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Abstract 

Rational: High-resolution mass spectrometry (HRMS) with high sample throughput has become 

an important analytical tool for the analysis of highly complex samples and data processing has 

become a major challenge for the user community. Evaluating direct-infusion HRMS data without 

automated tools for batch processing can be a time consuming step in the analytical pipeline. 

Therefore, we developed a new browser-based software tool for processing HRMS data. 

Methods:  The software named UltraMassExplorer (UME) was written in the R programming 

language using the shiny library to build the graphical user interface. The performance of the 

integrated formula library search algorithm was tested using HRMS data derived from analyses of up 

to 50 extracts of marine dissolved organic matter. 

Results: The software supports the processing of lists of calibrated masses of neutral, 

protonated, or deprotonated molecules, respectively, with masses of up to 700 Da and a mass 
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accuracy < 3 ppm. In the performance test, the number of assigned peaks per second increased with 

number of submitted peaks and reached a maximum rate 4,745 assigned peaks per second.  

Conclusions: UME offers a complete data evaluation pipeline comprising a fast molecular 

formula assignment algorithm allowing for the swift reanalysis of complete datasets, advanced filter 

functions, and the export of data, metadata, and publication-quality graphics. Unique to UME is a 

fast and interactive connection between data and its visual representation. UME provides a new 

platform enabling an increased transparency, customization, documentation and comparability of 

datasets. 

 

Introduction 

A growing number of researchers in the fields of metabolomics as well as natural organic matter 

(NOM) and petroleum research apply high resolution Fourier Transform mass spectrometry (FT-ICR-

MS1,2; Orbitrap3,4) for the chemical characterization of highly complex organic mixtures e.g. 5-7. Data 

processing is a challenging and critical step and often the bottleneck in the analytical pipeline as the 

time spent on data processing and evaluation can substantially exceed the time for sample 

preparation and spectra acquisition. The typical data evaluation comprises the molecular formula 

assignment process, data quality assessment, data selection, visualization, export, and 

documentation. Ideally, an integrated, user-friendly software environment should enable non-FT-MS 

specialists to perform data evaluation.  

In most previous studies, individual parts of the evaluation process such as the development and 

improvement of molecular formula assignment 8-15 or visualization approaches 16-20 have been 

addressed. The existing approaches differ, however, in their scope of application, performance, and 
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degree of transparency and accessibility. For the efficient assignment of molecular formulas 

Kujawinski and Behn12 developed the compound identification algorithm (CIA) in MatLab based on a 

priori chosen functional groups as molecular building blocks and calculation via nested loops. The 

algorithm of Kujawinski and Behn was recently integrated into the software Formularity10. 

Formularity is based on an extensive molecular formula database and, in addition, uses the isotope 

pattern algorithm (IPA) to account for halogenated compounds. An algorithm similar to CIA that 

circumvents an a priori selection of molecular building blocks, was developed by Kunenkov and 

colleagues15 for their FIRAN software. Kind and Fiehn8 published the 7GR software, an Microsoft 

Excel based evaluation pipeline, with a molecular formula calculator (HR) coded in C++ by Joerg Lau 

and automated calculation of a number of molecular parameters for further data evaluation. 

Another existing algorithm developed by Tziotis and colleagues18 evaluates mass differences of ions 

via network analysis (netcalc) for the assignment of molecular formulas. Green and Perdue9 

generated a fast formula assignment algorithm based on low-mass moieties (CHOFIT) in Pascale that 

was optimized partly by replacing nested loops of the classical combinatory approaches. 

The visualization of complex high-resolution mass spectrometric datasets is most commonly 

achieved using the van Krevelen plot.21,22 Other approaches include the Kendrick mass defect 

spectrum13,23, DBE versus O contour diagrams combined with DBE-O frequency plots16, ratio plots to 

compare relative peak magnitude changes between two samples20, mass edited H/C ratios in 

connection with van Krevelen diagrams24, or the carbon vs mass (CvM) plots17. Most recently Kew 

and colleagues19 developed an interactive version of the van Krevelen diagram (i-van Krevelen) for 

the graphical evaluation of high resolution mass spectrometric data also including scripts for formula 

generation and assignment. A reduced version of i-van Krevelen including CHO formula assignment 

and visualization is also available online through the GitHub repository25. The basic Python code of i-

van Krevelen uses monoisotopic peak assignments, isotopologue peak assignments, and remaining 
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unassigned, but detected, peaks as input data. The interactive van Krevelen diagrams are visualized 

in a web browser. Interactive features of the diagrams include zooming, hovering, and data selection 

by brushing, and a linkage to the ChemSpider database for compound searches. 

