012, 

Figure 26) are used here as a cautious 

reference, because this study used an 

extensive validation data set collected to 

the east in the Mackenzie Delta region. 

Comparing the other three modelling 

approaches to the results from Doxaran et 

al. (2012), best agreements are present in 

the SPM model from Nechad et al. (2010) 

using red band reflectance values, while 

the NIR based calculations provide the 

worst results. The red band based model 

calculates low and high values similar to 

Doxaran et al. (2012), while the NIR 

based model strongly overestimates every 

value.  

The TSM model from Tang et al. (2013) 

slightly underestimates low values (< 10 

g/m³) in the nearshore zone compared to 

Doxaran et al. (2012). High values right 

close to the coast seem slightly 

overestimated compared to other TSM 

modelling appoaches (Miller, R.L., McKee, 2004), but not unrealistic. However, 

general dispersal patterns are similar to Doxaran et al. (2012). 

Comparing the calculated values from the nearshore zone of Herschel Island and the 

Mackenzie Delta gives an idea about the accuracy concerning low SPM, TSM or 

turbidity values. SPM concentrations from September 12, 2011 east of Collinson Head 

were compared, where a smaller sediment plume exists, that is even detectable using 

medium spatial resolution remote sensing, with the maximum values in the delta zone 

(ignoring the area around the larger cloud, Table 3).  

Figure 25: Positioning of the profile line 

presented in Figure 2Figure 4. The location of the 

starting point is given at the NW coast. The 

direction of the profile is northwards. Due to the 

lowpass filter, the areas around Pauline Cove, 

Osborn Point and Avadlek Spit are just roughly 

recognized and should be neglected. 
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Figure 26: SPM model from MODIS aqua data calculated by Doxaran et al. (2012) at September 12, 

2011. 

The SPM model from Doxaran et al. (2012) calculates SPM concentrations of ~ 8 g/m³ 

east of Herschel Island and maximum values values of 80 - 90 g/m³ in the delta zone 

(ratio ~1/10). The SPM model from Nechad et al. (2010) calculates ~ 15 g/m³ near 

Collinson Head and 90 – 100 g/m³ in the delta zone (ratio ~1/6). The TSM model from 

Tang et al. (2013) calculates 5 – 10 g/m³ near Collinson Head and up to 200 g/m³ in the 

delta zone (ratio ~ 1/25). The turbidity model from Nechad et al. (2009) calculates ~ 8 

FTU near Herschel Island and ~ 65 FTU in the delta zone (ratio ~ 1/8). The SR in the 

red band, that was used in this study, has values ~ 0.0045 % east of Collinson Head and 

~ 0.011 % in the delta zone (ratio ~1/3). The results from this study indicate, that the 

turbidity, SPM and TSM values in the nearshore zone of Herschel Island are higher than 

calculated by the models from Nechad et al. (2009, 2010), Doxaran et al. (2012) and 

Tang et al. (2013). This highlights the importance of specific tuning of SPM models for 

remote areas like Herschel Island. The sedimentation environment there differs 

significantly from the Mackenzie Delta, where validation datasets have been collected 

in the past.  
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Comparing these modelling 

results to the ones of this study 

provides an approximation for 

expected values regarding 

surface reflectance only. 

Turbidity values rarely exceed 

30 FTU with the majority 

below 25 FTU. The surface 

reflectance value (red band) of 

550 roughly corresponds to 15 

FTU. SPM values in the coastal 

and nearshore zone range 

between 10 and 30 g/m³.  

