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ABSTRACT
The ASTAR 2000 (Arctic Study of Tropospheric Aerosol and Radiation) campaign ran from 12 March until 25 April 2000
with extensive flight operations in the vicinity of Svalbard (Norway) from Longyearbyen airport (78.25◦N, 15.49◦E).
It was a joint Japanese (NIPR Tokyo)–German (AWI Bremerhaven/Potsdam) airborne measurement campaign using
AWI aircraft POLAR 4 (Dornier 228-101). Simultaneous ground-based measurements were done at the international
research site Ny-Ålesund (78.95◦N, 11.93◦E) in Svalbard, at the German Koldewey station, at the Japanese Rabben
station and at the Scandinavian station at Zeppelin Mountain (475 m above sea level). During the campaign 19 profiles of
various aerosol properties were measured. In general, the Arctic spring aerosol in the vicinity of Svalbard had significant
temporal and vertical variability.

A strong haze event occurred between 21 and 25 March in which the optical depth from ground-based observation
was 0.18, which was significantly greater than the background value of 0.06. Airborne measurements on 23 March
during this haze event showed a high aerosol layer with an extinction coefficient of 0.03 km−1 or more up to 3 km and
a scattering coefficient from 0.02 in the same altitude range. From the chemical analyses of airborne measurements,
sulfate, soot and sea salt particles were dominant, and there was a high mixing ratio of external soot particles in some
layers during the haze event, whereas internal mixing of soot in sulfate was noticeable in some layers for the background
condition. We argue that the high aerosol loading is due to direct transport from anthropogenic source regions. In this
paper we focus on the course of the haze event in detail through analyses of the airborne and ground-based results.

1. Introduction

Atmospheric aerosols play an important role in global climate
change due to their influence on direct and indirect radiative forc-
ing. However, their various influences are not well determined
yet, especially in polar regions. Indeed, there are uncertainties
about the impact of aerosols on the climate of the 20th century,
the present climate and the potential impact on future climate
(IPCC, 2001). Moreover, climate studies are partly limited by
a lack of knowledge about the geographical and seasonal varia-
tions of aerosol properties and composition.
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The Arctic is thought to be sensitive to global warming. Walsh
and Chapmann (1998) and Serreze et al. (2000) reported a warm-
ing of the air temperature near the surface, especially over the
Arctic mainland. Thinning of sea ice was observed in the 1990s
over a wide area of the Arctic Ocean (Chapman and Walsh, 1993;
Rothrock et al., 1999). Arctic conditions, including the chemical
composition of aerosol, high surface albedo in spring and long
optical path through the atmosphere, are very complex and thus
the influence of Arctic aerosols on the Earth’s radiation balance
still remains an open question. Arctic haze, a visibility-reduction
event that occurs during the Arctic spring, is increasingly being
studied because of its various possible environmental impacts.
Numerous studies were carried out in the 1970s and early 1980s
in the Arctic region (Clarke et al., 1984; Radke et al., 1984;
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Schnell, 1984; Heintzenberg, 1989). The highest aerosol concen-
trations were recorded in the Arctic spring and a strong seasonal
variability of the aerosol burden was observed (Shaw, 1982; Bod-
haine and Dutton, 1993; Herber et al., 2002; Ström et al., 2003).
Information on Arctic aerosol characteristics is still limited due
to the scarcity of observations. Moreover, few data sets exist that
give a complete picture of the temporal, vertical and horizontal
variation of Arctic aerosols and also the characteristics of the
aerosols; thus, more data are needed for modelling and radiative
transfer calculations.

The aim of the ASTAR 2000 campaign was to produce a
valuable dataset on the temporal and vertical aerosol character-
istics near Svalbard in the European Arctic. An advantage of the
2-month campaign was that it provided synchronized ground-
based and airborne activities for a wide range of aerosol mea-
surement systems. Moreover, long-term aerosol measurements
accompanied the campaign. Thus, we obtained data on the op-
tical, chemical and microphysical properties of the aerosol as
well as long-term trends. With the data acquired to date and
those which continue to come in, it will be possible to derive
the required input parameters for models such as the regional
climate model HIRHAM (Dethloff et al., 1996) to assess the
climatic impact of Arctic aerosol.