Summarized, almost all currently available software solutions for evaluating FT-MS data focus on 

specific aspects of the evaluation process. To the best of our knowledge the commercially available 

AutoVectis software suite, developed by Kilgour and colleagues26,27, Composer by Sierra Analytics28, 

and the PetroOrg29 software, developed by the National High Magnetic Field Laboratory at the 

Florida State University and the Future Fuels Institute30 currently represent the only approaches 

integrating a complete data evaluation process for high-resolution mass spectrometric data into 

single software packages. However, the underlying source codes of each of these software solutions 

are not available. 

Here we aim at providing an open-access software package that is transparent as well as easily 

accessible and integrates the most important evaluation steps following mass spectrometric 

analyses and calibration. The software named UltraMassExplorer (UME)31 is fully browser-based, i.e. 

the user doesn’t require any programming skills. Specifically, we developed this application to 

provide:  

- a high performance peak-based algorithm supporting data reanalysis 

- an interactive and reciprocal connection between data and visual representation 

- the implementation of quality assessment strategies 

- a contribution to customization and transparency of the FT-MS data evaluation procedure 

- an open access code in one of the most widely distributed scientific programming languages 

to facilitate community based improvements 
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With this paper, we provide the open-access link to the software and the underlying algorithms 

and source code, a training dataset, i.e. a list of peaks, and a short video tutorial.31 

Methods 

Application development 

The code of UME was developed in R version 3.4.2. Several open-source packages (S1) were 

implemented for the data algorithm, the user interface, the data evaluation and the visualization. 

The source code licensed under GNU Affero General Public License v3.0 is available from the 

UltraMassExplorer website.31 

The graphical user interface was developed using shiny (S1), a package that allows developing 

interactive web applications from R source code. The shiny application is based on two main scripts, 

namely the server.R and the ui.R. The server.R script runs on a server in the background and is 

handling all computational tasks of the application and contains the R code of the algorithm. The use 

of data.tables from the data.table package (S1) instead of the data.frames from the base package 

(S1) allows for high performance computation and memory efficiency, particularly for large input 

datasets and large molecular formula libraries. The ui.R contains the code for the web application. R 

Shiny uses the code from the ui.R script to build the graphical user interface and to generate the 

output directly within a web browser. UME was specifically tested with Mozilla Firefox Quantum 

Version 63.0b13 and Google Chrome69.0.3497.100 . For an appropriate graphical appearance, we 

recommend a minimum screen resolution of 1920x1080 pixels.  
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Molecular formula library 

UME builds on static formula libraries that are used to match neutral masses to molecular 

formulas. The performance of UME depends on the size of the molecular formula library used. The 

current version of UME provides four different formula libraries, all of which include molecular 

formulas having 12C>1, 
13C0-1, 1H>1, 

14N, 16O, 32S, 34S0-1 and 31P and neutral masses up to 702 Da (Table 

1). All libraries are based on exact isotopic masses compiled by the National Institute of Standards 

and Technology32-34. Each formula is assigned with a unique number (“vkey”) that identifies the 

formula and the version of the library. 

Two libraries are specifically tailored for analyzing NOM samples (“01 NOM”, “02 NOM: +15N”). 

Libraries “04 all CHNOSP” and “05 all CHNOSP: +15N” are not restricted in the number of N, S, and P 

atoms (Table 1) and therefore cover almost all theoretical formulas. Libraries “02 NOM: +15N” and 

“05 all CHNOSP: +15N” also consider the 15N isotope. The restrictions on the maximum element 

ratios in the libraries were set according to the limits and heuristic rules suggested by Kind and 

Fiehn8. A slight difference from the “golden rules” is that we enforced the double bond equivalent 

(DBE) to be an integer value, and used a modified hydrogen and halogen rule value for the H/C ratio 

limits (Table 2). To cover additional formulas beyond those provided with UME (e.g. Halogen 

formulas) we provide an R script31 for creating new libraries in the UME offline version. 

