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Abstract 

The global climate is warming and the northern high latitudes are affected particularly rapidly. 

Large areas of this region, or 24% of the northern hemisphere, are influenced by perennially 

frozen ground or permafrost. As permafrost is predominantly dependent on cold mean annual 

air temperatures, climate warming threatens the stability of permafrost. Since large amounts 

of organic carbon are stored within permafrost, its thaw would potentially release large 

amounts of greenhouse gases, which would further enhance climate warming (permafrost 

carbon feedback). 

Thermokarst and thermo-erosion are an indicator of rapid permafrost thaw, and may also 

trigger further disturbances in their vicinity. The vast Arctic permafrost regions and the wide 

distribution of thaw landforms makes the monitoring of thermokarst and thermo-erosion an 

important task to better understand the response of permafrost to the changing climate. 

Remote sensing is a key methodology to monitor the land surface from local to global spatial 

scales and could provide a tool to quantify such changes in permafrost regions. With the 

opening of satellite archives, advances in computational processing capacities and new data 

processing technology, it has become possible to handle and analyze rapidly growing amounts 

of data. 

In the scope of the changing climate and its influence of permafrost in conjunction with recent 

advances in remote sensing this thesis aims to answer the following key research questions: 

1. How can the extensive Landsat data archive be used effectively for detecting typical 

land surface changes processes in permafrost landscapes? 

2. What is the spatial distribution of lake dynamics in permafrost and which are the 

dominant underlying influencing factors? 

3. How are key disturbances in permafrost landscapes (lake changes, thaw slumps and 

fire) spatially distributed and what are their primary influence factors?  

To answer these questions, I developed a scalable methodology to detect and analyze 

permafrost landscape changes in the ~29,000 km
2
 Lena Delta in North-East Siberia. I used all 

available peak summer data from the Landsat archive from 1999 through 2014 and applied a 
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highly automated robust trend-analysis based on multi-spectral indices using the Theil-Sen 

algorithm. With the trends of surface properties, such as albedo, vegetation status or wetness, 

I was able identify local scale processes, such as thermokarst lake expansion and drainage, 

river bank erosion, and coastal inundation, as well as regional surface changes, such as 

wetting and greening at 30m spatial resolution. This method proved to be robust in indicating 

typical landscape change processes within an Arctic coastal lowland environment dominated 

by permafrost, which has been challenging for the application of optical remote sensing data. 

The scalability of the highly automated processing allows for further upscaling and advanced 

automated landscape process analysis. 

For a targeted analysis of well-known disturbances affecting permafrost (thermokarst lakes, 

retrogressive thaw slumps and wildfires), I used advanced remote sensing and image 

processing techniques in conjunction with the processed trend data. Here I combined the trend 

analysis with machine-learning classification and object based image analysis to detect lakes 

and to quantify their dynamics over a period from 1999 through 2014 within four different 

Arctic and Subarctic regions in Alaska and Siberia totaling 200,000 km². I found very strong 

precipitation driven lake expansion (+48.48 %) in the central Yakutian study area, while the 

study areas along the Arctic coast showed a slight loss of lake area (Alaska North Slope: -

0.69%; Kolyma Lowland: -0.51%) or a moderate lake loss (Alaska Kobuk-Selawik Lowlands: 

-2.82%) due to widespread lake drainage. The lake change dynamics were characterized by a 

large variety of local dynamics, which are dependent on several factors, such as ground-ice 

conditions, surface geology, or climatic conditions. 

In an even broader analysis across four extensive north-south transects covering more than 2.3 

million km², I focused on the spatial distribution and key factors of permafrost region 

disturbances. I found clear spatial patterns for the abundance of lakes (predominantly in ice-

rich lowland areas), retrogressive thaw slumps (predominantly in ice-rich, sloped terrain, 

former glacial margin), and wildfires (boreal forest). Interestingly, apart from frequent 

drainage at the continuous-discontinuous permafrost interface, lake change dynamics showed 

spatial patterns of expansion and reduction that could not be directly related to specific 

variables, such as climate or permafrost conditions over large continental-scale transects. 

However, specific variables could get related to specific lake dynamics in within locally 

defined regions. 
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Trend datasets of vegetation status (NDVI) were combined with high-resolution detailed 

geomorphological land-cover classification information and climate data to map tundra 

productivity in a heterogeneous landscape in northern Alaska. After decades of increasing 

productivity (greening), recently tundra vegetation showed a reverse trend of decreased 

productivity, which is predicted to continue with increasing temperatures and precipitation. 

In this thesis project I developed methods to analyze rapid landscape change processes of 

various scales in northern high latitudes with unprecedented detail by relying on spatially and 

temporally high resolution Landsat image time series analysis across very large regions. The 

findings allow a unique and unprecedented insight into the landscape dynamics of permafrost 

over large regions, even detecting rapid permafrost thaw processes, which have a small spatial 

footprint and thus are difficult to detect. The multi-scaled approach can help to support local-

scale field campaigns to precisely prepare study site selection for expeditions, but also pan-

arctic to global-scale models to improve predictions of permafrost thaw feedbacks and soil 

carbon emissions in a warming climate. 
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Zusammenfassung 

Das globale Klima erwärmt sich und die hohen nördlichen Breiten sind besonders stark davon 

betroffen. Ein großer Teil dieser Region, ca. 24% der Nordhalbkugel, sind von saisonal oder 

dauerhaft gefrorenen Böden, dem Permafrost beeinflusst. Aufgrund der starken Abhängigkeit 

von kalten Temperaturen ist Permafrost besonders anfällig gegenüber der Klimaerwärmung. 

Große Mengen organischen Kohlenstoffs sind bisher im Permafrost gebunden, ein Auftauen 

könnte die Emission großer Mengen von Treibhausgasen in die Atmosphäre bewirken, was 

eine noch stärkere Erwärmung zur Folge hätte (Permafrost Kohlenstoff Kreislauf). 

Thermokarst und Thermoerosion sind Indikatoren für schnelles Permafrosttauen, was 

wiederum weitere Erosion und Störungen der näheren Umgebung auslösen kann. Die 

weitläufige arktische Permafrostregion mit seiner weiten Verbreitung von Auftaulandformen 

macht die Beobachtung von Thermokarst und Thermoerosion eine wichtige Aufgabe um die 

Auswirkungen der Klimaerwärmung auf den Permafrost zu verstehen. Fernerkundung ist eine 

Schlüsselmethode um die Landoberfläche im lokalen bis globalen Maßstab zu beobachten 

und Veränderungen in der Permafrostregion zu quantifizieren. Mit der Öffnung und freien 

Verfügbarkeit von Satellitenarchiven, dem technischen Fortschritt der Informatik und neuen 

Prozessierungstechniken ist es möglich geworden riesige Datenmengen aus exponentiell 

wachsenden Datenarchiven zu prozessieren. 

In Anbetracht des fortschreitenden Klimawandels und dessen Einfluss auf den Permafrost in 

Kombination mit dem technologischen Fortschritt in der Fernerkundung und Informatik zielt 

diese Dissertation auf die Beantwortung folgender wissenschaftlicher Fragestellungen: 

1. Wie kann das frei verfügbare Landsatarchiv effektiv genutzt werden um 

Veränderungen der Landoberfläche großräumig in Permafrostregionen zu detektieren? 

2. Wie ist die räumliche Verteilung von Seeveränderungsdynamiken in 

Permafrostregionen und was sind deren Haupteinflussfaktoren? 

3. Wie sind die wichtigsten Störungen in Permafrostlandschaften (Seeveränderungen, 

rückschreitende Erosionsformen und Feuer) raumlich verteilt und was sind deren 

Haupteinflussfaktoren? 
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Um diese wissenschaftlichen Fragen zu beantworten, habe ich eine skalierbare Methode 

entwickelt um Landschaftsveränderungen im Permafrost im ca. 29.000 km² großen Lena 

Delta in Nordost-Sibirien zu detektieren und zu analysieren. Hierbei wurden alle 

Hochsommeraufnahmen des Landsatarchives von 1999 bis 2014 verwendet und eine 

hochautomatisierte, robuste Trendanalyse auf multi-spektralen Indizes mit Hilfe des Theil-Sen 

Algorithmus durchgeführt. Mit der Information über zeitliche Trends der Beschaffenheit der 

Landoberfläche, wie z.B. Albedo, Vegetation oder Feuchtigkeit, konnten sowohl lokale 

Veränderungen, wie z.B. die Expansion oder Drainage von Thermokarstseen, Ufererosion 

oder Überflutung küstennaher Gebiete, als auch regionale Dynamiken wie Vegetations- oder 

Feuchtigkeitsveränderungen mit einer räumlichen Auflösung von 30m gemessen werden. 