2. Experimental design and instrumentation

The field campaign operated from 12 March to 25 April 2000
with flight operations from 15 March to 20 April. Aircraft
measurements were made using the German research aircraft
POLAR 4 (Dornier 228-101) of the AWI (Alfred Wegener Insti-
tute for Polar and Marine Research). Longyearbyen airport was
the operational base for all flight activities. Details of the flight
locations are listed in Table 1. The airborne and ground-based
measurement systems at Ny-Ålesund are compiled in Table 2.
The ground-based measurements included remote sensing by
LIDAR, sun photometer and sky radiometer. Figure 1 shows the
overview of the operational area. Due to the project tasks, the
flight operation required special flight conditions up to 25 000 ft
and took place under cloudless conditions (Hoff, 2000).

Whenever the meteorological situation was favourable for the
measurements, we obtained aerosol profiles close to the ground-
based systems at Ny-Ålesund. This strategy was chosen to allow
us to check how well the time-limited flight measurements rep-
resented the aerosol loading for the whole day. Furthermore, this
allowed us to compile information on aerosol characteristics be-
low the first flight level. In addition, long-term aerosol measure-
ments at the ground sites were used to ensure that the campaign
period represented the aerosol loading during the Arctic spring.

The field experiment also offered the opportunity to acquire
data for a comparison with satellite data such as SAGE II
(Stratospheric Aerosol and Gas Experiment). Measurements by
SAGE II in the Arctic are generally limited by ERBS orbital
considerations because SAGE II only has measurement above

70◦N during April and August. Flights on 17 and 19 April were
made to compare aircraft data with those from SAGE II. Early
results are given in Thomason et al. (2003).

3. Results and discussion

3.1. Ground-based observations

The first step in analysing the data was to define the different
atmospheric conditions occurring with the aid of the sun pho-
tometer measurements in Ny-Ålesund. This was useful because
the measurement period of the airborne campaign showed varia-
tion in the aerosol loading near Svalbard. A background situation
is characterized by an aerosol optical depth (AOD) of δaer(λ) <

0.06 whereas an Arctic haze event is defined to occur when
δaer(λ) > 0.1 at 500 nm (see Fig. 2). Based on this AOD classi-
fication, three Arctic haze events occurred during the campaign:
the periods around 23 March, 1 April and 12 April. An unex-
pected finding is that sometimes the AOD changed very rapidly
from day to day. Figure 2 also shows the AOD data, measured
from the POLAR 4 at the lowest flight level of 200 ft very close
to Ny-Ålesund. During the campaign, the frequency of “Arctic
haze” situations observed by sun photometer measurements was
40%. These results are consistent with long-term ground-based
sun photometer data from Ny-Ålesund (Herber et al., 2002). On
the other hand, the stratospheric AOD is currently δ strat(λ) <

0.005 at 525 nm and thus negligible for this discussion (Thoma-
son et al., 2003). The above findings are consistent with the
scattering coefficients by the ground-based nephelometer and
particle number concentrations by differential mobility particle
sizer (DMPS) and optical particle counter (OPC) measurements
from Zeppelin Mountain and Rabben Station (Fig. 3). To under-
stand this classification, ground-based chemical analyses were
also compared (lower part of Fig. 3).

The largest haze event occurred at the beginning of the cam-
paign between 21 and 25 March 2000. We focus on this period to
describe the course of a typical haze event during the campaign.
We compare the airborne measurements on 23 March, a typical
haze case, with those of 26 March, a typical background case.
Large increases in the particle light scattering coefficient and par-
ticle number concentration occurred at both ground-based sites
during the haze days (Fig. 3). The values increased rapidly on 21
March and decreased after 25 March. The mean hourly values
during the haze event were more than two to four times higher
than those before and about halved after the haze event (see mid-
dle part of Fig. 3 for the corresponding mean concentrations). An
example of the ground-based impactor analysis is shown in the
lower part of Fig. 3 (from Kriews and Schrems, 1998). The mean
concentrations of several anthropogenic trace elements (such as
Cu, Pb and Ni) at Rabben station peaked during the haze period.
Also, the wind speed at the ground decreased by almost 50%, the
main wind direction changed and the air temperature decreased.
These changes indicate that the transport path of the air mass
reaching the Svalbard area changed at the end of March.
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Table 1. Airborne activities during ASTAR 2000 and related ground-based activities

Ground-based measurements

Aircraft measurements Koldewey Rabben Zeppelin

Flight Date Start time Duration Met.
number in 2000 Location Systems (hh:mm) (hh:mm) ARL PMR dataa MPL SR IN OPC IM DMPS IN