Benchmarking 

The performance of the formula matching process and the calculation of the evaluation 

parameters was tested on a windows workstation (HP EliteDesk, Windows 10 64bit, Intel-Core i5-

6500 with 3.20 Ghz and 8GB RAM, SATA 7200 rpm HDD) using the microbenchmark package (S1) for 

R. The lists of peaks used in benchmarking were compiled from 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, or 50 

FT-ICR-MS measurements of marine dissolved organic matter extracts, respectively. The benchmark 

was repeated ten times for each peak list using library “02 NOM: +15N”. 
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Results 

General Workflow 

The minimum requirement to start an evaluation process in UME31 is a validated (calibrated) list 

of peaks containing columns for (i) the mass (either protonated, deprotonated or neutral), and (ii) 

the peak magnitude. Also, the user must provide the predetermined mass error (± ppm) that applies 

to the measurement. In addition, the peak list can contain columns providing the signal/noise ratio, 

a unique peak identifier, and a unique sample identifier (cf. demo mode in UME and peak list 

example31). It is important to note that all files uploaded by users and corresponding evaluated data 

are deleted by default on logout from UME. 

Filter settings can be modified using sliders, checkboxes, or selection lists located in the sidebar. 

Interactive data tables, reports and figures are visualized in the main panel. 25 evaluation plots are 

thematically arranged in the ten tabs “Reconstructed spectra”, “Quality”, “Frequency”, “Elemental 

frequency”, “Van Krevelen”, “Van Krevelen 3D”, “Kendrick”, “Mass”, “DBE”, and “Statistics”. In the 

following, we will refer to the tabs by the name of the primary and secondary tab - e.g. “Plots | Van 

Krevelen”. A brief introduction in the evaluation workflow is given in the Supplements (S2) and the 

quick start video tutorial31. 

Molecular formula algorithm and calculation of evaluation parameters 

The formula assignment algorithm matches neutral mass peaks of the input dataset to a 

molecular formula in a library (called “library” in the following; Figure 1). For charged molecules, 

UME so far covers singly charged protonated or deprotonated molecules. The algorithm converts 

m/z ratios to neutral masses by addition or subtraction of the mass of one proton. The dataset is 

subsequently sorted by the neutral mass in ascending order. The maximum mass error (± ppm; 

provided by the user) defines the upper and lower limit of the mass window for each peak 
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assignment. During the matching procedure, the algorithm starts with first peak of the sorted 

dataset, screens the sorted mass column of the molecular formula library in ascending order for the 

first mass value larger than the lower limit of the peak mass window, and logs the corresponding 

row index. Subsequently, the algorithm continues screening the neutral mass column for the first 

mass value larger than the upper limit of the peak mass window and logs the respective row index 

minus one. Continuing with the next peak of the dataset, the algorithm uses the last logged row in 

the library as starting point for repeating the above matching process. After the algorithm has 

processed the last peak of the dataset, unmatched masses are removed and the numbers of 

isotopes (12C, 1H, 14N, 16O, 31P, 32S, 13C, 15N, 34S) corresponding to the logged rows are fetched from 

the library and joined with the dataset. Following the initial formula assignment, valuable 

parameters for the evaluation of high-resolution mass spectra are automatically calculated by UME 

(listed with references in Table 2). 

Figure 2 shows the results of the benchmark of the formula matching algorithm using library “02 

NOM: +15N”. The peak lists analyzed for the benchmark contained between 8,014 (=1 sample) and 

413,547 (=50 samples) different peaks. The average rate of the processed peaks per second 

increased with increasing number of supplied peaks from 2,299 peaks s-1 for one sample and 

4,745 peaks s-1 for 50 samples. Thus, a dataset of 50 samples was processed on average in 88 s. 

Evaluation of isotope information (13C, 34S) 

In a first step, all formulas containing 13C or 34S without an existent referring parent formula are 

removed. Secondly, for each parent formula, the referring isotopic formula (daughter) is verified in 

UME. If detected, the peak magnitude of the daughter formula will be connected with the parent 

formula (Tables | Filtered data: columns “Int. 13c”, “Int. 34s” in the data tabs). If not detected, the 
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values in the “Int. 13c” and/or “Int. 34s” column(s) are set to zero. Subsequently all daughter 

formulas are removed from the entire dataset. 