Dieses Vorgehen erwies sich als robuste Methode um typische Landschaftsveränderungen in 

von Permafrost dominierten arktischen Tiefländern, welche sich bisher als äußerst schwierig 

für optische Fernerkundung erwiesen. Die Skalierbarkeit der hochautomatisierten 

Prozesskette erlaubt die Ausweitung auf eine großflächige, automatische 

Landschaftsprozessanalyse. 

Für die zielgerichtetete Analyse von bekannten Permafrost beeinflussenden Störungen 

(Thermokarstseen, rückschreitende Erosion, and Feuer) wurden fortgeschrittene 

Fernerkundungs- und Bildprozessierungsmethoden in Verbindung mit den prozessierten 

Trenddaten angewandt. Hierbei kombinierte ich die Trendanalyse mit Machine-Learning 

Klassifikationsverfahren und objektbasierter Bildanalyse um Seen und deren Dynamiken im 

Zeitraum von 1999 bis 2014 in vier verschiedenen arktischen und subarktischen 

Studiengebieten in Alaska und Sibirien mit einer Gesamtfläche von 200.000 km². Das 

zentraljakutische Studiengebiet wies eine starke niederschlagsbedingte Seeausdehnung auf 

(+48,48%), während die küstennahen Regionen einen leichten (Alaska North Slope: -0,69%; 

Kolyma Lowland: -0.51%) oder moderaten Rückgang (Alaska Kobuk-Selawik Lowlands: -

2.82%) der Wasserfläche durch teils weitverbreitete Seedrainage verzeichneten. Die 

Seeveränderungen waren durch starke räumliche Unterschiede gekennzeichnet, welche von 

unterschiedliche Faktoren wie Bodeneisgehalt, Oberflächengeologie oder klimatischen 

Bedingungen beeinflusst wurden.  

In einer noch großflächigeren Analyse von über 2,3 Mio. km² Fläche fokussierte ich mich auf 

die räumliche Verteilung der Hauptfaktoren von Störungen im Permafrost. Dabei kamen 
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deutliche Muster der Seeverteilung (hauptsächlich in bodeneisreichen Tiefländern), von 

rückschreitenden Erosionsformen (vorwiegend in eisreichem und hügeligen Terrain entlang 

ehemaliger Eisrandlagen) und Feuer (borealer Wald) zu Tage. In großräumigem Maßstab 

konnten Seeveränderungen, abgesehen von weitverbreiteter Seedränage an der Grenze 

zwischen kontinuierlichem und diskontinuierlichem Permafrost, hingegen keine eindeutigen 

Einflussfaktoren wie Klima, Permafrostbedingungen oder Geomorphologie zugeordnet 

werden. Lediglich in vereinzelten räumlich begrenzten Gebieten bestimmten einzelne 

spezifische Einflussfaktoren die Seeveränderung. 

In dieser dissertation entwickelte Vegetationstrenddaten wurden  zusammen mit einer 

detaillierten geomorphologischen Landbedeckungsklassifizierung sowie mit Klimadaten 

kombiniert um die Produktivität der Tundravegetation in Nordalaska im Zusammenhang mit 

dem sich wandelnden Klima zu kartieren und vorherzusagen. Nach Jahrzehnten verstärkter 

Vegetationsentwicklung, ist seit kurzem ein umgekehrter Trend mit verringerter Produktivität 

zu beobachten, welcher sich mit weiter steigenden Temperaturen und erhöhtem Niederschlage 

fortsetzen wird. 

In diesem Projekt entwickelte ich Methoden zur multi-skaligen Analyse unterschiedlicher 

schneller Landoberflächenänderungen in hohen nördlichen Breiten in bisher seltener 

Detailgenauigkeit basierend auf zeitlich hochaufgelösten Landsat Satellitenzeitseriendaten 

über große räumliche Ausdehnung. Die Ergebnisse erlauben einen einzigartigen und bisher 

nicht dagewesenen großflächigen Einblick in Permafrostlandschaftsdynamiken, sogar von 

kleinflächigen und daher schwierig zu detektierenden Veränderungsprozessen. Der multi-

skalige Prozessierungsansatz kam einerseits zur Unterstützung und Planung von 

Feldkampagnen und zur Detektion und Auswahl von relevanten Studiengebieten zum Einsatz, 

und kann auch für die Parametrisierung und Validierung von pan-arktischen und globalen 

Modellen zur Vorhersage von Rückkopplungseffekten im Permafrost und 

Kohlenstoffemissionen in einem sich erwärmenden Klima verwendet werden. 
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Abbreviations and Nomenclature 

Notation Full Name / Description 

% Percent 

< Smaller than 

> Greater than 

± Plus-minus 

°C Temperature in degrees Celsius (centigrade) 

AbT Abalakhskaya Terrace 

ACIA Arctic climate impact assessment  

ACP Arctic Coastal Plain 

AF Arctic Foothills 

AK Alaska 

AKS Alaska Kobuk-Selawik Lowlands 

AVHRR Advanced Very High Resolution Radiometer 

AWI Alfred Wegener Institute for Polar- and Marine Research 

BeT Bestyakhskaya Terrace 

BFAST Breaks For Additive Season and Trend Algorithm 

BRT Boosted Regression Tree 

C Continuous Permafrost 

CAVM Circum-Arctic Vegetation Map 

CH4 Methane 

CI Confidence Interval 

CLC Coalescent low-center polygons  

C-LW Change land to water 

CO2 Carbon Dioxide 

C-PF Continuous Permafrost 

CS coastal saline water  

C-WL Change water to land 

CYA Central Yakutia 

D Discontinuous Permafrost 

DBEST 
Detecting Breakpoints and Estimating Segments in Trend 

Algorithm 

DEM Digital Elevation Model 

D-PF Discontinuous Permafrost 

DS Drained slopes  

DUE Data User Element 

e.g. exempli gratia (for example) 

ECMWF European Centre for Medium-Range Forecast  

ECV Essential Climate Variable 

EmT Emilskaya Terrace 

EROS Earth Resources Observation and Science Center 

ESA European Space Agency 

ESPA EROS Science Processing Architecture 

ETM+ Enhanced Thematic Mapper 
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FC Flat-center polygons  

FMask Landsat Masking Algorithm 

GCOS Global Climate Observing System 

GFC Global Forest Change 

GHG Greenhouse Gas 

GINA Geographic Information Network of Alaska 

GLOVIS USGS Global Visualization Viewer 

GPS Global Positioning System 

ha Hectare 

HC High-center polygons  

I Isolated (permafrost) 

Ice Ice/snow 

ICP Inner Coastal Plain 

IPA International Permafrost Association 

IPCC Intergovernmental Panel on Climate Change 

K Temperature in Kelvin 

km² Square Kilometer 

KOL Kolyma Lowland 

L1T Level-1 Terrain Corrected 

LaSRC Surface Reflectance Code  

LC Low-center polygons  

LGM Last Glacial Maximum 

LO Lake object 

LULC Land Use Land Cover 

MAAT Mean Annual Air Temperature 

MAP Mean Annual Precipitation 

MaT Maganskaya Terrace 

MERIS MEdium Resolution Imaging Spectrometer 

MLC Machine-learning Classification 

MODIS Moderate Resolution Imaging Spectrometer 

MSI Multi-spectral Index 

NDMI Normalized Difference Moisture Index 

nDTLB Nonpatterned drained thaw lake basins  

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NIR Near Infrared 

NOAA National Oceanic and Atmospheric Administration 

NSL North Slope 

NW Northwest 

OBIA Object-based image analysis 

OCP Outer Coastal Plain 

OLI Operational Land Imager 

OOB Out-of-bag accuracy 

p Probability 

PANGAEA Data Publisher for Earth & Environmental Science  
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Pg Petagram 

PRD Permafrost Region Disturbance 

px Pixel 

RC Riparian corridors  

RCP Representative Concentration Pathways 

RF Random Forest 

RTS Retrogressive thaw slump 

S Sporadic (permafrost) 