1 15 March Near Ny-Ålesund, 79◦N/ 8◦E X 10:07 03:39 X Xb Xc X X – – – X X
2 20 March Ny-Ålesund, 79◦N/11◦E Xd 12:13 03:26 X X Xc X X X Xe X X X
3 23 March Ny-Ålesund, 79◦N/11◦E X 10:30 03:01 X X Xc X X X Xe X X X
4 24 March Longyearbyen, 78◦N/12◦E X 08:40 04:41 X Xb X X X X Xe X X X
5 25 March Ny-Ålesund, 78◦N/12◦E Xf 07:43 03:32 X Xb X X X X Xe X – X
6 26 March E of Svalbard, 79◦N/24◦E Xf,g 09:29 04:58 – – Xc – – X Xe X X X
7 28 March Ny-Ålesund, 79◦N/24◦E Xg 08:42 04:21 X X Xc X X X Xe X X X
8 30 March E of Svalbard, 76◦N/18◦E Xg 11.22 04:58 X – X X X X Xe X X X
9 1 April Longyearbyen, 79◦N/15◦E Xg 09:07 03:33 X X X X X X Xe X X X
10 2 April S of Svalbard, 77◦N/13◦E Xg 12:27 03:43 X – Xc X X X Xe X X X
11 4 April SE of Svalbard, 76◦N/20◦E X 13:02 04:07 – – Xc – – X Xh X X X
12 7 April Longyearbyen, 79◦N/15◦E X 13.13 04:32 X – X X X X Xh X X X
13 12 April Ny-Ålesund, 79◦N/12◦E X 14:15 03:28 X X Xc X X X Xh X X X
14 13 April Near Ny-Ålesund, 79◦N/11◦E X 14:26 04:56 X X X X X X Xh X X X
15 14 April Longyearbyen, 78◦N/15◦E X 14:29 04:59 X – X X X X Xh X X X
16 16 April Ny-Ålesund, 79◦N/11◦E X 14:55 03:26 X – X X X X Xh X X X
17 17 April S of Svalbard, 74◦N/11◦E X 15:50 04:49 X – Xc X X X Xh X X X
18 19 April S of Svalbard, 74◦N/ 8◦E X 16:34 04:37 X X Xc X X X Xh X X X
19 20 Aprili Ny-Ålesund, 79◦N/12◦E Xf 11:02 03:24 X X Xc X X X Xh X X X

Abbreviations: ARL, aerosol Raman LIDAR; PMR, photometer; MPL, micropulse LIDAR; SR, sky radiometer; IN, integrating nephelometer; IM,
two-stage impactor; OPC, optical particle counter; DMPS, differential mobility particle sizer.
X (in systems) = all instruments working (photometer, integrating nephelometer, particle soot/absorption photometer, optical particle counter,
impactor, filter sampling and meteorology.
aRadio sounding and BRSN (baseline surface radiation network).
bAlso star photometer.
cAdditional ozone sounding.
dOnly impactor data are available.
eMetOne OPC.
fWithout filter sampling.
gNo impactor measurements.
hRION OPC.
iCurtain flight performed.

3.2. Atmospheric circulation fields and trajectories

As large-scale meteorological transport systems may have con-
siderable influence on aerosol loading, we analysed the overall
meteorological situation during the haze period. The major syn-
optic pressure system showed an intrusion of Atlantic air masses
into the Arctic around 17 to 19 March. That can be seen in the
synoptic chart of the 500 hPa height field (Fig. 4). Thus, this
northeastward flowing surge of air was likely responsible for
the low aerosol concentration at Svalbard around 20 March. On
22 March, a distinctive low-pressure system southeast of Sval-
bard was established with a primarily northeasterly wind flow
pattern. This pressure system remained stable and persistent until
24 March. During the time of the highest aerosol loading, the low
moved and expanded southeast. On 25 March, the Svalbard area

became more influenced by air masses coming from the north-
west. By 26 March the area was dominated by northwesterly
flows.

Furthermore, three-dimensional (3-D) backward trajectory
analysis was done to examine the origin of the air parcels (Fig. 5).
For the trajectory calculation, we used the 3-D winds from
ECMWF operational analysis data with a horizontal grid spacing
of 2.5◦. A linear interpolation method was used for latitudes and
longitudes. The vertical interpolation was also made linearly in
the log-pressure coordinate. The backward time integration was
made over 5 d with a fourth-order Runge–Kutta scheme. The
time step was 1 h, which should be sufficiently small because a
time step of 30 min gave about the same results. A cubic spline
method was used for time interpolation. All calculations used a
starting time of noon.

