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On the Completeness Problem of the Equations
for Two-Layer Sedimentation Models

by Michael Yu. Zhukov'? and Elena V. Shiryaeva'

Abstract: Based on the Saint-Venant-Exner equations for two-layer models
the completeness problem and closing problem are discussed. It is shown that
for the closing of the equations, in addition to the usual constitutive relations,
it is required to explicitly specify one of the boundaries of the layers. For the
simplest model, in the case where the free surface has a constant slope, we
demonstrate the occurrence of the shock waves at the boundary between the
layers.

Zusammenfassung: Basierend auf den Saint-Venant-Exner-Gleichungen fiir
das Zwei-Schicht-Modell wird das Problem der Vollstindigkeit und der
SchlieBung der Gleichungen diskutiert. Es wird gezeigt, dass man eine der
Grenzen der Schicht fiir die SchlieBung der Gleichungen unabhéngig von den
iiblichen bestimmenden Beziehungen explizit vorgeben muss. Fiir das ein-
fachste Modell wurde das Beispiel betrachtet, das die Entstehung der Stof3-
wellen an der Grenze zwischen den Schichten in dem Fall demonstriert,
wenn die freie Oberflache eine konstante Neigung hat.

INTRODUCTION

To describe the sedimentation process, the system of the
Saint-Venant-Exner equations for the two-layer model and its
various modifications are often used, see, for example, (PAR-
KER 1982, PARKER et al. 1986, RIUN 1993, FALCINI et al.
2009, NADOLIN 2009, AUDUSSE et al. 2010, GAREGNANI
2011, FERNANDEZ-NIETO et al. 2014, 2015, MALDONADO &
BORTHWICK 2016, ZHUKOV & SHIRYAEVA 2016, NADOLIN &
ZHILYAEV 2017). It is assumed that the top layer is filled by
the liquid containing suspended impurity (suspension) and the
bottom layer is filled by liquid and sediment. To construct the
equations the average over the thickness of the top layer is
used. Equations for the bottom layer are based on phenome-
nological relations. Directly, the depth-averaged method does
not allow us to construct closed mathematical model for the
sedimentation process. To close the equations a sufficiently
large number of constitutive relations is required for describ-
ing of the suspension velocity, the sediment velocity etc.
Such relations, as rule, based on empirical relations, allow us
to describe the sedimentation process in detail. In fact, the
basic constitutive relations can be chosen on the basis of
natural boundary conditions and the boundary conditions be-
tween the layers, i.e. without the empirical relations. It is
enough to follow the general scheme: original equation +
kinematic approximation + averaging + conditions at the
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boundaries of layers. However, even after determination of all
the constitutive relations the equation system is not closed,
since additional assumptions for one of the layer boundaries
are required. Note that similar models were studied in pre-
vious works (PARKER 1982, PARKER et al. 1986). In partic-
ular, the model we present is similar to what proposed by
PAOLA & VOLLER (2005), FERNANDEZ-NIETO et al. (2014,
2015).

In this paper the choices of one of boundaries as known
functions are discussed. It is shown that the condition on the
border between the layers plays an important role and in a
basic example, when the free liquid surface has a constant
slope, on the boundary between the layers can occur shock
waves.

One of the aims of this paper is a demonstration of the fact
that even the simplest models, based on basic principles, are
good enough to qualitatively describe such complex proces-
ses as the occurrence of shock waves. We should say that the
incompleteness of our simple model plays a dual role: on one
hand, it shows some shortcomings of the model, more pre-
cisely, the failure of physical assumptions; on the other hand,
it opens up opportunities to construct models at different
levels of complexity.

BASIC EQUATIONS

To describe the sedimentation process in the fluid flow the
two-layer model is used. We assume that the region is a com-

position of two layers L' and | I (Fig. 1). The top layer L/
is filled by the single-phase continuous medium (homo-
geneous) which consists of fluid and suspended impurities

(suspension). The bottom layer Lb is filled by the multi-
phase (heterogeneous) continuous medium which consists of
fluid and sediment. The layer boundaries are defined by the

functions ', ™, M” (we note that in PARKER et al. (1986)
the forms of the boundaries are determined by the grain size)

M L' ={(x,2):n"(x,0)<z<n(x,1)},

L’ ={x,2) " (x,0)<z<n"(x,1)},

W' =n'-n".h"=n"-n". x=(x, ).
h'(x,t),

X= (x, y) are the horizontal coordinates, Z is the vertical

Here, hb(x,t) are the layer thickness

coordinate, [ is time.
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Fig. 1: The layers of the continuous medium. The top layer L' is filled by fluid.
The bottom layer L? contains sediments (and fluid). The layer boundaries are
defined by the functions n', n™, m°.