 

 

 

 

 

 

 

 

 

 

Figure 27: Comparison of the Landsat scene taken on September 12, 2011 with values calculated 

using (a) the TSM model from Tang et al. (2013), and the SPM models from Nechad et al. (2010) 

using (b) NIR and (c) red band reflectances. Values are displayed in a logarithmic scale. All three 

modelling approaches show similar dispersal patterns compared to Doxaran et al. (2012). (a) shows 

a wider range of values compared to Doxaran et al. (2012), while (b) overestimated all values. (c) 

gives the best approach to the given data. 
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Table 3: Comparing modelled output values from different models and this study in the nearshore 

zone of Herschel Island (east of Collinson Head) and the Mackenzie Delta. Mentioned models are 

(from left to right): SPM model from Doxaran et al. (2012), SPM model from Nechad et al. (2010), 

TSM model from Tang et al. (2013), turbidity model from Nechad et al. (2009) and surface 

reflectance values from this study. The lower ratio (Herschel Island / Mackenzie Delta) of the 4 

considered models compared to this study indicates higher values in the nearshore zone of Herschel 

Island than previously calculated. 

6.5 Applicability of spatial data 

The substantial advantages of using Landsat satellite imagery are the high spatial 

resolution and the long time series of comparable data (since 1983). This allows (i) the 

investigation of small scale hydrodynamic features along the coast of small islands such 

as Herschel Island and (ii) the comparison of data over more than three decades.  

Since Satellites such as Sentinel 2 were launched, (i) is not relevant anymore; 

multispectral sensors with high spatial resolution are common and used widely for 

coastal research (Topouzelis et al., 2016). For example, Sentinel 2 has more bands 

available in the range from deep blue to SWIR than Landsat 8 with spatial resolutions 

up to 10 m (Drusch et al., 2012). One considerable advantage of Landsat is still the TIR 

channel.  

The disadvantages of Landsat satellite imagery are the low temporal and radiometric 

resolution. While the temporal resolution correlates negatively to the spatial resolution 

(Hilker et al., 2009), the radiometric resolution could have been adjusted. For example, 

AVVHR, started in 1978, has a radiometric resolution of 10 bit (compared to 8 bit of 

Landsat TM) and is thus more suitable for ocean color remote sensing. However, 

Landsat was designed for land surface applications, where the higher radiometric 

resolution was not needed. 

The USGS - provided cf-mask for distinguishing different surfaces (land, water, ice, 

clouds and cloud shadows) is a very useful tool for applications presented here. 

However, this algorithm has a certain amount of uncertainty (~ 10 %), that might occur 

due to missing test areas and unique environments (Foga et al., 2017, Figure 28). The 

Doxaran et al. 

(2012, [g/m³])

Nechad et al. 

(2010, [g/m³])

Tang et al. 

(2013, [g/m³])

Nechad et al. 

(2009, [FTU])
This study [%]

Herschel Island 8 15 5 - 10 8 0.004

Mackenzie Delta 80 - 90 90 - 100 200 65 0.011

Ratio ~ 1/10 ~ 1/6 ~ 1/25 ~ 1/8 ~ 1/3
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USGS itself reports issues in classifying bright surfaces such as sandy beaches. In this 

study, the cf-mask algorithm had major problems in detecting small land or water 

features, such as Avadlek Spit and Pauline Cove. While these Problems only occur in 

distinguishing land from water surfaces, the usage of threshold values in the NIR and 

SWIR band could be considered (Pushparaj and Hegde, 2017). 

The use of ‘marine’ sensors such as MODIS would provide more suitable data for ocean 

color remote sensing with much higher temporal resolution (~ 1 day, Heim et al., 2014). 

However, spatial resolution in the Arctic is reduced to 1 km, making this sensor 

irrelevant for investigations of coastal and nearshore waters around small islands, where 

to many details tend to disappear (Doxaran et al., 2012). 