SB Sandy barrens  

SD Sand dunes  

S-L Stable land 

SMR Soil moisture regime 

SNAP Scenarios Network of Alaska and Arctic Planning  

SPOT Satellite pour l'Observation de la Terre 

S-W Stable water 

SWIR1 Shortwave Infrared 1 

SWIR2 Shortwave Infrared 2 

T1 Transect 1 

T2 Transect 2 

T3 Transect 3 

T4 Transect 4 

TBFM Trend Based Fire Mask 

TCB Tasseled Cap Brightness 

TCG Tasseled Cap Greenness 

TCW Tasseled Cap Wetness 

TK Thermokarst 

TL Teshekpuk Lake 

TM Thematic Mapper 

TOA Top-of-Atmosphere 

TyT Tyungyulyuyskaja Terrace 

USGS United States Geological Survey 

UTM Universal Transverse Mercator 

VHR Very high resolution 

WMO World Meteorological Organization 

WRS-2 World Reference System-2 

YAC Yedoma-Alas Complex 

YK Yukon-Kuskokwim 

YOCP Younger Outer Coastal Plain 

z.B. zum Beispiel (german: for example) 
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1. Introduction 

1.1 Scientific Background 

1.1.1 Climate and Permafrost 

The Earth’s climate has been changing over the last decades and is projected to be affected by 

further increasing temperatures (IPCC, 2013). In the northern high latitudes, the climate is 

warming about twice as strong as the entire northern Hemisphere, an effect which is termed 

Arctic amplification (Serreze & Barry, 2011). Temperatures are projected to increase on 

average by 5°C to more than 10°C until the end of the century (IPCC, 2013) (Scenario RCP 

8.5) over large parts of the northern high latitudes (see Figure 1.1). 

 

Figure 1.1: Global climate change model results for temperature (a) and precipitation (b) anomalies based 

on low (left) (RCP 2.6) and high (right) (RCP8.5) emission scenarios for the end of the 21
st
 century 

compared to the recent climate (1986-2005) (from IPCC, 2013). 
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Arctic warming particularly affects the cryosphere, including ice sheets, glaciers, sea ice, 

freshwater ice, snow cover, and permafrost. As the cryosphere is largely dependent on cold 

temperatures, it is highly vulnerable against further increasing temperatures.  

The permafrost region is located where some of the strongest climate changes are projected 

and covers about 23 million km² or 24% of the land mass of the northern hemisphere (Zhang, 

Barry, Knowles, Heginbottom, & Brown, 2008). Permafrost occurs mainly across the large, 

unglaciated regions of Siberia and North America (see Figure 1.2), as well as high mountain 

regions such as the Tibetan Plateau. Permafrost is defined as any ground material, which has a 

temperature of 0°C or less for at least two consecutive years (Van Everdingen, 2005). It is 

primarily dependent on a negative thermal energy balance, resulting from low mean annual 

air temperatures as the primary large scale forcing as well as more local or regional influences 

on the ground-thermal regime, such as land cover, snow depth, surface hydrology, and 

geology (Shur & Jorgenson, 2007). Changes of these primary drivers may exceed thresholds 

where permafrost becomes subject to degradation (Jorgenson, Racine, Walters, & Osterkamp, 

2001) and eventually irreversible thaw (Schaefer, Lantuit, Romanovsky, Schuur, & Witt, 

2014)This potentially leads to the thaw of permafrost organic matter, microbial 

decomposition, and the release of carbon to the atmosphere as carbon dioxide or methane 

(Walter Anthony, Anthony, Grosse, & Chanton, 2012). The release of these potent greenhouse 

gases could trigger further warming and therefore intensify permafrost thaw, also known as 

the permafrost carbon feedback (Schuur, et al., 2015). Since permafrost is a significant 

reservoir of soil organic matter, currently storing about 1035±150 Pg SOC in the upper 3 m of 

soils (Schuur, et al., 2015), widespread permafrost thaw has a strong potential to impact the 

global carbon budget. The permafrost carbon feedback, not yet considered in IPCC global 

climate models (Lawrence, Slater, & Swenson, 2012) and thus climate projections, may 

represent an additional challenge to reach political climate targets such as the Paris Agreement 

goal to limit climate warming to 1.5°C above pre-industrial values. 
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Figure 1.2: Distribution of Permafrost on the northern Hemisphere (Brown, Ferrians Jr, Heginbottom, & 

Melnikov, 1997) and the modern treeline (Walker, et al., 2005) 

In addition to the projected large scale climatic changes, permafrost is also affected by local 

dynamics, which have the potential to quickly alter the local thermal state of permafrost and 

lead to degradation and thaw. One such process is thermokarst, where permafrost degrades 

quickly after initial thaw of excess ground ice (Grosse, Jones, & Arp, 2013; Jorgenson & 

Shur, 2007). Typically, after initial thaw of ground ice and subsidence ponds are developing. 

Consequentially, ponds expand into the surrounding permafrost and thaw the permafrost 

around and below. Once the water body becomes deep enough to not completely refreeze each 

winter, it decouples the ground from the cold winter air temperatures and forms a talik 

(unfrozen sediments within permafrost) below the lake bottom. The unfrozen taliks are an 

important zone for microbial decomposition of former permafrost organic matter (Schuur, et 

al., 2008). This decomposition triggers the release of carbon, largely in the form of methane, 

into the atmosphere. Larger water bodies retain summer heat energy and further enhance 

active and now year-round thaw of the underlying permafrost even during winter. Finally, 

laterally growing lakes or ponds may drain after reaching a drainage gradient due to incision 

or bank overflow as well as talik penetration and ground-water connection in thin 
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discontinuous permafrost, leaving parts of the former lake basin exposed to cold mean annual 

air temperatures again. Permafrost thus can build up again in high northern latitudes. In some 

lowland regions, this process of lake formation, growth, and drainage may undergo several 

generations and cycles (see Figure 1.3) (Jorgenson & Shur, 2007; Grosse, Jones, & Arp, 

2013). The occurrence of thermokarst lakes even under very cold climatic conditions suggests 

that this disturbance is not purely climate-driven and makes thermokarst lake dynamics a 

widespread and highly important landscape shaping process within permafrost regions 

Figure 1.3: Schematic drawing of thermokarst evolution (from Grosse, Jones, & Arp, 2013) and 

corresponding examples from tundra regions in Alaska and northern Siberia. I-a: Nearly 

undisturbed permafrost; I-b: Initial thermokarst with surface deformation due to ice-wedge 

degradation; I-c: Development of thermokarst ponds; I-d: Small thermokarst lake with shallow 

developing talik; I-e: Large thermokarst lake with deep talik. II-a: Nearly undisturbed permafrost in 

NE-Siberia; II-b: Ice-wedge degradation in N-Alaska; II-c: Small thermokarst lake/pond in W-

Alaska (photo: J.Strauss); II-d: Large deep thermokarst lake in NE-Siberia; II-e: Recently drained 

thermokarst lake with bare lake-sediments, initial vegetation and lake remnants in W-Alaska; II-f: 

Complex thermokarst landscape with several generations of thermokarst lakes and basins. 



 1 - Introduction  

 5 

 

(Olefeldt, et al., 2016).  

Land surface changes in permafrost regions can be an indicator of permafrost degradation due 

to disturbances such as thermokarst or thermo-erosion. In turn, these permafrost region 

disturbances (PRD) can have a direct influence on the surrounding ground stability. 

Therefore, they can cause further degradation and trigger new PRD beyond their original 

extent. The most influential PRD include thermokarst lake development, retrogressive thaw 

slumps, or fire, but also anthropogenic influences, such as agriculture, road construction or 

mining of mineral resources. Their irregular abundance and often rapid development, from 

days to several years, makes it difficult to track and monitor these disturbances across large 

regions.  

Although sparsely populated, changes in permafrost may also influence the livelihood of 

communities in the permafrost region (Crate, et al., 2017; Marino, 2012). The stability of 

infrastructure (Nelson, Anisimov, & Shiklomanov, 2001), availability of natural resources, 

such as drinking water (Chambers, et al., 2007; White, Gerlach, Loring, Tidwell, & 

Chambers, 2007), traditional subsistence lifestyle (White, Gerlach, Loring, Tidwell, & 

Chambers, 2007), but also the existence of entire northern communities (Marino, 2012) might 

be highly endangered as a consequence of the rapidly warming climate and degrading 

permafrost in the Arctic. 