Tellus 57B (2005), 2



144 T. YAMANOUCHI ET AL.

Table 2. Observation systems during ASTAR 2000 campaign

System Measurement References

Ground-based measurements
Koldewey
Sun and star photometer Aerosol optical depth, phase function, refractive index Weller et al. (1998),

Herber et al. (2002)
Aerosol Raman LIDAR Aerosol backscattering extinction coefficient and Ansmann et al. (1990),

depolarization factor at 532 and 1064 nm Schumacher et al. (2000)
Meteorology Temperature, relative humidity, wind speed, wind direction

Rabben
Nephelometer TSI model 3563 Scattering coefficient at 3 wavelengths (450, 550, 700 nm) Anderson et al. (1996)
Optical particle counter Particle number concentration
(MetOne model 227B and MetOne 227B: D = 0.3 µ m and one of 0.5, 1.0, 3.0, 5.0 µm
RION Co. KC-01C RION KC-01C: D = 0.3, 0.5, 1.0, 2.0, 5.0µm
Micropulse LIDAR Backscatter ratio at 523 nm Spinhirne (1993); Shiobara (2000)
Sky scanning radiometer Aerosol optical depth, size distribution, refractive index Nakajima et al. (1996)
2-stage impactor High-volume sampler with a single-stage impactor Kriews and Schrems (1998)

(cut-off diameter 2 µm): chemical aerosol composition in Luedke et al. (1999)
dry and wet periods

Zeppelin Mountain (475 m asl)
Nephelometer TSI 3563 Scattering coefficient at 450, 550, 700 nm Anderson et al. (1996)

Ström et al. (2003)
DMPS Particle number concentration. Size range Knutson and Whitby (1975)

between 0.025 and 0.5 µm Jokinen and Mäkelä (1997)

Aircraft measurements
Sun photometer Aerosol optical depth, phase function, refractive index Nagel et al. (1998)
Nephelometer M903 Radiance Res. Scattering coefficient at 530 nm
Optical particle counter Particle number concentration
MetOne model 237 H & 237 B Size range 237 H: D = 0.1, 0.2, 0.3, 0.5, 1 µm

Size range 237 B: D = 0.3, 0.5, 1, 5 µm
Particle soot absorption Absorption coefficient at 565 nm Bond et al. (1999)
photometer (Radiance Res.)
Filter sampling Ionic and metal constituents
1-stage aerosol impactor Individual particle analysis, mixing state and morphology Hara et al. (2002, 2003)

observation. Cut-off diameter ≈0.2 µm at ground level
Basic sensor systems Meteorological data

SAGE II
Satellite
SAGE II Stratospheric Aerosol and Aerosol extinction coefficient Wang et al. (1999),
Gas Experiment II Thomason et al. (2003)

For 20 March (upper left in Fig. 5), the backward trajecto-
ries show intrusion of a warm air mass from the Atlantic Ocean.
Three days later, on 23 March, the backward trajectories show
that the air masses in the operation area came from central
Siberia and the northern part of Europe and were thus affected
by anthropogenic pollution released there (Iversen and Joranger,
1985; Raatz, 1991). The 3-D transport model calculations by
Engardt and Holmén (1999) also show that anthropogenic pol-
lution from Siberia can affect the aerosol loadings measured at
Ny-Ålesund. According to the trajectory analysis, the aerosol
loading on 26 March (upper right in Fig. 5) was not directly
affected by mid-latitude emissions. The airflow came from the

northwest, which agrees with the overall meteorological situa-
tion mentioned above. Therefore, we conclude that the various
different aerosol properties and characteristics measured before,
during and after the haze period are due to changes in the large-
scale air mass. The influence of changes in the meteorological
circulation pattern on the measurement results is clearly seen in
Fig. 3, in agreement with the trajectory climatology reported by
Eneroth et al. (2003).