Abb. 1: Schichten der ununterbrochenen Umgebung. Die oberste Schicht L!

ist gefiillt mit Fliissigkeit. Die untere Ebene L? enthilt Sedimente (und Fliissig-
keit). Die layer-Grenzen sind definiert durch die Funktionen m!, n™, m’.

Relations between the horizontal flow velocity U’, the
. . . t
suspension concentration C ! and their average values U,
. t .
¢ in layer L are chosen in the form

@ U'(x,z,0)=h"(x,H)u’ (x,)y(x,z,1),

C'(x,z,0) = h' (x,0)c" (X,)d(X, z,1).
Here, the functions (X, Zz,¢)and (X, z,¢) define the

vertical profile of the velocity and the suspension concen-
tration.

The depth-averaged values are determined in the usual
manner

3) u'(x,1)=PU’, ¢'(x,t)=PC’,

where P is the operator of averaging

1
@ (PF)(x,t)=— [F(x,z,t)dz, h' =n'-n".
h'
It is obvious that the functions \IJ(X, z,t), ¢(X, z, t) in (2)
must satisfy to the conditions of normalization
6) h'Py=1, h'Pop=1.
If instead of the normalized profile \V(X, Z,t), (I)(X, z, t)
the non-normalized profiles \|IO(X, z,t), ¢0 (x,2z,t) are
known, then
WO(X7Z’t) ¢(x z l,) — ¢0(X’Z’t)
h'Py, h'Po,
In principle, the function \VO(X, z,t), ¢0 (X,2z,t) can be

chosen arbitrary. However, it is preferable that these funct-
ions correspond to any solutions of the original equations.

©) y(x,z,0) =

Omitting the tedious procedure of averaging, we present the
variant of the averaged equations, i.e., the Saint-Venant-
Exner equations (see, for example, ZHUKOV & SHIRYAEVA
2016):

L . t
continuity equation for the layer L

M 0,h' +div, (h'u')=0,
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equations of fluid motion for the layer L

®) 0,(h'u")+div_(y,h' (u' ®u'))=-gh'V n' -0,
transport equation for suspension concentration in the layer
of L'

©® p@,(h'c")+div (y A c'u)=0,,

Exner equation

(10) p,(1-¢,)(0,4° +div,(h*u"))=-0,.

Here, u’ (X, t) is the average fluid velocity in the horizontal
direction at the layer Lt, ub (X, t) is the average fluid
velocity in the horizontal direction at the layer Lb, c' (X,l)
is the averaged suspension concentration, O is the sediment
density (not density of the continious media in the layer Lb ),
T]t(X, t) is the free boundary, T]m(X,t) is the boundary
between the layers, T]b (X,1) is the bottom boundary, @ is

m
the shear stress at the boundary 1" between the layers, Qm
is the suspension flux at the boundary T]b between the layers,
h' (X,t) is the top layer thickness, h® (X,t) is the bottom
layer thickness, g is the gravity, €, is the porosity, diVx,

Vx are the ‘plane’ divergence and gradient.

Note that we use the Exner equation (10) in the form
proposed in PAOLA & VOLLER (2005), see also FERNANDEZ-
NIETO et al. (2014, 2015).

The coefficients Y, and 7 that arise in averaging have the

form

t t

n n

an v, =h' [y (2)dz. v, =h' [ y(2)d(2)dz.

m m
n n

Note that Y., Y, are not constant. These coefficients are

depended on T]t, nm , and the parameters that can contain
the functions / , .

In equations (7) to (10) the thicknesses h' (X, t), hb (X, t),
the suspension concentration c' (x,t ), and the velocity
u' (X, t ) are chosen as unknown quantities. We also assume
that the parameters g, O Sp , and functions d) are

assigned. The equations (7) — (10) are not closed, since it
requires additional relations for shear stress @, the flux Q '

on the boundary between the layers Lb s L , and the fluid

velocity ub .