The 13C stable isotope information for each formula can be further exploited by two approaches: 

The 13C-filter (sidebar: Analytical filter; check box: “remove formulas not verified by 13C-isotope”) can 

be activated to exclude all formulas that are not verified by the existence of the 13C daughter. In 

addition, the abundance of the 13C-isotope formula can be evaluated for quality control (Plots | 

Quality; lower left plot in main panel): The visualization compares the difference between the 

predicted number of C atoms based on the abundance of the 13C-isotope peak in the spectrum and 

the number of C atoms in the assigned molecular formula.cf cf. 14 

Filter and normalization algorithms 

The underlying concept is to start with the most conservative set of data, based on all 

theoretical formulas fetched from the library and the application of basic chemical rules (Table 1). 

The ranges of 17 filters available in UME are set based on the most conservative unfiltered dataset. 

Most of these filters use procedures suggested in the literature (summarized in Table 2). Typical 

surfactants listed in the “terrabase-inc” database see also 35 and all formulas detected in blank 

measurements can be excluded by the “analytical filter” in the sidebar. Another analytical filter 

selects those molecular formulas, for which related information is already known (sidebar filter: 

“Show only”). For example, the filter can be used to sub-select all formulas in the dataset, which are 

shared with peptides, nucleotides or formulas that were shown to have high persistence 

(ideg_neg)36 or relation to terrestrial organic matter sources in the ocean (iterr_pos)37. By updating 

the underlying database of known formulas, existing knowledge can be projected on an unknown set 

of samples to facilitate data exploration. 
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Each change in the filter settings triggers an update of the data normalization and a second filter 

process based on optionally selected relative intensity thresholds (Figure 3). Implemented into UME 

are four types of normalization approaches, namely normalization by base peak, by the sum of 

assigned peaks, by the sum of peaks occurring in all samples of a set of samples, and by the sum of 

the n most intense peaks (Table 2). 

After each filter process, UME calculates the number of occurrences of each formula in the 

dataset (Figure 3). The maximum number of occurrences (“n_occurrence”) is therefore determined 

by the number of samples selected, unless peaks in the peak list fall into the same window of mass 

error resulting in the assignment of the same formula to different peaks in the spectrum. In addition, 

the number of assignments (“n_assignments”) for each peak is re-determined after each filter event 

and displayed (Plots | Van Krevelen; right-hand side). Both, the number of assignments and 

occurrences, are available for the unfiltered dataset as well (Tables | Unfiltered data; columns 

“n_occurrence_orig”, “n_assignments_orig”). 

Based on the filtered and normalized data set, weighted averages of isotope numbers and ratios 

(Table 2) are calculated for the selected samples and displayed (Data | Aggregated data). 

Visualization and interactivity:  

The graphical user interface of UME allows the “on-the-fly” visualization of the effect of filter 

settings (Figure 3). Each filter adjustment generates a formula subset (Data | Filtered data) from the 

unfiltered data (Data | Unfiltered data). Subsequently, the filtered dataset is the basis for all UME 

plots. 
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Data subsetting and exploration of potential structures 

Seven plots in the tabs “Van Krevelen”, “Kendrick”, “DBE”, and “Mass” allow graphical subsetting 

and export of filtered data using the brush tool. By clicking on individual data points in the plots, 

respective formulas can be submitted to a PubChem compound search38 for exploration of potential 

structures. As data points may overlap in the plot, a dropdown selection list of corresponding 

molecular formulas is displayed before submitting the formula to the PubChem compound search.  

Colors, reporting and data export 

For customization, most plot colors can be modified with the respective settings buttons. For 

those plots using color gradients, e.g. the relative intensity in the van Krevelen plot, the user can 

select color palettes and can switch between linear and logarithmic color scales.  

After customization, plots and data tables can be selected for download in the export menu 

(sidebar). Publication quality plots can be exported as pdf or as png files. The three dimensional van 

Krevelen plots are exported as interactive html widgets that retain the entire zoom, rotate and 

hover functionalities of the original plot. All library and filter settings are documented in a report file, 

which facilitates the reproducibility and transparency of the evaluation process. 

Examples: van Krevelen plots and statistics 

Van Krevelen plots display a set of formulas according to their molecular H / C and O / C 

ratio.21,22 For the two and three dimensional van Krevelen plots (Plots | Van Krevelen; Plots | Van 

Krevelen 3D), an optional data projection step is integrated into the visualization that handles the 

problem of formulas having identical H/C and O/C ratios. If a third dimension is represented in the 

plot (such as the peak magnitude) the median of the respective parameter is calculated and plotted.  