Due to these many factors, permafrost is a key component of northern environments that 

requires monitoring in order to understand the local to global consequences of climate change 

in the Arctic. Local-scale changes from permafrost thaw, due to their widespread abundance 

and rapid development, may potentially have global-scale implications. The importance of 

permafrost on the climate system has been recognized by the scientific community and 

political stakeholders and was therefore identified as an Essential Climate Variable (ECV) by 

the World Meteorological Organization (WMO) (GCOS, 2010). Although permafrost is 

defined as an ECV, to date it is not sufficiently implemented in global-scale climate models 

(Schaefer, Lantuit, Romanovsky, Schuur, & Witt, 2014). Recently, first approaches have been 

undertaken to model the influence of permafrost carbon feedbacks on the global climate 

(Koven, et al., 2011; Schneider von Deimling, et al., 2015). However, many variables are still 

missing or are insufficiently implemented to fully understand the influence of climate change 

on permafrost and vice versa and current models have a wide range of uncertainties 

(Lawrence, Slater, & Swenson, 2012). The knowledge gap concerning the abundance, 
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distribution, and rates of rapid landscape dynamics within the permafrost region and the gap 

between spatial scales of field investigations to climate model grids continue to be one of the 

main obstacles for estimating the impact of permafrost thaw on global climate in this century. 

To overcome this knowledge gap, this project aimed at observing and quantifying the 

processes that are related to permafrost changes over large regions. 

1.1.2 Remote Sensing 

Permafrost regions are characterized by harsh environmental conditions, remoteness and an 

expansive spatial extent, which makes detailed field-based observations and monitoring only 

feasible on local spatial scales in limited accessible sites. For the detection and monitoring of 

regional or larger scale landscape processes, remote sensing has been proven to be an 

excellent methodology (Westermann, Duguay, Grosse, & Kääb, 2015). Remote sensing helps 

to analyze changing landscape information over large regions, in different spectral 

wavelengths, and with several acquisitions over longer periods. 

Airborne earth observation data are available since the mid-20
th

 century for many Arctic 

regions, but accessibility and especially observation frequency of the data is usually very 

limited for these sources. With the launch of the Landsat mission in the 1970’s, with its 

several generations of satellites, a new age of global-scale space-borne earth observation was 

launched. In addition to the 30m multi-spectral Landsat data, many other optical imaging 

sensors and platforms (e.g. SPOT, MODIS, Sentinel 1-3, Worldview) were launched over the 

last 20 years, adding a wide variety of potential earth-observation data, from single snapshot 

very-high-resolution (VHR) acquisitions, to high frequency observations, but only low spatial 

resolution.  

With the opening of the Landsat archive for free data usage in 2008 (Woodcock, et al., 2008) 

and the latest open-data strategy of many space agencies, the amount of freely available 

remote sensing data has been growing quickly. This plethora of image data stimulated 

completely new data-centric applications, which focus on change analyses using multi-

temporal acquisitions, a practice, which would have been cost-prohibitive without freely 

available data (Wulder, Masek, Cohen, Loveland, & Woodcock, 2012) (Zhu Z. , 2017). Until 

recently, remote sensing based time-series analysis was largely carried out with low resolution 

data, such as MODIS, MERIS or AVHRR. With these data, spatially extensive processes, such 

as vegetation changes, or large-scale land-cover patterns can be monitored (Hansen, DeFries, 
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Townshend, & Sohlberg, 2000; Friedl, et al., 2002). Local-scale changes, which are typical for 

landscape dynamics in permafrost regions, e.g. thermokarst lake expansion or retrogressive 

thaw slump growth, are usually too small to be detected with spatial resolutions of 250 m or 

coarser. Therefore, data in finer resolution are necessary to detect the major indicators of 

permafrost landscape dynamics and to quantify these on decadal time scales. 

With the growth of data archives, processing and storage capabilities fortunately have grown 

as well to allow efficient storage and processing of large amounts of image data. These 

different factors promoted the application of time-series analysis with finer resolution data 

(Hansen, et al., 2013; Pekel, Cottam, Gorelick, & Belward, 2016). The analysis of permafrost 

features and dynamics in the high latitudes may also benefit from these developments, since 

observable features often are small in extent and characterized by rapid changes but also 

spread out over large regions. 

Due to frequent cloud cover, low sun angles and a very short summer season, optical remote 

sensing in the high latitudes is a highly challenging task (Stow, et al., 2004). However, at the 

same time the polar proximity provides a strong overlap of satellite overpasses, improving the 

satellite revisit times two- to five-fold, compared to tropical regions. Such high imaging 

frequency partially offsets the challenging conditions. Other sensor systems, e.g. radar can be 

a suitable alternative or addition to optical sensors, because they are independent of favorable 

weather conditions or illumination. However, their automated operational application for land 

monitoring over longer time-series is rather limited, due to the lack of a consistent data stream 

in the past caused by the strong variety and limited availability of sensors, inconsistent 

acquisition patterns and costly data access. With the launch of radar missions that provide data 

for free (e.g. Sentinel-1), operational applications started to include these potentially valuable 

data sources. 

With new technical approaches to analyze the continuously growing stream and archives of 

earth observation data, it is now possible to analyze temporal trends and patterns. In 

conjunction with a sufficiently high spatial resolution, new pathways emerge for the remote 

sensing-based analysis of changes in permafrost landscapes.  
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1.1.3 Research Questions 

Due to the latest technological advances and arising questions of permafrost science we aim 

to answer the following research questions. 

1. How can the extensive Landsat data archive be used effectively for detecting typical 

land surface changes processes in permafrost landscapes? 

2. What is the spatial distribution of lake dynamics in permafrost and which are the 

dominant underlying influencing factors? 

3. How are key disturbances in permafrost landscapes (lake changes, thaw slumps and 

fire) spatially distributed and what are their primary influence factors?  

1.2 General Approach 

Within this project I used optical remote sensing data, machine-learning and advanced image 

processing techniques to answer the key research questions. The remote sensing processing 

included the development of highly automated processing chains for the creation of datasets, 

which then were used for the detection of spatio-temporal changes in permafrost landscapes. 

A highly automated processing chain allows for the fast processing of large amounts of data 

with minimal user intervention in order upscale processing and analysis to large regions. The 

processing chain developed here was built in the programming language python and wraps all 

individual processing steps together from image acquisition (data ordering, download, file 

operations) to image pre-processing (image stacking, masking, sub-setting) to radiometric 

data operations (calculation of multi-spectral indices), to multi-temporal image analysis. The 

same principle of automation was applied to the processing of higher-level information, 

where I used state-of-the-art machine-learning classification and object based image-analysis 

for the detection and characterization of lake changes, retrogressive thaw slumps, and wildfire 

burn scars.  

For the support and validation of the remote sensing based methods, I gathered different local 

scale data during several field expeditions to the Lena Delta region in north-eastern Siberia 

(2014), northern Alaska (2015, 2016), and western Alaska (2016), as well as synthesized such 

data from collaborators. During field campaigns I acquired ground based information, such as 
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GPS data, lake bathymetry profiles, and airborne information from aerial survey flights. More 

detailed information on specific methodologies is given in Chapters 2 to 5. 

1.3 Thesis Structure 

The introductory chapter provides background information, state-of-the-art and key objectives 

for this study. The main part is structured into four chapters where each chapter consists of 

one original research article, which are published, in revision (minor) or in preparation for 

submission to international peer-reviewed journals. The details of the publications are listed in 

1.4. The study in chapter 2 “Detection of landscape dynamics in the Arctic Lena Delta with 

temporally dense Landsat time-series stacks” describes a methodology to derive typical 

change processes in the north-east Siberian Lena Delta, which is based on automated image 

processing and robust trend analysis of data from the Landsat archive. The study in chapter 3 

“Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions” uses 

the developed trend analysis as well as machine learning and advanced image processing 

techniques to find lake dynamics in four Arctic and Subarctic regions in Alaska and Siberia. 

The study in chapter 4 “Remotely sensing recent permafrost region disturbances across Arctic 

to Subarctic transects” analyzes the extent, distribution and key influencing factors of 

permafrost related disturbances (lakes, retrogressive thaw slumps and wildfire) based on the 

developed methodologies in chapters 2 and 3, as well as additional publicly available data 

sources. This study covers over 2.3 million km² over four large north-south transects in North 

America and Siberia, which envelop a wide range of permafrost types, geological and 

ecological conditions. The study in chapter 5 “Tundra landform and vegetation productivity 

trend maps for the Arctic Coastal Plain of northern Alaska” presents the methodology and 

technical aspects of the analysis of the response of tundra vegetation productivity on recent 

and predicted future climate change in northern Alaska using remote sensing data, GIS 

analysis and modelling approaches. The accompanying paper in the appendix of this thesis, 

“Reduced arctic tundra productivity linked with landform and climate change interactions”, 

focusses on the results and implications of tundra productivity changes.  