 

Figure 28: Example for the difficulties associated with using the USGS provided cf-mask from 

Landsat 8 Scene taken on July 15, 2015. (a): Applied cf-mask. Land area is transparent, water area 

blue and clouds red. The shoreline of Herschel Island is drawn in black. (b): True color image of the 

same scene and location as (a). Difficulties in detecting the water surfaces are clearly visible. 
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6.6 Outlook 

The planned collection of in-situ data during the field campaign 2017 will allow the 

construction of an own model for turbidity, SPM and/or TSM, that is specifically tuned 

for the study area. Most existing models are (i) either designed for global usage (Nechad 

et al., 2009, 2010) or (ii) ‘contaminated’ by regional high values such as the Mackenzie 

River Plume (Doxaran et al., 2012; Tang et al., 2013). While (i) results in a non-specific 

tuning of the models, which likely will not display regional characteristics, (ii) may 

result in a non-realistic representation of low to medium scale values, because the 

focusses of such models are often high values. 

The results of this Master’s thesis provide sufficient data for an improved understanding 

of sediment transport pathways in the southern Canadian Beaufort Sea. The impact of 

the Mackenzie River Plume on the sediment supply in the coastal and nearshore zone of 

Herschel Island is clearly shown. The bimodal wind pattern in southern Beaufort Sea 

has major impact on the sediment distribution at the Canadian Beaufort Shelf and hence 

the coastal area of Herschel Island. 

Together with specially tuned models for the studied area, sediment budget could be 

calculated, including coastal erosion and Mackenzie River Plume input. Seasonal 

changes, such as the Mackenzie River discharge change, wind direction change and 

storm activity, can be considered. The turbidity models can be used to calculate 

sediment dispersal and hence the transport of organic compounds around the whole 

island and potentially contribute to updated nearshore carbon budget for the whole 

region. 
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7 Conclusion 

The aim of this Master’s thesis was to identify sediment pathways in the coastal and 

nearshore zone of Herschel Island. Therefore, 30 years of Landsat satellite imagery 

were analyzed under seasonal changing metrological forcing with a focus on turbidity 

and SST. Due to the lack of in-situ measurements, proxies have been used for both 

values (mean reflectance in the red band and at-sensor (uncorrected) temperature, 

respectively), resulting in a qualitative overview on nearshore transportation patterns in 

the study area. 

The presented results show clear differences of both observed parameters during the two 

prevailing wind conditions (E and NW). During E wind conditions, turbidity and SST 

values showed significantly higher values in the nearshore zone, which can be 

interpreted as the influence on the Mackenzie River Plume. However, a comparison of 

the modelled turbidity proxy values with a globally tuned turbidity model from Nechad 

et al. (2009) shows still very low values: turbidity around the coast of Herschel Island 

rarely exceeds 30 FTU. Turbidity values around Herschel Island from this study are, 

relative to the Mackenzie Delta, higher than in other modelling approaches, indicating 

higher SPM concentrations in the nearshore zone of Herschel Island than previously 

thought and modelled (Doxaran et al., 2012; Nechad et al., 2009, 2010; Tang et al., 

2013). 

The strong gradient of turbidity from the nearshore to the offshore zone under both 

wind conditions indicates an accumulation of eroded and transported material near the 

coast. Only small parts of it get transported offshore. However, tracing material far 

away from the coast gets difficult with satellite remote sensing, due to the limited 

penetration depth of light in water.  

Turbidity is not only caused by transported suspended sediment from the Mackenzie 

River, but also by resuspension due to longshore currents or upwelling. While longshore 

currents likely have a big influence on turbidity along the Yukon coast, resulting in high 

turbidity in the Workboat Passage, upwelling takes place in areas of high turbidity and 

low SST. A main upwelling region was identified in the NW of Herschel Island during 

E wind conditions, where SST is significantly lower than at the SE coast of Herschel 

Island, while turbidity values are similar. 
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To improve the results of this study, in-situ measurements from the study area are 

needed to calibrate a model especially to the southern Beaufort Sea and the nearshore 

zone of Herschel Island. This data is planned to obtain during summer field season 

2017. After the analysis of these samples, more exact values of turbidity, SST and SPM 

concentration can be calculated with the modelled data.  