The interactive three dimensional van Krevelen plot allows free rotation and zooming into the 

data set. Hovering over a data point displays the corresponding molecular formula at the top of the 
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plot. Both, in two and three dimensional representation, the color variable can be adjusted 

individually (settings). In addition, the z axis variable can be changed in the three dimensional 

representation. Three dimensional interactive van Krevelen plots can be a useful tool for data 

exploration, but may lose their exploratory function if they are reduced to static (printed) images. 

Therefore we recommend that users refrain from publishing static three dimensional van Krevelen 

plots, but instead add the corresponding interactive html-files as supplementary material to their 

publications. 

Differences between samples can be explored interactively by statistics (Plots | Statistics). Based 

on the filtered dataset and normalized peak intensities, UME performs a cluster analysis and a non-

metric multidimensional scaling (NMDS) to visualize sample similarities. The analyses are based on 

untransformed data, Bray-Curtis similarity and group-average clustering.  
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Discussion 

Library based formula search 

Similar to the formula assignment approach in the Formularity software10, UME uses a library 

search approach for matching peak masses with molecular formulas. This library based approach 

reaches formula assignment rates (Figure 3) comparable to other high-performance formula 

calculator algorithms such as CHOFIT [n-3] full mode.9 

The performance of the UME algorithm is based on the prebuilt molecular formula library. The 

time consuming step of calculating molecular formulas and corresponding molecular masses is 

implemented in the process of building the library and not the actual formula matching algorithm. 

Instead of spending computational power on repetitive calculations of molecular formulas, UME 

swiftly fetches formulas from the prebuilt library and matches them to peaks in the supplied list. As 

the matching process is based on screening a sorted library and comparison with a sorted list of 

peaks, the processing time is a function of the size of the formula library and the size of the supplied 

peak list. Consequently, the algorithm becomes more efficient with increasing number of supplied 

peaks at constant library size (Figure 2).The UME algorithm, is thus particularly suited for the fast 

processing of large datasets (105-106 peaks) with a priori fixed elemental limits. Compared to 

approaches based on calculating the mass for each peak via nested loops, the molecular formula 

library based approach of UME offers less flexibility in expanding the elemental limits or considering 

new elements in the formula calculation process, as it requires creating new formula libraries. New 

formula libraries that include additional elements or elemental limits can be created using an R 

script in local installations of UME. This script is available in the download section of the UME 

website31. Incorporating extreme limits for elements into a molecular formula library will slow down 

computation. The current standard UME library (01 NOM; Table 1) contains 3.9*106 molecular 
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formulas and has an uncompressed size of 179 MB  and can conveniently be handled by common 

state-of-the-art workstations. For any new element or atom included, the library size roughly 

increases by factor two. Furthermore, the library size increases exponentially with increasing mass 

range. A library e.g. containing only formulas consisting of the elements C,H,N,O,P, and S with 

masses up to 800 Da may already take up tens of gigabytes of memory and cannot efficiently be 

handled by common workstations. Such libraries may require servers with respective memory 

capacities or alternative approaches e.g. using a distributed memory SPARK database server. If a 

stronger restriction in elemental ranges or complete exclusion of certain elements from the 

molecular formula library can be justified, e.g. as a specific element is typically not expected in a 

certain type of sample, a manageable library with masses >700 Da can be created and the analysis of 

higher masses can become feasible on a standard workstation. 

 Isotope validation 

In UME validation of molecular formulas by isotopologues is limited to the 13C and 34S due to 

their high relative natural abundance, and is based solely on the presence/absence of 

parent/daughter formulas. Isotopic pattern scoring as included in the Formularity software10 could 

provide further hints for correctly assigning formulas, but must consider intensity related variability 

as shown in the quality control (Plots | Quality; lower left plot in main panel; cf. 14): Low intensity as 

compared to high intensity peaks tend to have higher deviation between the predicted number of 

carbon atoms based on the abundance of the 13C-isotope peak in the spectrum and the number of 

carbon atoms in the assigned molecular formula, and are thus more likely to mismatch with the 

theoretical isotope pattern. However, refraining from using an isotopic pattern scoring algorithm in 

UME increases the likelihood for multiple, possibly false positive formula assignments to a specific 

mass. This has to be considered in the data interpretation. 
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Compound group identification 