3.3. Vertical profiles from the surface

The parallel run of the curves for the scattering coefficient, and
the particle number concentration at Rabben and Zeppelin in
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Fig 1. Area of operation of the aircraft
measurements during the ASTAR 2000
campaign. All places of measurement are
marked. The maximum operational radius
for the aircraft measurements was 500 km
from Longyearbyen airport and the
maximum measurement time was 5 h. The
lowest flight level for the atmospheric
measurements were around 0.5 km and the
aircraft climbed up in 1 km intervals to the
highest flight level (approximately 7.5 km).
The flight speed during measurement was
230 km h−1 and the length of a flight leg was
20 km. The average duration of a research
flight was 3.5 h. The total research flight
time during the campaign was 74 h. The two
aircraft measurements described in detail are
highlighted.
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ground in Ny-Ålesund and on board Polar 4
at the lowest flight level.

Fig. 3, indicates an aerosol layer at the surface. The soundings in
Fig. 5 are consistent with such a layer because they show a stable
atmospheric layer during the haze period. For 23 March, the first
2 km were characterized by low wind speeds of mean value
3.3 m s−1. The relative humidity is roughly uniform at about
47% up to a height of 4 km, which indicates a thick well-mixed
layer. In contrast, the relative humidity on 20 March is high in the
boundary layer and very low above 2 km (Fig. 5). On 26 March,
both the mean relative humidity (73%) and the wind speed (7.9 m
s−1) up to a height of 4 km were much higher than that during the

haze event. The aerosol layer during the haze period appeared
to travel in dry air masses. The wind direction on 23 March
was northeasterly, which was already shown in the large-scale
meteorological air flow pattern as well as the trajectory paths.

The aerosol extinction coefficient at 532 nm based on LIDAR
measurements (Table 2) supports these findings. Figure 6 shows
the layer thickness, the aerosol layer stability for 2 d, and a
breakdown in the middle of 25 March. A stable aerosol layer up
to a height of about 4 km occurred during the haze event, which
corresponds with the weather analysis.
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Fig 3. Time series for different
ground-based measurements from 15 to 31
March. From top to bottom: nephelometer at
Rabben and Zeppelin Mountain, Rion OPC
at Rabben (particles exceeding 0.3 µm in
diameter) and DMPS at Zeppelin Mountain
(particles exceeding 0.022 µm in diameter),
both of which are mean hourly
concentrations, and one example for the
filter analysis of the two-stage impactor at
Rabben. The filter was always changed at 7
p.m. The table at the bottom lists mean
values for the ground-based measurements
from the values plotted above and from other
meteorological measurements. They are
divided into before, during and after the haze
event.

The ground-based sun photometer measurements (Table 2),
which provided column information on the aerosol loading,
show an AOD of about 0.18 on 23 March and then an AOD
of 0.13 until 10:00 on 25 March. Then, a significant change oc-
curred in the aerosol loading of the atmosphere during 25 March
(Fig. 6). The aerosol optical depth at 532 nm decreased from
around 0.12 in the morning to 0.05 in the late afternoon. This
decrease must be due to a change in the air mass. Early on 25
March, the air at various pressure levels came from northern
Europe and the air masses were therefore characterized by mid-
latitude emissions (not depicted). Later in the day, the air masses
in the observation area came from the northwest (not shown). In
summary, the combination of various measurements in the cam-
paign provided a consistent picture of the aerosol conditions and
sources.

3.4. Vertical profile from airborne observations

The ASTAR campaign provided the opportunity to make simul-
taneous aircraft measurements for 19 d (see Table 1). From
the discussion of the ground-based measurements above, we
concluded that the flight activities during the course of the haze
event represented the aerosol loading of the day under consid-
eration. The aircraft observations gave the vertical structure of
aerosol extinction, absorption, scattering coefficients and parti-
cle number concentrations, independently, as well as the height-
dependent chemical composition from impactor measurements
from approximately 60 m above sea level (asl) up to a height of
approximately 7500 m asl.

We now discuss the flight measurements of the vertical aerosol
characteristics during and after the haze event on 23 and 26
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Fig 4. Geopotential height field of 500 hPa for 19, 23 and 26 March from ECMWF operational analysis data.
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Fig 5. Air mass characteristics for three days. Top: 5 d backward trajectories started at 12:00 UTC, calculated from ECMWF operational analysis
data. Bottom: soundings at 11 a.m. for 20 March (left), 23 March (middle) and 26 March (right).