The averaged equations are obtained under the assumption of

materiality of borders nb, T]m, T]t. In other words, we



consider that the boundaries are moving together with the
continuous medium. The Exner equation (10) is presented for
the case when the sediment density is assumed quasista-
tionary and homogeneous in the vertical direction. It means
that sediment density does not depend on Z and coincides

. . . b .
with the average sediment density P~ . In addition, we con-
sider that the layer Lb is filled by heterogeneous continuous
medium. In this case the average sediment density pb can be
. . b _ .
written in the form p~ = ps(l—sp), where Sp is
porosity. More general variants of the Exner equation see, for

example, in PAOLA & VOLLER (2005) and ZHUKOV & SHIRY-
AEVA (2016).

CONSTITUTIVE RELATIONS

The values 6., U, ub can be defined on the basis of the

phenomenological (empirical) relations as done in most
works (in particular, RUN 1987, 1993, AUDUSSE et al. 2010,
GAREGNANI 2011, FERNANDEZ-NIETO et al. 2014, 2015,
MALDONADO & BORTHWICK 2016). In fact, the equations (7)

to (10), and the coefficients Yus Y are also possible to ob-

tain on the basis of the phenomenological representations.
However, from the mathematical point of view, it is more

appropriate for the definition of 6., {/, , ub to use, where

it is possible, only the physical-mechanical relations that in
the procedure of averaging are arisen naturally from the
original equations.

The equations (7) to (9) are obtained on the basis of the
averaging method for hydrostatic approximation equations

(12) div U' +0,W"' =0, 8_P' =—pg.

(13) plo, U +U" -V U +W'0,U' )=
=_V P +po,(K,0.U")

p(0,C'+U" -V C'+W'0,C")=-0,0',
Q' =—p(K,0.C' +w,C").
. with boundary conditions

as) k,0.U'| =0 v'|_,

z=n z=n"+z(
16) o) =0 Q' =0u=-w(eC" —p, (1=, _,
where V' = (U',W") is the fluid velocity for original flow,

(14)

=0 P" , =const>
z=n

U'! is the horizontal velocity, J¥/' is the vertical velocity, P!
is the pressure, P is the density of the continuous media in

the layer L (fluid density + suspension density), C' is the
suspension concentration, Qt is the local suspension flux in
the vertical direction, W is the settling velocity for particle
of the suspension, Z is the roughness parameter, K, (z),

Kc(z) are the coefficients of turbulent viscosity and diffu-

sion (e.g., MONIN & YAGLOM 1965, RUN 1993, SHLIHTING
2006).

The first boundary condition (16) corresponds to absence of
the suspension flux on the free boundary. The second bondary
condition is proposed, in particular, in CHENG (1984), where
it is called by the condition of non-equilibrium diffusive; see
also RUN (1987), where other boundary conditions are
discussed. In fact, this condition is one of the constitutive
relations and it identifies the concentration flux Qm at the

boundary ’r]m for equations (9), (10).

The shear stress ¢, on the boundary between the layers after

averaging of the term 0 (KmazU‘) (see (13)) is written as

171 6, =(K,h'n'd.y(2))|
z=n

m
For further identification of @, and coefficients Y, Y. the

information about the functions , ¢ is required. These

functions can be obtained after identification of the coef-
ficients of turbulent viscosity and diffusion from the kine-

matic approximation to the original equations in hydrostatic
approximation.

We choose the coefficients of Km, Kc in the form (here, we

have used the Reynolds analogy (MONIN & YAGLOM 1965,
SCHLICHTING 2006)

t b
(18) Kk =K =x|U. |(z;n)_(p_—_z), n"<z<n'
" h’ +h'
where U, is the effective average velocity, K is the Kdrman

constant (k= 0.4).

The justification for the selection of the relations (18) see, for
example, in MONIN & YAGLOM (1965), GRISHANIN (1979)
and SCHLICHTING (2006). Other forms of dependencies for
the coefficients of turbulent viscosity and diffusion see, for
example, in RUN (1987, 1993).