Chapter 6 synthesizes and discusses the results of the presented studies and puts them into the 

broader scientific context. The final chapter provides an outlook of yet untapped fields, which 

should be addressed in future research. 
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1.4 Author’s contributions 

1.4.1 Chapter 2 

Nitze, I., & Grosse, G. (2016). Detection of landscape dynamics in the Arctic Lena Delta with 

temporally dense Landsat time-series stacks. Remote Sensing of Environment, 181, 27-41. 

Ingmar Nitze designed the study, carried out the programming, data processing and analysis, 

and wrote the manuscript. Guido Grosse provided guidance for the study design and 

reviewed, edited, and revised the manuscript. Ingmar Nitze and Guido Grosse conducted field 

work in the Lena Delta for ground truthing activities. 

1.4.2 Chapter 3 

Nitze, I., Grosse, G., Jones, B.M., Arp, C.D., Ulrich, M., Fedorov, A., & Veremeeva, A. 

(2017). Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost 

Regions. Remote Sensing, 9(7), 640. 

Ingmar Nitze designed the framework of this study, developed the data processing and 

analysis pipeline, conducted the analysis, and wrote the manuscript with input of the co-

authors. Guido Grosse provided guidance for the framework of this study and revised and 

commented the manuscript. Ingmar Nitze and Guido Grosse conducted ground truthing 

activities in the Lena Delta, on the Alaska North Slope, and in Northwestern Alaska. All other 

authors conducted field work in one of the study regions and provided local lake specific data, 

field knowledge specific to each study site, and revised and commented the manuscript.  

1.4.3 Chapter 4 

Nitze, I., Grosse, G., Jones, B.M., Boike, J. & Romanovsky V. (in prep). Remotely sensing 

recent permafrost region disturbances across Arctic to Subarctic transects. Nature 

Communations 

Ingmar Nitze designed the study, developed the data processing and analysis pipeline, 

conducted the analysis, and wrote the manuscript. Guido Grosse provided guidance for the 

framework of this study and revised and commented the manuscript. Ingmar Nitze and Guido 

Grosse conducted ground truthing activities in the Lena Delta, on the Alaska North Slope, and 

in Northwestern Alaska. Benjamin Jones provided oblique aerial imagery for specific sites. 
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All other authors conducted field work in one of the study regions and provided local specific 

data, valuable field knowledge specific to each study site, and revised and commented the 

manuscript.  

1.4.4 Chapter 5 

Lara M.J., Nitze, I. Grosse, G. & McGuire, A.D. (in revision). Tundra landform and 

vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska. Nature 

Scientific Data. 

Mark J. Lara designed the study, developed the analysis, including remote sensing processing, 

GIS Analysis and modelling, and wrote the manuscript. Ingmar Nitze and Guido Grosse 

developed and processed NDVI trend data and edited, commented and revised the manuscript. 

Guido Grosse and A. David McGuire edited, commented and revised the manuscript and 

provided site specific and permafrost related knowledge. 

1.4.5 Appendix Paper 1 

Lara M.J., Nitze, I. Grosse, G. Martin, P., and McGuire, A.D. (in revision). Reduced arctic 

tundra productivity linked with landform and climate change interactions. Nature Scientific 

Reports. 

Mark J. Lara designed the study, analyzed the data, developed the polygonal tundra map, and 

wrote the manuscript. Ingmar Nitze and Guido Grosse developed and processed NDVI trend 

data and edited, commented and revised the manuscript. Philip Martin was pivotal in the 

conceptualization of the polygonal tundra map. A. David McGuire assisted in model 
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writing.   
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2.1 Abstract 

Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes 

globally, but due to their extent and remoteness most of the landscape changes remain 

unnoticed. In order to detect disturbances in these areas we developed an automated 

processing chain for the calculation and analysis of robust trends of key land surface 

indicators based on the full record of available Landsat TM, ETM+, and OLI data. The 

methodology was applied to the ~29,000 km
2
 Lena Delta in Northeast Siberia, where robust 

trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for 

Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 

204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets 

revealed regional greening trends within the Lena Delta with several localized hot-spots of 

change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution 

various permafrost-thaw related processes and disturbances, such as thermokarst lake 

expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena 

Delta region, many of which have not been noticed or described before. Such hotspots of 

permafrost change exhibit significantly different trend parameters compared to non-disturbed 

areas. The processed dataset, which is made freely available through the data archive 

PANGAEA, will be a useful resource for further process specific analysis by researchers and 
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land managers. With the high level of automation and the use of the freely available Landsat 

archive data, the workflow is scalable and transferrable to other regions, which should enable 

the comparison of land surface changes in different permafrost affected regions and help to 

understand and quantify permafrost landscape dynamics. 

2.2 Introduction 

The Arctic has been subject to a significant increase in air temperatures during the last 

decades, which are projected to further rise about 6 °C in terrestrial and around 10 °C in 

marine areas by the end of the 21st century (IPCC, 2013 — RCP 6.0). Such significant and, 

on geological time scales, sudden changes of climatic conditions have a potentially massive 

impact on thaw-vulnerable permafrost landscapes, which cover about 24 % of the northern 

hemisphere's land mass (Zhang, Barry, Knowles, Heginbottom, & Brown, 2008). Increasing 

air and ground temperatures can lead to widespread thaw of permafrost soils and frozen 

deeper deposits, which are estimated to account for a carbon stock of more than 1.5 times that 

of the atmosphere (Hugelius, et al., 2014; Strauss, et al., 2013). Thaw and further warming of 

portions of this soil carbon pool would initiate and accelerate the decomposition of the largely 

inactive frozen soil carbon to carbon dioxide and methane, which in turn will contribute to 

further warming. The result is a positive feedback cycle with potentially global implications 

for climate and society (Grosse, et al., 2011; Schuur, et al., 2015). In particular, low-lying 

permafrost-dominated Arctic river deltas, located at the interface of terrestrial and marine 

realms, are highly vulnerable to landscape-scale changes driven by global warming. Important 

factors for these regions are permafrost thaw and terrain subsidence as well as changes in 

runoff patterns and sediment transport, seasonality and ice regimes, and relative sea level and 

coastline position (Burn & Kokelj, 2009; Ericson, Vörösmarty, Dingman, Ward, & Meybeck, 

2006; Solomon, 2005; Walker H. J., 1998; Terenzi, Jorgenson, Ely, & Giguère, 2014). 

Therefore, it is necessary to closely monitor the dynamics of Arctic river deltas to better 

estimate landscape scale climate change impacts and to quantify carbon fluxes. Due to the 

large size and remoteness of Arctic regions, many local and medium scale geomorphological, 

ecological, and hydrological processes remain unnoticed because field studies can only focus 

on limited and logistically accessible sites. Data on landscape-scale changes is sparse and 

heterogeneously distributed among few field study sites (e.g., Samoylov field station in the 
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southern Lena Delta, Siberia) or natural resource exploration sites (e.g. Prudhoe Bay, Alaska). 

Various remote sensing data and techniques can provide excellent tools for detecting, 

monitoring, and scaling rapid disturbances as well as gradual changes in permafrost 

landscapes and overcome knowledge gaps. Field and high resolution remote sensing studies 

that have focused on local spatial extents include observations of permafrost thaw dynamics 

(Raynolds, et al., 2014), surface hydrology (Karlsson, Lyon, & Destouni, 2014; Muster, 

Langer, Heim, Westermann, & Boike, 2012; Plug, Walls, & Scott, 2008) or coastal erosion 

(Günther, Overduin, Sandakov, Grosse, & Grigoriev, 2013; Lantuit, et al., 2011).   

Broad-scale processes in the Arctic or even globally, such as hydrological, vegetation or 

climate dynamics, are generally monitored with remote sensing data at a high temporal-, but a 

limited spatial resolution of 250m or coarser (Stow, et al., 2004; Beck & Goetz, 2011; 

Fensholt & Proud, 2012; Goetz, et al., 2011; Urban, et al., 2014). While these approaches 

capture hemispheric-scale patterns, a large proportion of relevant landscape changes occurs at 

rather small spatial scales with high temporal dynamics, such as thermokarst lake changes or 

thaw slump development and escapes observations. The magnitude and abundance of these 

processes thus remains unnoticed in most places.   