In order to achieve a wider understanding of sedimentation processes in the nearshore 

zone of Herschel Island, sedimentation and coastal erosion data should be taken into 

account regarding further studies. Therefore, the usage of higher temporal resolution 

spectral data should be considered. 
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Appendix 

Equations of the SPM model 

𝐶𝐿 = {
1, 𝑖𝑓 𝑅(𝑅𝑒𝑑) ≤ 0.04

0, 𝑖𝑓 𝑒𝑙𝑠𝑒
 

𝐶𝑀 = {
1, 𝑖𝑓 2 ≤ 𝑅 (

𝑅𝑒𝑑

𝑁𝐼𝑅
) ≤ 4

0, 𝑖𝑓 𝑒𝑙𝑠𝑒

 

𝐶𝐻 = {
1, 𝑖𝑓 𝑅([𝑅𝑒𝑑 + 𝑁𝐼𝑅]/2) ≥ 0.03

0, 𝑖𝑓 𝑒𝑙𝑠𝑒
 

𝐶1  = {
1, 𝑖𝑓 𝐶𝐿 + 𝐶𝑀 + 𝐶𝐻 = 0

0, 𝑖𝑓 𝑒𝑙𝑠𝑒
 

𝑀𝐿 = 100 × 𝑅(𝑅𝑒𝑑)0.86
 

𝑀𝑀 = 7.41 × 𝑅(
𝑅𝑒𝑑

𝑁𝐼𝑅
)

0.86

 

𝑀𝐻 = 662.25 × 𝑅(
𝑅𝑒𝑑 + 𝑁𝐼𝑅

2
)

0.86
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MATLAB Script for creating Box and Whisker Plots with different colors  for 

corresponding geographical orientations.  

 

%% Build Boxplot with different colors for different orientations 
x = load('e_all_2.txt'); %load data 
boxplot(x, 'Notch','on') %notches indicate median 

h = findobj(gca,'Tag','Box'); 
for j=11:17 %count from back on 

patch(get(h(j),'XData'),get(h(j),'YData'),'b'); 
end 
for j=8:10 

patch(get(h(j),'XData'),get(h(j),'YData'),'g'); 
end 
for j=5:7 

patch(get(h(j),'XData'),get(h(j),'YData'),'c'); 
end 
for j=1:4 

patch(get(h(j),'XData'),get(h(j),'YData'),'y'); 
end 
title('Mean Surface Reflectance (red band) during stable E … 

wind conditions') 
xlabel('Zone ID') 
ylabel('Mean Surface Reflectance *10000 [%]') 
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Normalized mean surface reflectance in the red band, that was used as proxy for turbidity, for (a) 

changing wind conditions, (b) stable NW wind conditions and (c) stable E wind conditions. Prevailling 

wind conditions are mentioned with arrows in the centre of each picture. The number of used scenes per 

wind condition can be seen in Table . Red areas indicate areas of high turbidity, white areas indicate 

land surfaces or areas of failed atmospheric correction.  
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Standard Deviation of surface reflectance in the red band, that was used as proxy for turbidity, for (a) 

changing wind conditions, (b) stable NW wind conditions and (c) stable E wind conditions. Prevailling 

wind conditions are mentioned with arrows in the centre of each picture. The number of used scenes per 

wind condition can be seen in Table . Red areas indicate areas of high STD, white areas indicate land 

surfaces or areas of failed atmospheric correction.  
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Standard Deviation of at-sensor (uncorrected) temperature from thermal infrared channels, for (a) 

changing wind conditions, (b) stable NW wind conditions and (c) stable E wind conditions. Prevailling 

wind conditions are mentioned with arrows in the centre of each picture. The number of used scenes per 

wind condition can be seen in Table . Red areas indicate areas of high STD, white areas indicate land 

surface areas. Land surface areas were eliminated using the difference of land and SST. The shoreline of 

Herschel Island is drawn in black in figure (a), since the elimination was not distinct. 
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Selection of turbidity formazin standards (Hussein et al,. 2016). 
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