Omitting inertial terms in the equations (12) to (14) (so called
kinematic approximation) and solving these equations taking
into account the boundary conditions (15), (16), we get that

the horizontal velocity U’ has a logarithmic profile and the

suspension concentration ol (Z) has the Rouse profile

(19) U'(x,z,1) =y—*—\|jo(x,z,t), n"<z<n',
K

b

VA
C’(x,z,z)=C'<x,n'",t)[z_'J dy(x,z,1 M’ <0<z’

where

—n? r L\
20) o (x,z,0)=In = ’¢o(x,z,t):(n ]

2 z—m
Here, Z 1is the suspension number: Z:ws /(K| U. |)
Different formulas for settling velocity W, are presented, for

example, in DIETRICH (1982), RUN (1993), CHENG (1997),
BALDOCK et al. (2004), SONG ZHIYAO et al. (2008), and
SOULSBY et al. (2013).
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Substitution of the relations (18) into the formula (17) with
the help (4), (6), (20) allows us to obtain the shear stress G

in the form

e o, =(K,h'u'0,y(z))]
z=n

=T, |u' [,

where Ft is the friction coefficient (see (24)).

Introducing parameters
h’ h+h
(22) B=—, p=—7p—
Z, h
we present the relations for effective average velocity l U. I

and the coefficients T, (11, ), v, (1,B)-and v (1,3, 2)
@3) |U.(x0)[= Ky (,B) [u’ .

, 1<p<oo, Bu>1,

'Ye: (u_—l) >0,
l-p—InB+plnB+pulnp
_1)3
4) T, = (n-1) ~>0
pu(l-p—InB+pulnP+plnp)
(25) Y, = M_l _}_iu) ,
1-InB—p+pin(up) I5(w)

_(e=D(e-D(nB-1)* +2ulnBlnp+pdnp-1)* -1)
(ulnp+plnB-Inp-p+1)°

u

where

b u—0)" b u—-0Y"
(26) Iz(u):{(“Tj In 646 ISZI(T) db.

1
The integrals /,(p), I;(p) are known as the Einstein

integrals (EINSTEIN 1950), and can be calculated using hyper-
geometric functions, or infinite series (e.g., GUO & JULIEN
2004).

Finally, the velocity of the sediment in the layer of Lb can
be defined by considering the equality of the tangential stres-

ses at the boundary layers of Lb , L (other relations see, for
example, in RUN 1987, 1993)

KT h°
\Y%

N

@7 u’ = |u’ |u’,

where V _ is given viscosity of the fluid in the layer Lb .

COMMENTS ON THE CHOICE OF THE BOUNDARIES
b m t

n.n.mn

Strictly speaking, equations (7) to (10) are not a closed sys-

tem despite the fact that the constitutive relations are defined,
for example, in the form (16), (21), (27). The fact that the

functions Y., Yus Ft depend on 1’]t, T]m, T]b. We note

that ’, " b can not be determined uniquely by the
n.n
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thickness of layers as h' = T]t —Tlm, K’ = nm ~T‘|b (see
(1)).
gh’Vxn’ which also includes the unknown function T]t.

In addition, the equation (8) contains the term

Thus, for the closing of the equations and unique definition of

b . . .
T][, T]m, n at least one more equation or relation is

required.

The simplest way to remove the indefiniteness of the location
for the layers is the explicit definition of one of the functions
T]b(X,t), T]m(X,t), T]I(X,t). Note that in hydrology
“adaptive” hypothesis of the sediment layer is sometimes
used: the thickness of the sediment layer is assumed by
proportional to the thickness of the liquid layer, see for
example GRISHANIN (1979) and SEIN (1992). This hypothesis
is unacceptable since the Exner equation (10) contradicts to
the continuity equation (7) in the case when A~ is propor-

tional to ht .

Discussions of different variants of the boundary selection as
a known function.

1) The boundary M ™ between the layers is known.

If the boundary 1" (X, ?) is considered as a known function,
then the equation (8) should be transformed to the form

(28) gh'V ' =gh'V (' +n")=gh'V h' +gh'V n"
In this case, the equation of motion (8) is exactly the same as
the classic version of the shallow water equation.

The choice of the boundaries between the layers nm as a

known function is unsuccessful, since the position of this
boundary is difficult to determine in practice. Strictly
speaking, most models are used to determine this boundary,
and the sedimentation problem is losing sense.

2) The bottom boundary nb is known.

If the boundary M®(x,?) is considered as a known function,
then the equation (8) should be transformed to the form

29) gh'V ' =gh'V (h" +h')+gh'V.n".