A number of studies showed, that some biomolecular compound groups occupy specific regions 

in the van Krevelen plot21. Vice-versa this relationship has been used to assign molecular formulas 

from NOM to specific compound groups based on element and element ratio limits e.g.39,40. For NOM 

analysis, however, an assignment of formulas to compound groups based solely on regions in the 

van Krevelen plot involves the risk of over-interpretation of mass spectrometric data. Projecting 

commonly applied limits for the “peptide region” (N>0, O/C <= 0.9, and 1.5<=H/C<=2.0)39 on the 

PubChem Compound Database38 yielded 13.5 million hits without structural duplicates. Applying the 

most conservative filtering criteria for peptides, i.e. the presence of at least one R2NH group as part 

of the amide bond, to the PubChem data, shows that only 63.6 % of the hits possess the necessary 

structural unit to be classified as peptide. While this percentage may, to a certain extent, be 

influenced by the PubChem users and their fields of research, it illustrates the problem with 

assigning regions in the van Krevelen plot to specific compound groups. Here the interactive tools of 

UME may help avoiding over-interpretation of data. Using the “Show only” option a data set can be 

filtered for molecular formulas known to occur in peptides (sidebar filter: “Show only”: “Peptides”). 

Through the linkage of the van-Krevelen plots to the PubChem database, the filtered formulas 

plotting in specific compound regions can subsequently be checked for other potential compound 

sources. 

Data projection in van Krevelen diagrams 

The van Krevelen plot is probably the most common tool for the visualization of highly complex 

molecular formula datasets21,22. The plots are easy to interpret and intuitive because they project 

basic chemical principles such as polarity, oxidation/reduction, hydration/dehydration and multiples 

of CH2. However, it must be considered that visualization in two dimensional van Krevelen plots is a 

projection in which several molecular formulas are displayed on the exact same position in the plot 
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(e.g. C20H20O10 and C10H10O5). This is particularly important when a color scale is applied as a third 

dimension. Without applying a grouping function (e.g. sum, mean, or median) the data 

representation depends on the sorting of the dataset, even more so if several samples are displayed 

in the same plot (Figure 4). In UME, the mean function is automatically applied for grouping in all 

van Krevelen plots, but can be switched off optionally in the respective plot settings menu 

(Plots|Van Krevelen: settings menu, tickmark “Projection”). The data reduction via a grouping 

function also provides an improved plotting performance.  

Conclusions 

UME provides a complete, powerful and fast data pipeline for high-resolution mass 

spectrometry data and facilitates the transparent and reproducible evaluation of complex organic 

matter samples. Despite the comprehensive features, we recommend considering some important 

aspects when using UME:  

 The quality of the UME data evaluation can only be as good as the quality of the analytical 

data. This comprises aspects such as appropriate sample concentration, instrument settings, 

and appropriate mass calibration. The NOM mass list provided with UME (demo mode) 

might support quality control for other data sets. 

 Apart from the conservative a priori rules implemented in the algorithms (such as the 

valence-based validation of formulas), the selection of the library and any a posteriori usage 

of data filters requires justification. Similar to any other molecular formula pipeline, UME 

might entice users into setting filter criteria in a way that the outcome matches the 

expectation. Statements on why filter criteria are set in the way they are is critical for a 

sound data interpretation. We would like to emphasize that it is not the ultimate aim of an 
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UME data processing to produce a dataset with solely unequivocal assignments. Differences 

between samples can be also explored based on a dataset that still comprises multiple 

formula assignments per peak. 

 If UME is used for publications, we encourage users to provide the UME report file that can 

be exported after the final data evaluation (Data | Report). This improves transparency and 

reproducibility for other researchers and reviewers.  

For future updates of UME, we seek to implement the consideration of other ionization adducts, 

the addition of a new formula library based on known compounds, additional normalization 

techniques and evaluation plots, and linkage to further compound databases. These updates will be 

provided via the online version of UME and documented on the UME website31. 
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Table 1. List of parameters and allowed ranges for calculating the molecular formula library. 