March (see Fig. 7). The sun photometer measured the op-
tical depth for the column of air above the plane at seven
or eight levels. Differences in the optical depths at adjacent
levels determine the layer extinction. The in situ aerosol
measurements by the OPC, nephelometer and particle/soot
absorption photometer (PSAP) were made for the sampled

air introduced into a diffuser before being distributed to
each instrument (Table 2). The extinction coefficients at 532
nm from the sun photometer measurements are in good
agreement with those derived from in situ measurements (scat-
tering coefficient by nephelometer plus absorption coefficient by
PSAP).
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Fig 6. Aerosol optical properties on 23 and 25 March. Top: aerosol particle optical depth. Bottom: the height–time cross-section of the aerosol
extinction coefficient at 532 nm as a function of time from LIDAR measurements.

For both days, a substantial aerosol layer occurred in the low-
est 3 km, although the measured extinction coefficients on 26
March were around 60% less than those on 23 March (Fig. 7
top). On 23 March, the extinction coefficient is about 0.04 km−1

in the 2 km layer and 0.03 km−1 in the 3 km layer. Above this
layer, all values rapidly decrease; however, the extinction coef-
ficient still exceeds 0.01 km−1 until a height of 5 km. For the
background case of 26 March, the extinction coefficient is much
lower, less than 0.003 km−1, above 3 km. Between 5 and 6 km,
the extinction coefficient on 26 March is close to that on 23
March.

The scattering and absorption coefficient profiles show a struc-
ture similar to that for sun photometer extinction; however, the
extinction coefficient derived from these two scattering and ab-
sorption coefficients seems to underestimate slightly the extinc-
tion coefficient from the sun photometer (middle and bottom of
Fig. 7). On 23 March, the scattering coefficients are about 0.02
and 0.03 km−1 up to 3.5 km, and then decrease to less than 0.01 in
the 4 km layer, and then to less than 0.002 km−1 at higher levels.
On 26 March, the scattering coefficients in the lowest 2 km are
about 0.01 km−1, and the values rapidly decrease above 2 km;
however, a slight increase occurs near 5 km such that the values at
this height exceed those for 23 March. The absorption coefficient
profiles have larger variability, partly due to the large experimen-
tal uncertainties. Nevertheless, the data show that 23 March has
greater absorption than 26 March for heights up to 3 km (the

respective values are about 0.003 km−1 and 0.001 km−1 or less,
except that 26 March has a peak just above 3 km that is com-
parable to that of a slightly lower altitude on 23 March). From
these scattering coefficients and absorption coefficients we esti-
mated the single-scattering albedo. The single-scattering albedo
ranged between 0.85 and 0.9 for the first 3 km on 23 March, and
for the upper layer varied between 0.75 and 0.95. These are con-
sistent with other measurements. Clarke et al. (1984) reported a
single-scattering albedo in the range of 0.77 to 0.93 with a mean
value of 0.86 for a haze case in 1982 at Barrow; and Clarke
(1989) reported similar values for the scattering and absorption
coefficients from the measurements of AGASP II in 1986 at
Barrow. On 26 March, the single-scattering albedo ranged be-
tween 0.74 and 0.92, except for one layer which was 0.56. From
the point of vertical profile, aerosol loading in the lowest layer is
common in the background case; however, Arctic haze events
are characterized by larger aerosol loadings in mid-troposphere.

The shapes of the curve for 23 March in Fig. 7, obtained
from the airborne measurement at about 12:00 UT, agrees with
the simultaneous LIDAR measurements, which showed a stable
aerosol layer up to about 2.5 km (see Fig. 6). This aerosol layer is
present in both profiles. Moreover, for this aerosol layer, a 60%
reduction in extinction coefficient between the two days was cal-
culated. On 23 March, the absorption and scattering coefficient
profiles showed a significant second layer between 2 and 3 km,
which was well represented by the LIDAR profile. Values found
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Fig 7. Vertical profiles of aerosol extinction, absorption and scattering
coefficients for 23 and 26 March (Treffeisen et al., 2004). For the
extinction coefficient, the value of the mean measured layer is marked
and the vertical steps in the curves show the layer thickness. The
continuous scattering and absorption coefficients are averaged over a
height of 100 m. The profile of the scattering coefficient is
humidity-corrected based on a method by Hegg et al. (1996).

for the scattering coefficient in the first flight levels were similar
to the surface results from Zeppelin and Rabben.