With increasing computation capacities and novel processing techniques in conjunction with 

the free availability of the entire Landsat archive, it becomes viable to exploit this valuable 

and consistent data source to assess multi-scaled land surface dynamics in the high latitude 

permafrost regions. Recently, the focus of monitoring high resolution land cover changes or 

disturbances shifted from the analysis of single, widely spaced observations towards a high-

frequency multi-temporal analysis using the entire Landsat archive, with over 40 years of 

continuous acquisitions. Examples include mostly forestry applications, for example 

disturbance and recovery monitoring (Fraser R. , Olthof, Carrière, Deschamps, & Pouliot, 

2012; Hansen, et al., 2013; Kennedy, Cohen, & Schroeder, 2007; Olthof & Fraser, 2014; 

Pflugmacher, Cohen, & Kennedy, 2012), monitoring of glacial flow velocities (Rosenau, 

Scheinert, & Dietrich, 2015), or observations of snow cover persistence in Alaska (Macander, 

Swingley, Joly, & Raynolds, 2015). These studies are predominantly based on the analysis of 

temporal trajectories of multi-spectral indices (MSI) or the original spectral bands. In 

terrestrial permafrost areas, robust linear trend analysis of Landsat Tasseled Cap (TC) index 

time-series has been proposed (Fraser R. , Olthof, Carrière, Deschamps, & Pouliot, 2012) and 
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applied in different studies of land changes in Northwestern Canada, such as post-fire forest 

recovery (Fraser R. H., et al., 2014), the evolution of thaw slumps (Brooker, Fraser, Olthof, 

Kokelj, & Lacelle, 2014) and land cover change classification (Olthof & Fraser, 2014). Other 

studies on disturbances and changes in permafrost regions, based on multi-temporal Landsat 

data are available, such as thermokarst lake evolution or permafrost degradation (Beck, 

Ludwig, Bernier, Lévesque, & Boike, 2015; Karlsson, Lyon, & Destouni, 2014; Plug, Walls, 

& Scott, 2008). However, these studies do not fully exploit the temporal capabilities of the 

full Landsat archive.   

In this study we present the multi-temporal analysis of Landsat-based land surface properties 

for the entire Lena river delta, an approximately 29,000 km2 large permafrost-dominated 

region in Northern Siberia, for the 1999 to 2014 period. We provide robust calculations of 

linear trends of different well-established MSI (Landsat Tasseled Cap, NDVI [Vegetation], 

NDWI [Water], NDMI [Moisture]) and use these to assess the recent dynamics in this deltaic 

lowland landscape. We further identify and highlight diverse permafrost related processes and 

disturbances associated with the calculated spectral trends on different temporal and spatial 

scales. 

2.3 Study Area and Data 

2.3.1 Study Area 

The Lena Delta is located in northeastern Siberia's continuous permafrost zone between 72° 

and 74°N and 123° to 130°E (Figure 2.1). With an approximate size of 29,000 km² it is the 

largest Arctic river delta and one of the largest deltas globally (Walker H. J., 1998; Schneider, 

Grosse, & Wagner, 2009). It is surrounded by the Laptev Sea with the adjacent New Siberian 

Islands to the north and the Chekanovsky and Kharaulakh mountain ranges to the south.  

The delta is characterized by numerous river channels and more than 1500 islands of various 

sizes (Are & Reimnitz, 2000; Grigoryev, 1993). Morphologically, the delta can be divided 

into three distinct terraces (Grigoryev, 1993; Schwamborn, Rachold, & Grigoriev, 2002). The 

first terrace, further divided into the recent and the Holocene floodplains, is the youngest and 

currently active part of the delta and covers most of the east-northeastern areas as well as the 
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southern and southwestern-most parts. Its surface predominantly consists of wetlands with ice 

wedge-polygonal tundra and thermokarst lakes (Morgenstern, Grosse, & Schirrmeister, 2008). 

The second terrace, also referred to as the Arga Complex, is located in the northwestern part 

and contains mostly sandy, comparably dry soils with low ground-ice content. Large, mostly 

oriented lakes and depressions are abundant in this area (Morgenstern, Grosse, & 

Schirrmeister, 2008). The third and oldest terrace appears in isolated patches in the southern 

delta region, and consists of remnants of a Late Pleistocene accumulation plain (Schirrmeister, 

et al., 2003). It is characterized by very ice-rich, organic-rich, fine grained sediments 

(Yedoma), which form a polygonal tundra landscape with deep thermokarst lakes and basins 

as well as thermoerosional gullies (Morgenstern A. , Grosse, Günther, Fedorova, & 

Schirrmeister, 2011).  

The geological and hydrological surface conditions are well reflected in the vegetation types. 

Within the 1st and the 3rd terraces, wet or moist Tundra is the dominating land-cover. 

However, drier tundra conditions are not uncommon. On the 2nd terrace and particularly in 

the northwestern delta region, seasonally drier conditions prevail with dry tundra being the 

most typical land-cover interspersed with wet or moist tundra, (see Figure 2.2) (Schneider, 

Grosse, & Wagner, 2009).  

Near-surface permafrost soils of the Lena Delta contain a large organic carbon pool that is 

potentially vulnerable to mobilization upon thaw (Zubrzycki, Kutzbach, Grosse, Desyatkin, & 

Pfeiffer, 2013). Deeper sediments, in particular in the 3rd terrace, also contain a large organic 

carbon pool and may be thaw vulnerable due to their high ground ice content (Schirrmeister, 

et al., 2011).  

The study area's climate is typical for the High Arctic with a mean annual temperature of -

12.5 °C, measured at Samoylov station in the southern Lena Delta (Boike, et al., 2013) 

(observation period: 1998- 2011). The seasonal temperature differences are pronounced with 

mean temperatures of 10.1 °C in July and−33.1 °C in February. Precipitation amounts are low 

with an average of about 200 mm, predominantly falling as rain during the short summer 

period. In the study area, the permafrost is continuous with depths of around 500-600m, 

though there is potential for permafrost-penetrating taliks underneath the major delta 

channels. The active layer depths range from 30 to 90 cm (Boike, et al., 2013; Grigoryev, 
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1993). Vegetation cover in the Lena Delta is dominated by sedge, grass, moss and dwarf shrub 

wetlands (Schneider, Grosse, & Wagner, 2009).  

The Lena Delta is affected by pronounced seasonal runoff dynamics partially driven by a very 

large watershed integrating contributions from several climate zones. A significant spring 

flood during snowmelt and ice breakup results in water levels increased by several meters and 

temporary flooding of low-lying areas, followed by a strong drop of water levels in channels 

and a gradual decline of discharge through the summer season (Fedorova, et al., 2015; Yang, 

et al., 2002). 

 

Figure 2.1: Synthetic Landsat mosaic of Lena Delta indicated with main geomorphological terraces. 

Mosaic based on modeled reflectance values of multi-temporal trend-analysis. RGB bands (SWIR-1, NIR, 

Red). Terrace extent (terraces 2 and 3) from Morgenstern, Röhr, Grosse and Grigoriev (2011). 
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2.3.2 Data 

The entire Landsat (LS) image archive of Thematic Mapper (TM), Enhanced Thematic 

Mapper+ (ETM+) and Observing Land Imager (OLI) sensors was searched and filtered over 

all Worldwide-Reference System-2 (WRS-2) tiles intersecting the Lena Delta. In total 14 

WRS-2 tiles were selected for this study (Table 2.1). The data were acquired in 

radiometrically and geometrically terrain-corrected state (processing level L1T) from the 

United States Geological Service (USGS) via the GLOVIS and Earth Explorer platforms. The 

imagery has a spatial resolution of 30m and largely similar spectral characteristics. All 

common spectral bands (blue, green, red, near-infrared / NIR, short-wave-infrared-1 and -2 / 

SWIR1 and SWIR2) were used for analysis while the remaining bands were excluded from 

further processing. Images from the first Landsat sensor generation (Multispectral Scanner / 

MSS) were not taken into consideration at this point, because of their coarser spatial 

resolution and lower spectral fidelity.  

 

Figure 2.2: Land cover fraction per terrace on land areas. Land cover types from Schneider et al. (2009). 

Water classes are excluded. 

The image selection was filtered to acquisition dates between July 1st and August 30th to 

represent the peak growing season, chosen to match the acquisition period of other Landsat 

based trend analysis studies in high latitudes for better comparability (Fraser R. H., et al., 

2014; Ju & Masek, 2016). Maximum cloud coverage was set to 80 % in order to minimize the 
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influence of confounding factors such as clouds and shadows. The availability of Landsat 

images in the study area started for the majority of locations in 2000. In some locations, the 

archive reaches back until year 1999. Therefore, the full time-series spans 14 to 15 years. In 

total 204 images fulfilled the selected criteria regarding date of acquisition and cloud cover. 

