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On the Tangential Stresses at the Boundary Between the Layers
for Two-Layer Sedimentation Models

by Elena V. Shiryaeva' and Michael Yu. Zhukov'?

Abstract: It is shown that the exact value of the Chézy coefficient can be calcu-
lated on the basis of the two-layer model of fluid flow. This coefficient is
determined by tangent stresses on the interface between the layers, which in
turn are completely determined by the kinematic turbulent viscosity coefficient.

Zusammenfassung: In der Arbeit wird gezeigt, dass der genaue Wert der Ché-
zy-Koeffizient berechnet werden kann auf der Grundlage des zwei-Schicht-Mo-
dells der Stromung. Dieses Verhaltnis bestimmt die Tangenten der Spannung an
der Grenze zwischen den Schichten. Wiederum richten sich die tangentiale
Belastung nach den Koeffizienten der turbulenten kinematischen Viskositit.

INTRODUCTION

In hydrology it is common to study the sedimentation processes
using a large number of semi-empirical correlations for the de-
termination of sedimentation velocity, density of sediment par-
ticles, flux of sediment, and other parameters. These relations
are usually obtained on the basis of experiments and some
additional considerations, and are very different for fluvial
flows, currents in seas and oceans, coastal flows, and so on.

It is difficult to list all the literature that discusses semi-empi-
rical correlations. We mention only some monographs, reviews,
and papers: EINSTEIN 1950, GRISHANIN 1979, van RN 1993,
AMOUDRY & SouzaA 2001, BARYSHNIKOV 2007, AMOUDRY
2008, NADOLIN 2009, ZHUKOV & SHIRYAEVA 2015, 2016,
NADOLIN & ZHILYAEV 2017.

In addition, almost all the works devoted to the construction of
equations describing sedimentation processes contain certain
defined semi-empirical relations as for example, AUDUSSE et al.
2010, FERNANDEZ-NIETO et al. 2014, 2015, GAREGNANI 2011,
MALDONADO & BORTHWICK 2016.

The main purpose of this paper is the determination of the con-
nection between semi-empirical correlations usually used in hy-
drology and the natural physicomechanical parameters for dif-
ferent mathematical models of the sedimentation. In particular
in the study of sedimentation in fluid flows two-layer model is
often used. The top layer is assumed filled by the homogeneous
continuous medium consisting of the fluid and suspended
sediment. The bottom layer is filled by a solid nonhomogeneous
medium consisting of fluid and sediments.
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In developing mathematical models, there is no need to use
semiempirical correlations. In particular, it concerns the Chézy
coefficient which is used in the formula to determine the aver-
age flow velocity in steady uniform turbulent open channel flow
in the case of quadratic resistance.

In other words, it appears that many of the design formulas
obtained on the basis of measurements and observations, in fact,
can be derived with proper mathematical modeling from first
principles. This allows you to construct a model for which all
the physical laws are valid — in particular, conservation laws. In
addition, when using such approaches, we can better understand
the nature of physical processes.

ON THE CHEZY COEFFICIENT

In hydrology the Chézy formula is often used for determining

the average velocity # of the steady uniform liquid motion in
the case of the quadratic resistance

-2
() u =CHI,
where H is the depth of the fluid (m), I is the slope of the
free surface (m/m ), C is the Chézy coefficient (m'*-s™").

The Chézy coefficient is considered as an empirical quantity
that characterizes the fluid flow for steady-state turbulent flow.
In fact, in mathematical modeling of fluid flow, there is no need
to consider the Chézy coefficient as an empirical quantity.
Below on the example of turbulent flow is shown that the value
of C is completely determined by the tangential stress on the
boundary between the fluid flow and the “bottom” of the flow.
The scheme illustrating the calculation of the Chézy coefficient
is shown on Figure 1.

Here we present only the main result (see details in the Ap-
pendix). In the case of the domain shown on Figure 2 the
kinematic waves approximation for the averaged equations is
written in the form (see (32))

2 gh'V.n'+e,=0,

® 6, =«T,|u|u,

where g is the gravity (m-s™2), A is the thickness of fluid
layer (m), U is the depth-averaged velocity of fluid (m - s ),
K is the Kérman’s constant, T]t is the function specifying the
free surface z = T]t(X,t), Vx = (ax’ay,o) , O is the tangent

stress at the boundary z ZT]m (x,1) (m2 s ), I“, is the
friction coefficient.
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Fig. 1: The scheme for constructing of the Chézy formula. Sequence of ac-
tions, which are used for derivation of the Chézy formula.

Abb. 1: Schema der Konstruktion der Chézy-Formel. Ablauf von Aktionen fiir
die Ausgabe der Chézy-Formel.