Other useful information on the height-dependent aerosol
variation can be obtained by analysing the aircraft OPC mea-
surements. Figure 8 shows the aerosol particle number concen-
tration as a function of height for four size ranges. As expected,
the particle number concentration profiles differ between the
two days and are consistent with the optical measurements. The

profiles for particles larger than 1 µm (not shown here) and
sizes of 0.5 to 1.0 µm indicated a continuous decrease with
altitude for both days. The size ranges 0.3–0.5 µm and 0.2–
0.3 µm, which are relevant to the optical properties in visi-
ble radiation, were well structured and thus matched the layer
structure recorded by the absorption and scattering coefficient
profiles. On 23 March, the particle number concentrations in
both size ranges showed a gradual decrease from the surface to
2 km, then a high-concentration layer at 2–3 km and again at
3–4 km, which is similar to the vertical profile of the scattering
coefficient. For these size ranges, particle number concentrations
are lower on 26 March (Fig. 8). On 26 March, there is a gradual
decrease from the surface to 1 km, a small increase at 1–2 km,
a great reduction at 2 km, and a small increase at 5–6 km that
shows a little larger value than that on 23 March. The size range
of 0.1–0.2 µm is an exception; the profiles were rather different
from those of extinction, scattering and absorption coefficients
and for the first 3 km the particle number concentration for 26
March was larger than that for 23 March. The profile on the 23
March was smaller in the lower level and generally increased up
to 4 km, whereas on the 26 March the profile showed a gradual
decrease, but both profiles were more uniform than those in other
size ranges.

One of the aims of the project was to obtain an Arctic spring
aerosol data set. Thus knowledge of the height-dependent chem-
ical composition from aircraft measurements is essential (e.g.
for estimating the aerosol mass mixing ratio). The main results
of the entire airborne impactor measurements have already been
discussed in detail in Hara et al. (2002, 2003). The findings for
23 and 26 March are as follows: the main components were
sulfate, soot and sea salt particles; smaller components include a
small number of mineral dust particles. Sulfate particles were
the most dominant component. This observation agrees with
previous results on Arctic spring aerosols (Heintzenberg and
Lack, 1994).

However, the height-dependent relative number concentration
differed for both days. For the haze condition on 23 March, a rel-
atively high proportion of externally mixed soot particles were
found, and on 26 March there were a significant number of par-
ticles with an internal mixture of soot in sulfate. Sea salt was
observed in both cases in the lower troposphere, and the rela-
tive abundance was similar. For 23 March we conclude that the
first 3 km were mainly dominated by sulfate particles and the
layer above had an external mixture of soot. This correlates with
the measured absorption coefficient, which showed increased
values near 3 km (Fig. 7, bottom). This also corresponds to
the increased particle number concentration for smaller parti-
cles in this height range (Fig. 8, bottom). The aerosol particles
associated with direct transport from anthropogenic source
regions (23 March) contained a high concentration of small
external mixed soot, whereas air masses with a longer res-
idence time in the Arctic (26 March) contained significant
amounts of internal soot mixtures even though the total particle
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0 – 3 km 18 ± 2 23 ± 1 Fig 8. Particle number concentrations from
airborne OPC measurements for 23 and 26
March. The measurements are averaged over
a height of 100 m and are separated into
particle diameters 0.1–0.2 µm, 0.2–0.3 µm,
0.3–0.5 µm and 0.5–1.0 µm.

concentrations were very low compared with the haze situation
on 23 March. These internal soot mixtures are of special interest
due to the fact that they might have a larger influence on radia-
tive forcing at high latitudes than external soot mixtures (Myhre
et al., 1998).

4. Summary

This paper reports on the results for a distinct haze event dur-
ing the ASTAR 2000 field campaign conducted in March and
April 2000 in the Svalbard area. During ASTAR, intensive flight
activities and coordinated ground-based measurements were per-
formed. The influence of large-scale meteorological changes was
reflected in both the airborne and ground-based measurements.
All measurements complemented one another and gave a consis-
tent picture of the aerosol characteristics during the haze event
on 23 March. The results showed the available capacity of the
campaign to gain a valuable data set for spring Arctic aerosol
characteristics.

The campaign provided a wide range of various independent
optical, chemical and physical aerosol parameters with a high
vertical and horizontal resolution. With this data set we could
describe the spatial and temporal variability of aerosols near

Svalbard in the European Arctic. One goal for the ASTAR cam-
paign was to derive the necessary input parameters afterwards
for radiative transfer calculations and modelling by combining
all measured aerosol information.
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