The spatial distribution of data availability exhibits an inhomogeneous pattern with a gradient 

from the eastern and northeastern coastal regions of the Lena Delta, where only few scenes 

are available, towards the southern parts, which exhibit a better coverage (cf. Figure 2.5). 

Owing to the high latitude the image acquisition paths have large overlapping areas, thus 

leading to an increased theoretical acquisition frequency compared to lower latitudes. The 

majority of the study area is captured by 4 to 5 overlapping image paths, resulting in a 

repetition cycle of 3 to 5 days in a single satellite setup and even higher frequency with more 

than one satellite available. However, this advantage of strong overlap and potential high 

acquisition frequency is dampened by the strong cloudiness, short snow free season, and the 

lack of on-board data archiving on Landsat-5 while at the same time this region is very remote 

from receiving stations (Goward, et al., 2006).  

The data availability over time has been rather inconsistent. The number of available image 

tiles over the entire study areas fluctuated between a minimum of 2 in years 1999 and 30 per 

year in 2013. Since 2007 the data availability has been rather favorable and improved further 

with the launch of Landsat-8 in 2013 (Figure 2.3). If shoulder seasons in June and September 

were included in the processing and analysis, the number of images would be 346, an increase 

of about 70 %. 

Table 2.1: All WRS-2 tiles over the Lena Delta with number of available images within selected criteria 

WRS-2 Path WRS-2 Row # images WRS-2 Path WRS-2 Row # images 

127 10 1 131 9 25 

128 9 1 132 8 21 

128 10 15 132 9 24 

129 9 15 133 8 22 

130 8 2 133 9 19 

130 9 11 134 8 13 

131 8 17 135 8 18 
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Figure 2.3: Number of Landsat scenes within selection criteria per month of the entire study area during 

the observation period. 

2.3.3 Methods/processing 

Our processing chain from the downloaded raw images to the final product consists of many 

different steps, which can be grouped into pre-processing, and analysis/trend calculation 

(Figure 2.4). The preprocessing included radiometric corrections, spatial corrections and 

reprojection as well as data subsetting. The final time-series processing includes multi-

spectral index calculation and trend analysis. The time-series processing predominantly 

follows the robust linear trend analysis of Landsat Tasseled Cap Indices proposed by Fraser et 

al. (2012). 
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Figure 2.4: Flowchart of image processing chain. 

Preprocessing 

First, all archived Landsat data files were extracted and sorted by their spatial location (WRS-

2 path/row). The FMask algorithm in Version 3.2.1 beta (Zhu & Woodcock, 2012) was 

applied to each image with its standard settings. This algorithm detects clouds, shadows and 

snow/ice in Landsat images of all generations. The FMask layer was then used to mask out all 

non-valid data: Clouds, Shadows, Snow/Ice and NoData. Owing to the large amount of data, 

the study site was subdivided into 62 subsets of 30 × 30 km large tiles, which equals 1000 × 

1000 pixels per image tile. As the Lena Delta has a large spatial extent spanning three UTM 
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zones (51 to 53), several reprocessing steps were necessary to achieve a common spatial 

reference in conjunction with an exact spatial alignment of each pixel. UTM Zone 52N in 

WGS 84 was chosen as the master projection, as it is centrally located in the study area and 

warrants the least distortion over the entire dataset. The masked image tiles with the master 

projection were clipped to the particular subset/tile boundaries, where applicable. Those with 

a different native projection were reprojected with a cubic convolution kernel and aligned to 

the common pixel footprint during the subsetting process using gdalwarp of the gdal utilities 

functions. Finally all subsets were radiometrically calibrated to top-of-atmosphere (TOA) 

reflectances in order to create seasonally normalized and comparable data among sensors. 

 

Figure 2.5: Number of unobstructed observations after pre-processing over the study period between 1999 

and 2014 super-imposed with WRS-2 boundaries. 
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Trend Calculation 

For the final processing, all available datasets were stacked to four-dimensional data-cubes 

with one temporal, one spectral and two spatial dimensions. The spectral domain consists of 

the six common optical Landsat bands (Blue, Green, Red, NIR, SWIR-1, SWIR-2). Several 

multispectral indices, serving as proxies for different land-surface properties, were calculated 

over each image of the data stack. For this analysis we included the Landsat specific Tasseled 

Cap indices Brightness (TCB), Greenness (TCG), and Wetness (TCW) (Baig, Zhang, Shuai, 

& Tong, 2014; Crist, 1985; Huang, Wylie, Yang, Homer, & Zylstra, 2002) as well as other not 

sensor-specific indices, such as the Normalized Difference Vegetation Index (NDVI) (Rouse 

Jr, Haas, Schell, & Deering, 1974), the Normalized Difference Water Index (NDWI) (Gao, 

1996) and the Normalized Difference Moisture Index (NDMI) (Wilson & Sader, 2002). They 

were chosen to reflect a variety of surface characteristics like vegetation status, surface 

moisture or open water. The TC indices were calculated with the sensor-specific formulas for 

TOA reflectance data (Table 2.2). 

 

𝑇𝐶𝑥 =  ρ𝐵 ∗ 𝐹𝐵 +  ρ𝐺 ∗ 𝐹𝐺 +  ρ𝑅 ∗ 𝐹𝑅 + ρ𝑁𝐼𝑅 ∗ 𝐹𝑁𝐼𝑅 + ρ𝑆𝑊𝐼𝑅1 ∗ 𝐹𝑆𝑊𝐼𝑅1 + ρ𝑆𝑊𝐼𝑅2 ∗ 𝐹𝑆𝑊𝐼𝑅2  (2.1) 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑅

𝜌𝑁𝐼𝑅+𝜌𝑅
 (2.2) 

𝑁𝐷𝑊𝐼 =
𝜌𝐺−𝜌𝑁𝐼𝑅

𝜌𝐺+𝜌𝑁𝐼𝑅
 (2.3) 

𝑁𝐷𝑀𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅1
 (2.4) 
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Table 2.2: Landsat Tasseled Cap Factors for Landsat TM, ETM and OLI top-of-atmosphere reflectance 

values. 

 Band Factors  

Sensor - Index FB FG FR FNIR FSWIR1 FSWIR2 Reference 

L5 - TCB 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303 Crist (1985) 

L5 – TCG -0.1603 -0.2819 -0.4934 0.7940 -0.0002 -0.1446 

L5 – TCW 0.0315 0.2021 0.3102 0.1594 -0.6806 -0.6109 

L7 - TCB 0.3561 0.3972 0.3902 0.6966 0.2286 0.1596 Huang et al. (2002) 

L7 – TCG -0.3344 -0.3544 -0.4556 0.6966 -0.0242 -0.2630 

L7 – TCW 0.2626 0.2141 0.0926 0.0656 -0.7629 -0.5388 

L8 – TCB 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872 Baig et al. (2014) 

L8 – TCG -0.2941 -0.243 -0.5424 0.7276 -0.0713 -0.1608 

L8 – TCW 0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

 

With the final step, the linear trends for each index were calculated in the temporal domain, 

using the robust Theil-Sen (T-S) regression method (Sen, 1968; Theil, 1992), which is 

insensitive to around 30 % outliers and has been found to outperform standard least-squares 

regression on remote sensing data (Fernandes & Leblanc, 2005). Furthermore, this technique 

has been successfully applied to the trend detection of Landsat TC time-series in the Canadian 

North-West for temporal analysis of forested areas and thaw slump activity (Fraser R. H., et 

al., 2014; Olthof & Fraser, 2014; Brooker, Fraser, Olthof, Kokelj, & Lacelle, 2014). The T-S 

regression method is based on the calculation of paired slopes, thus, the calculation of slopes 

from every point in time to each other. The median of these calculated slopes is taken as the 

master slope over the entire time-series. 

ts_slope = 𝑚𝑒𝑑𝑖𝑎𝑛 (∑
(𝑦𝑖−𝑦𝑗)

(𝑡𝑖−𝑡𝑗)

𝑛

𝑗=1
𝑖=1

) (2.5) 

The intercept is defined as: 

intercept = median(y) – ts_slope * median(t) (2.6) 

The final output was written into geospatial raster files with the same spatial resolution and 

footprint of the input Landsat data with four bands each. Every output file contains 

information on slope, intercept scaled to year 2014, and the upper and lower confidence 
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intervals of the slope (α = 0.05). T-S calculations were carried out with the scipy.stats package 

in the python programming language. Output products were calculated for each MSI. 