In fact, the relation (29) dictates the choice of the new
unknown function (hb +h’) instead /°. In this case, to

obtain an equation for a new variable (hb +h") we need to

add the equations (7) and (10). Otherwise, the system (7) to
(10) is not a hyperbolic system, since the right hand side of
(8) will contain derivatives of the unknown functions.

Selection of the boundary nb, i.e., the elevation of the

reservoir bottom as a known function, is quite reasonable and
most often used in hydrology. However, if the system of
equations (7) to (10) are used to study of the bottom morpho-

logy, the choice of nb as unknown function is also not ac-

ceptable.



3) The free boundary 1']’ is known.

If the boundary m'(X,?) is considered as a known function,
then the equation (8) does not need any transform. As a rule,
the position of the free boundary nr is also object of

investigation. Selecting it as a known boundary is not
acceptable. However, from the practical point of view, the

position of the boundary M’ can be easily measured, for

example, using tracking buoys.

KINEMATIC WAVES APPROXIMATION

To demonstrate the importance of the constitutive relation
choice (21) we consider the spatially one-dimensional model
based on the so-called kinematic wave approximation; see for
example WHITHAM (1974). The main idea of this approxi-
mation is to neglect the inertial terms in the equations of fluid
motion (8). From a physical point of view, this approximation
corresponds to the steady-state flows, slowly changing over
time. Note that this approximation may be not suitable in the
case of turbid flows; see for example PARKER et al. (1986)
and FALCINI et al. (2009). This allows us to determine the
flow velocity by using algebraic relations. Spatial one-dimen-
sional model is obtained from (7) to (27) by natural substi-

tutions u'(x,7) > u'(x,t), div, >0 ,and V_ -0 .
We assume that free surface is known, ie. the function
n'(x,t) is given. As already mentioned, the choice of
known M’ is caused because this boundary is the “observ-

able”, i.e. the displacement of the surface, in principle, can be
measured.

Neglecting inertial terms in equation (8) and taking into
account (21) we get a kinematic waves approximation

(30) gh'om +x°T, |u' |u' =0.
In this case the velocity U " is obtained as
1
t t
gh'lom |
KT

t

2

Gl u'=-sgn(@.n")

The friction coefficient Ft depends on hb, h' and is
defined by formulas (22), (24).

The kinematic waves approximation allows us to substantial-
ly simplify the equations (7) to (27) reducing them to equa-
tions for unknown function hb, ht, c' only. On the basis
of these equations, making different assumptions about the
parameters, it is possible to construct a more simple asymp-
totic model of different levels of complexity. For example, a
natural assumption that the thickness of sediment layer is
much less than the thickness of the suspension layer

(32) h'>>h’
allows us to use for the coefficient Ft the following relation
(see (24)as L —> 0)

AN
33) r,(h”,h’)zrf(h’)z(ln—j :

20
This is a very significant simplification of the model, since
the velocity uk becomes dependent only on h' . In this case,
the equation (7) is integrated independently from the equa-
tions (9), (10). We emphasize that the choice of the
constitutive relations in the form (33) plays an important role
for determining of the average velocity dependency on the
problem parameters.

Next, we restrict the study of the behavior for only the thick-
ness /' In other words we only investigate the equation

which is obtained by substituting (31), (33) in equation (7). In
this case, after substitutions

34) h'=z.h, t=1T., x=yL.,
172

T.
£ —sg@ o' |7 ()",

*

p(yst):—

we have equation

35) 8.h+08,(p(y,0h** Inh)=0,

and initial condition

36) (Y, )= 1o (¥)-

Here, y, T are the new coordinate and time, L, is the scale
length in horizontal direction, 7 is the scale time. The func-
tion ho (y) determines the initial thickness of the fluid layer.

The function p( Y, ’C) is determined by the known (by
assumption) free boundary T]t (x, t) = T]t (yL* ,T1. )

Problem (35), (36) can be easily solved by the method of
characteristics; see WHITHAM (1974), which allows us to
transform the Cauchy problem for partial differential
equations of first order to the Cauchy problem for systems of
ordinary differential equations.

We restrict our study to the problem when the free surface

t
M has a constant slope

37 0,m' =const <0.