To obtain the required formulas, we use a two-layer model. We
assume that the domain consists of two layers of L', | 0% (see
Fig. 2). The top layer L is filled by fluid. The bottom layer L
contains sediments (and fluid). The layer boundaries are defined
by the functions n’, ™, nb.

@ L' ={x,2):n"(x,)) <z<n'(x,0)},
! ={(x,2):m"(x,)) <z <" (x,0)},
h=n'-n", B =q"-7n", x=(x,).

Here, h'(x,t), hb(x,t) are the layers thickness (Fig. 2).

For flow with constant slope I of the free surface z = n’

) I=-Vn'.
using (2), (3) we obtain a formula coinciding with Chézy
formula (1)

6) |ul’=C*h'I,
where

1/2
7N C=2——

LNERVA ¥

The friction coefficient Ft has the form

(n'y’

b}

(8) rt(xat) =
e+ k') Ty, (x, 2, 0)de!
nm

where the function WO(X, z, t) determines a vertical profile
of horizontal (not average) velocity (see (22))

U*(x 1)

©) Ux,1)=—2"y,(x,z,0) N"<z<n',

b
(10) \yo(x,z,t)zln N

29
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Fig. 2: The layers of the continuous medium. The top layer L/ is filled by fluid.
The bottom layer L’ contains sediments (and fluid). The layer boundaries are
defined by the functions m’, ™, m°. Here, zo is the roughness parameter specify-
ing the surface z = m’+ zo(x, 1) where velocity U(x, 7) becomes zero.

Abb. 2: Schichten der ununterbrochenen Umgebung. Die oberste Schicht L'
ist gefiillt mit Fliissigkeit. Die untere Ebene L’ enthilt Sedimente (und Fliis-
sigkeit). Die layer-Grenzen sind definiert durch die Funktionen v/, ", n’. Hier
wird zo der Rauheitparameter, der die Oberflidche z = m” + zy(x, f) angibt wo
Geschwindigkeit U(x, #) null wird.

Here, Z, is the roughness parameter (M) specifying the surface
z = nb +z, (x, t) (Fig. 2) where velocity U(x,1) becomes
zero, U,(x,¢) is the characteristic of flow velocity.

In turn, formulas (9), (10) are valid in the case where the
turbulent viscosity coefficient is specified as

(z-mH(n" -2)
K +h

a1y K, =K. , " <z<7,

12) K.=xU.,

where U, is the characteristic of turbulent viscosity.

We note that the formula (8) is written for a two-layer model,
but it is also valid for single layer model. In this case, we as-

sume that z, = hb and the surface z = T]m specifies the le-
vel at which the flow velocity becomes equal to zero.

ASYMPTOTICS OF THE FRICTION COEFFICIENT

In the case of uniform steady-state turbulent flow there is a
large number of approximate formulas for the Chézy coef-
ficient. For example, in (RUN 1993) it is given by the formula

12
(13) -8 (lnﬁ—lj

K 2,

where H = hb + K is the total thickness of the liquid layers
(see Fig. 2).

The indicated formula is valid for single-layer models, when the
boundary between the layers z = nm is identified with the sur-
face z= ‘r]b + z,, which specifies the roughness (hb =2z

Usually, instead of (13) the approximate formulas for specific
values of the roughness parameter are used. For example, as

Zy = ke/30, (k, is the effective roughness (m)), g =9.81,
k = 0.4, the following formula is used:

(1) Cxiglg
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Formulas for other values of z, are given in (RUN 1993). It
should be noted that in (RN 1993), as in other literary sources,
it is unclear why, instead of the exact formula (13), the
approximate values, similar to the formula (14), are used. In this
case the rounding leads to a wrong result. In particular, if we use
more accurate formula (13), then instead of formula (14) we get

c~181g

e

Formula (14) is valid in the case when z, = 0.0307k, is

selected instead of z, = ke/30 = 0.0333ke.
Using the formulas (7), (30), (31), it is easy to show that at

hb =Zy B=1 we have

1] H h'+z,
> —_—= =p,—)oo,

12
(15) ng——[lnu—1+—
K H
that coincides with (13).

Zy Zy

APPENDIX

Following the scheme of constructing the Chézy formula
(Fig.1), we present a detailed relation, which allow us to

calculate Chézy coefficient (or the friction coefficient I )
The hydrostatic approximation

The incompressibility equation

(16) div.U+d W =0, V =(U,W). U=(U,V).

The equations of the fluid motion (in the horizontal direction)
(17) ,U+U-V,U+Wa,U=
- Ly rio(x,0.0)
p

The equations of hydrostatics

(18) 0,P=-pg.