Library 01 02 04 05 

UME label 01 NOM 02 NOM: +15N  04 all CHNOSP 
05 all CHNOSP: 
+15N  

Neutral mass max 702 702 702 702 

Heuristic filter, common 
range rule 4,5 (Table 2)8  

applied applied applied applied 

C min 1 1 1 1 

12C max 
not 
restricted** 

not 
restricted** 

not 
restricted** 

not 
restricted** 

13C max 1 1 1 1 

H min 1 1 1 1 

H max C*2+2+N+P C*2+2+N+P C*2+2+N+P C*2+2+N+P 

(N, O, P, S)min 0 0 0 0 

(14N+15N)max 6 6 
not 
restricted** 

not 
restricted** 

15N max 0 1 0 1 

23Na max 0 0 0 0 

16O max 
not 
restricted** 

not 
restricted** 

not 
restricted** 

not 
restricted** 

18O max 0 0 0 0 

31P max 3 3 
not 
restricted** 

not 
restricted** 

(32S+34S) max 3 3 
not 
restricted** 

not 
restricted** 

34S max 1 1 1 1 

Double bond equivalents integer & >=0 integer & >=0 integer & >=0 integer & >=0 

O/(12C+13C) max 1.2* 1.2* 1.2* 1.2* 

H/(12C+13C) max 
not 
restricted** 

not 
restricted** 

not 
restricted** 

not 
restricted** 

(14N+15N)/(12C+13C) max 1.3* 1.3* 1.3* 1.3* 

P/(12C+13C) max 0.3* 0.3* 0.3* 0.3* 

(32S+34S)/(12C+13C) max 0.8* 0.8* 0.8* 0.8* 

Total Formulas 3900896 7170597 12306406 23351423 
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Table 2. Selected filter parameters calculated by UME (   = nominal mass,   = neutral mass, 

number of isotopes in a formula (12C, 13C, 1H, 14N, 15N, 16O, 31P, 32S, 34S),      = abundance of 

formula containing no 13C isotope,      = abundance of formula containing one 13C isotope, Ipeak = 

intensity of a peak, Ibasepeak = magnitude of base peak, Iall = magnitude of a peak that occurs in all 

samples, Irank = magnitude of a peak of the n most intense peaks, C, H, N, O, S =number of atoms of 

the respective element, ri = relative intensity based on the selected normalization procedure) 

Parameter 
Abbreviation in 

UME 
Calculation Reference 

Kendrick Mass Defect kmd    
    

        
 

13,41 

z* Z               
41 

Aromaticity index Ai                       
                    

                               
 

42,43 

Average nominal oxidation state of carbon nosc 
  

                                      
       

 

 

44 

Gibbs energies for the oxidation half reactions of molecular formulas delg0_cox 
            

                                      
       

  

 

44 

difference between the predicted number of carbon atoms based on the 

abundance of the 13C-isotope and the number of carbon atoms in the 

molecular formula 

dev_n_c  
          

      
          

14 

Theoretical intensity of the 13C daughter relint13c_calc          - 

Theoretical intensity of the 34S daughter relint32s_calc         - 

Relative intensity after normalization by base peak rel_int 
     

          

 - 

Relative intensity after normalization by sum of all peaks rel_sum_int 
     

  
     

 - 

Relative intensity after normalization by sum of peaks occurring in all 

samples 

 

rel_sum_int_opt 
     

  
         

 - 

Relative intensity after normalization by sum of most intense peak rel_sum_int_rank 
     

  
          

 - 

weighted average m/z wa_mz 
  

          
  

      
 - 

weighted average DBE waDBE 
  

           
  

      
 - 

weighted average C waC 
  

         
  

      
 - 

weighted average H waH 
  

         
  

      
 - 
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weighted average O waO 
  

         
  

      
 - 

weighted average N waN 
  

         
  

      
 - 

weighted average S waS 
  

         
  

      
 - 

weighted average O/C waOC 
  

            

  
      

 - 

weighted average H/C waHC 
  

            

  
      

 - 

weighted average S/C waSC 
  

            

  
      

 - 
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Figure 1. Processes in UME from the import of datasets to the matching of peak masses with one or 

more molecular formulas in the respective mass windows. 

 

  



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 2. Formula matching algorithm benchmark. Standard boxplots (n=10) of the processing time 

(A) and the processing rate (B), respectively, versus the number of peak masses supplied. 
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Figure 3. Processes in UME from the display of unfiltered results to the export of final results and 

report generation. 
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Figure 4. Visual representation of two samples in van Krevelen plots using an additional 

parameter for the third dimension: reducing (A) 3d representations to 2d projections must consider 

the dependence on data sorting: sorted by sample and relative intensity in (B) ascending and (C) 

descending order. The standard preset in UME (D) uses the median value for every discrete location 

in the plot (Plots|Van Krevelen: settings menue, tickmark “Projection”). 

 