It is enough realistic situation. In the case when the thickness
of the sediment layer is much less than the thickness of the
suspension layer (see (32)) it is difficult to imagine that a thin
sediment layer affects the free surface.

At appropriate choice of the scale time 7., we get (see (34))
L.x
(38) p(y,f):l’ T“: t \172
(gZO |axn |)
Then the solution of (35), (36) is reduced to the solution of
the system

(39) CZ—H =0, H(D)|oo=hy(a),
T
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(40)
dt

With the help of the functions Y(‘c), H(‘C) the problem

solving (35), (36) can be written in implicit parametric form

(e.g., WHITHAM 1974, ZHUKOV & SHIRYAEVA 2015)

(41) h(y,t)=H(t;a)=hy(a).

y=Y(ya)= ‘ch(’)/z(a)(%lnho(a)+lj+a-

Here, @ is an arbitrary parameter.
The analysis of formula (41) shows that if for any values of
parameter @ the inequality h(') (a) <0 is valid, then at some

a._ H”z(%lnHHj, Y(v)|.,=a-

time occurs ‘rollover’ of the function h(y, 1:) profile and the
shock waves are arisen (e.g., WHITHAM 1974).

In Figure 2 the results of the calculations based on
the formula (41) and using the numerical solution of the
problem (35), (36) with the help of the VoF method are
presented.

For calculations we select the periodic perturbation of the
layer thickness A,

(42)  hy(y) = h. +bsin(my), h, =3000, =300, m=2.

This corresponds to the case when the boundary between
suspended impurity and sediment has two ‘humps’ and two

‘cavities’ with the amplitude b (0.5m) on the interval of
length 2ntL, (L. =100m) and when the initial thickness of
the liquid layer is 4, (5m)- We note that corresponding

dimension values of dimensionless quantities are indicated in
brackets. Of course, this choice is made to simplify the
calculations. Other parameters are selected to be suitable for
straightforward riverbeds with a thin layer of silt.

(43) |6Xn’ |[=0.096 m/km, k, =0.050 m,

(44) z,=k,/30=0.00167 m, g=9.8m/sz, k=0.4.
The friction coefficient is I, =0.0156 and the average
velocity is |u’ |~5km/h as h =h,. The scale time is

7. ~3.2-10%s.

Analysis of the results shows that from the periodic smooth of
initial distribution (42) the shock waves are arisen at the short
time (~ 364 s). The shock waves velocity D is determined

by the Rankine-Hugoniot condition, which in this case has
the form
32 32 ...
sy po M ink, —hInk
h, —h,
where h2 ~ 3300, hl ~ 2700 are the values of function

across discontinuity.

~712.265 (2.23m/s)>

CONCLUSION

The presented results show that VoF method allows to obtain
a solution with a relative error of about 3 %. However the
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Fig. 2: The function /(y,7) when 7 = 0.0060, 0.0114 (upper and lower pictures
respectively). The dotted line corresponds to the solution that is obtained
using the VoF method. In particular, this figure shows the profile overturn and
the appearance of a shock waves.

Abb. 2: Die Funktion A(y,7) bei 7 = 0.0060, 0.0114 (obere und untere Abbil-
dung). Die gepunktete Linie entspricht der Losung, mittels VoF-Methodeer-
reicht wird. Insbesondere zeigt diese Abbildung wie das Profil kippt und die
Erscheinung einer Stofwelle annimmt.

defects of this method are obvious. First, the waves amplitude
is decreased over time, whereas for the exact solution the
waves amplitude is unchanged. Secondly, the occurrence of
discontinuous solutions is almost impossible to identify, since
the solution is smoothed by the grid viscosity.

From the geomorphological point of view, the continuous
profile overturn likely corresponds to the appearance of
structures that mark an additional bottom shear stress due to
shock waves (BRANDET et al. 1999, DROGHEI et al. 2016).
Especially, we emphasize that this result can be obtained even
for such a simple model, which is presented in this paper.
This interesting phenomenon requires extensive additional
investigation and will be the subject of next paper.

Finally we pay attention to the fact that for completeness of
the model we used a variant when the behavior of the free
boundary is known. Just a specific motion of the free bound-
ary induces a spatial structure on the other boundaries. A se-
lection of other boundaries as known functions can signifi-
cantly change the results and requires additional study.
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