Here, V is the velocity, U is the horizontal velocity, W is the
vertical velocity, P is the pressure, K, is the coefficient of

turbulent viscosity, g is the gravity.

Domain

The domain is given by relations (4) (see also Fig. 2).

The boundary conditions

We choose the condition of absence of tangential stresses and
constant pressure on the free boundary (so called dynamic con-
ditions) as boundary conditions

(19) K,,,azUL:n, =0, P!Fn, =const.

In addition, we assume that for a surface z = nb + z,, velocity

is zero

0 U| , =0,

=N +z,

where Z is the roughness parameter (m).

(22)

The turbulent viscosity coefficient.

The turbulent viscosity coefficient K, is given by formulas

(11), (12). Recall that K, may depend on time and coordinates.

The kinematic approximation.

The kinematic approximation of the equations (16), (17), (18)
means neglecting of the inertial terms in the equations (17)
(other equations stay unchanged)

@y -1y pio(k.6.0)=0.
p

The vertical velocity profile

The solution of the problem (16), (21), (18), (19), (20), (11),
(12) is well-known in the theory of turbulence (LANDAU &
LIFSHITZ 1986, MONIN & YAGLOM 1965, SCHLICHTING 2006).
Usually this solution is written in the following form (cf. (9),
(10))
z— T]b
V,(x,z,¢)=In ,
2

nm <z< T]t, where U, is characteristic velocity, K is the

U.
=—vy,(x,2z,0);
K

Kéarman’s constant (kK =~ 0.41).

In principle, we can consider the roughness parameter Z, as

the function z, = zo(x,t), which must satisfy the inequalities

nb<nb+z0 <n' or O<zo<h’+hb.

The function ¥/, (Z ) determines a vertical profile of flow. It is

convenient to use a normalized function

N’ (x1)
vz =220 s ndz =1

I’] m
[y, (x,z,0)dz" " o
nm
which has the form (arguments X, / are omitted for brevity)
b
7 —
20
23 - Zo
) ve)= Y 7
(h® +h")In —h’In—-h'
) 2y
Average

Information about the function \V(z) allows us to perform the

procedure of the averaging for original problem (16), (17), (18),
(19), (20), (11), (12). We are looking for a solution in the form

4) U(x,z,t) = h'u(x,t)y(z),

where U is the average horizontal velocity, which is given by

25) u(x,f)= hi TUx, 2,1)dz-
,qm
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The system of averaged equations

To construct the averaged equations we integrate (16), (17),
(18) over thickness of the layer L taking into account the
conditions (19), (20), and the relations (24), (25). We also as-

sume that all the boundaries T]b, T]m R T]t are material (mov-

ing together with the continuous medium). Omitting cumber-
some transformations, we give the final result.

The incompressibility equation for a layer of L

(26) 8,h' +div_(h'u)=0.

The equation of the fluid motion for the layer L

27 9,(h'u)+div, (y,h' (u®u))=-gh'V n' —o,.

(28) 6t = (KmhtuazW(Z)) I ’
z=n

m

where the coefficient Y (X, l‘) is determined by the relation

g
29 vy, =h" [w (x,z,t)dz-

n

Tangent stress at the boundary

The value of 6, is the tangent stress at the boundary between

the layers L' and L°, whose dependence on the average velo-
city U is determined by the turbulent viscosity coefficient K

and the vertical velocity profile (z). In fact, G is deter-
mined completely by the coefficient Km, since \y(z) is also

determined on the basis of information about the coefficient of
turbulent viscosity. Substituting (11), (12) and (23) into (28) we
get (3) formula

_ 2
o, =xT,|u|u,
and the relation (8) for the friction coefficient I',, which is

convenient to write in the form

3
(o) T, = (u-1) .
p(l-p-InB+ulnB+ulnp)
b b t
(€29 B:h_, H:#’ 1 <p<oo, ()<l<”.
Z, h
The dependence of the normalized coefficient Chézy

C'Kg_l/2 =1/,/Iﬂt on the parameters WL, B is shown in
Figure 3.

Kinematic approximation of the averaged equations

As in the case of complete equations, the kinematic approxima-
tion means omitting the inertial terms in the equation fluid
motion (27) (cf. (2))

(32) gh'Vn'+6,=0.

The method of the Chézy coefficient calculation with the help
(32) is already described earlier (see (7)). We note that if we
restrict the calculation of the Chézy coefficient, there is no need
to use averaging of the original equations. To obtain (32), it is

sufficient to apply the averaging only to kinematic approxima-
tion (21).
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Fig. 3: The dependence of the Chézy coefficient CKg_l/z =1/ /rt on the
parameters VB B

Abb. 3: Abhingigkeit des Chézy Koeffizienten CKg_I/z =1/ /r‘t von
Parametern L B
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