2.4 Results 

The calculated trends of the Tasseled Cap- and normalized multispectral indices (MSI) exhibit 

time-series trajectories on multiple scales ranging from local disturbances to regional 

processes. In the following subsections, different changes observed on multiple spatial scales 

will be presented and analyzed. 

2.4.1 Regional Scale changes 

Regional-scale trends in vegetation and moisture patterns become clearly apparent in the 

resulting datasets. The different MSI trend directions and magnitudes indicate the type and 

magnitude of changes within the study area (Figure 2.6). 

Table 2.3: Statistics of trend slopes (mean and standard deviations) and trend intercept (mean, baseline 

July 1 2014), over the entire study area and divided by terrace. 

 

Lena Delta 1st terrace 2nd terrace 3rd terrace 

 
Slope Intercept Slope Intercept Slope Intercept Slope Intercept 

Index mean std mean mean std mean mean std mean mean std mean 

TCB 0.0168 0.0139 0.2910 0.0158 0.0149 0.2622 0.0179 0.0128 0.3092 0.0197 0.0118 0.3374 

TCG 0.0194 0.0139 0.0122 0.0208 0.0145 0.0178 0.0126 0.0075 -0.0114 0.0364 0.0105 0.0464 

TCW 0.0271 0.0149 -0.0805 0.0257 0.0158 -0.0596 0.0260 0.0123 -0.1121 0.0389 0.0131 -0.1011 

NDVI 0.0359 0.0323 0.4605 0.0375 0.0381 0.4519 0.0261 0.0202 0.3504 0.0501 0.0191 0.4968 

NDMI 0.0271 0.0413 0.0993 0.0192 0.0475 0.1453 0.0394 0.0248 -0.0049 0.0417 0.0290 0.1064 

NDWI -0.0364 0.0302 -0.4102 -0.0390 0.0348 -0.3764 -0.0249 0.0199 -0.3215 -0.0487 0.0174 -0.4524 

 

Vegetation/greening 

The terrestrial domain of the Lena Delta exhibits a gradual moderate greening trend, which is 

evident in both vegetation indices TCG and NDVI (Figures 2.5-2.6). For TCG, a mean 

decadal increase of 0.0194 ± 0.0139 (1 standard deviation) (Table 2.3) is calculated, whereas 

NDVI has a mean decadal increase of 0.0359 ± 0.0323 in terrestrial areas over the entire delta. 
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An in-depth analysis reveals regional differences between the delta terraces, but also further 

localized variation of the greening trends.  

The second terrace shows the smallest increase among all subregions with only a weak 

positive trend of TCG and NDVI (Table 2.3). In contrast, the first and third terraces exhibit a 

stronger than average greening trend, with the third terrace showing a more pronounced 

greening apparent in both TCG and NDVI. The small STD of the TCG and NDVI trends 

within the third terrace indicate a more homogeneous greening within this sub-region.  

Apart from the differentiation between the terraces, the strongest greening trends 

predominantly occur in the southern and eastern delta regions around the main river channels 

and the adjacent mainland areas to the south. A similar, but more isolated, greening hot-spot 

can be observed in the active northern central delta region. All of the detected hot-spots are 

located along the widest river channels, which presumably are the most active parts of the 

Lena Delta and under a stronger influence of the comparably warm waters of the Lena river.  

The Intercept values, which are the predicted TCG and NDVI values for 2014, follow a strong 

regionalization based on the delta terraces (Figures 2.7-2.8). Both vegetation indices exhibit 

the highest values on the third terrace and the active floodplain. On the Holocene floodplain 

of the first terrace and the second terrace with mostly dry and sandy substrate, both indices 

are generally lower. 

Wetness/moisture 

The calculated slopes of TCW and NDMI exhibit a general wetting trend over the majority of 

the study area with some spatial variation. The strongest increase in wetness can be found in 

the eastern coastal regions, the northern active delta region, Khardang Island, and Bykovsky 

Peninsula. The wetness trend in these regions correlates well with the observed increase in 

Greenness. However, at the same time the second terrace is also subject to a wetting trend 

without the simultaneous greening. The trends of both indices correlate generally well, but 

disagree to some extent. Such differences can be observed on the western Bykovsky 

Peninsula or the east-northeastern delta region.  
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As already observed with the vegetation indices, both moisture sensitive MSI exhibit strong 

regional patterns varying by terrace unit, where the first terrace has the highest TCW intercept 

values. These are likely caused by the influence of the Lena river with its annual flood during 

its ice break-up in late spring. Within this particular sub-region the eastern and northern 

coastal areas show the highest wetness values. The second and third terraces in contrast 

exhibit lower absolute intercept values in the TCW and NDMI, indicating generally drier 

surfaces. 

Brightness/albedo 

TCB exhibits a weak positive trend over the majority of the study area. Spatial differences can 

be observed, however as opposed to the other indices, there are no distinct patterns between 

the different terraces for the slope component of the trend analysis. In contrast, the intercept 

exhibits increasing values from the first-, to the second-, to the third terrace. 

NDWI 

NDWI has a strong inverse correlation with NDVI and predominantly represents the temporal 

behavior of the greenness instead of water or wetness. The regional scale information is 

redundant to greenness and therefore omitted from further regional scale analysis. However, 

NDWI is kept for the analysis of local scale changes, due to its ability to discriminate between 

water and non-water information. 
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Figure 2.6: Regional overview of decadal trend slope of multi-spectral indices (TCB, TCG, TCW, NDVI, 

NDMI, NDWI). 

 

Figure 2.7: Boxplots of trend slopes of each index over the entire Lena delta, and subdivided by 

geomorphological terrace. 
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Figure 2.8: Regional overview of trend intercept of multi-spectral indices scaled to year 2014 (TCB, TCG, 

TCW, NDVI, NDMI, NDWI). 

 

Figure 2.9: Boxplots of trend intercept of each index over the entire Lena delta, and subdivided by 

geomorphological terrace. 

2.4.2 Local scale changes 

With a spatial resolution of 30 m, the trend analysis of Landsat time-series excels in the 

detection of local scale features and trends of land surface properties associated with changes 

in such features compared to other high-temporal, but coarse-resolution data such as from 
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MODIS. In the following section, we highlight examples of different typical changes for 

specific sites on or around the island of Sobo-Sise in the southeastern Lena Delta, where we 

conducted permafrost field studies in summer 2014 (Figure 2.10). The detected changes 

include thermokarst processes, such as lake expansion and drainage and fluvial processes, 

such as erosion and deposition. Examples of coastal dynamics are presented from the 

northwestern delta region (Figure 2.10). 

 

Figure 2.10: RGB composite maps of Tasseled Cap Index trend slopes of Sobo-Sise Island (A) and the 

northwestern coastal region (B). Subset locations marked with red boxes. A-1: Thermokarst lake 

drainage; A-2: Thermokarst lake expansion; A-3: Fluvial erosion and sandbank migration; B-1: Coastal 

inundation; B-2: Barrier island migration. Band combination - Red: TC Brightness, Green: TC 

Greenness, Blue: TC Wetness. 

Thermokarst lake changes 

Lake drainage 

Several examples of rapidly changing thermokarst lakes were found in the study area, 

predominantly on the third terrace or the active parts of the Lena Delta. In many cases, partial 

or complete drainage was noticed during the observation period. A prime example of this 

disturbance type is located on the island of Sobo-Sise in the eastern Lena Delta, where a mid-
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sized thermokarst lake (ca. 1 km²) completely drained during the observation period (Site A-1, 

Figures. 2.9-2.10). Due to the drainage, the surface at this site was subject to a transition from 

water to bare exposed lake sediment to partial vegetation cover over time (Figure 2.11), which 

is very well documented in the trajectories of the different MSI-trends (Figure 2.12). The TCB 

index exhibits a strong positive trend, driven by the change from a dark water surface to a 

brighter soil and later vegetation surface. Both vegetation indices strongly increase after the 

drainage event due to the growth of initial vegetation, most likely tall sedges rapidly growing 

and thriving on nutrient-rich lake sediments. Additionally, all water or moisture sensitive 

indices (TCW, NDMI, NDWI) trace the transition from water to a terrestrial surface with a 

strong negative trend. The drainage event occurred between 2003 and 2005 (Figure 2.12), a 

more precise period cannot be determined from this dataset due to a lack of observations 

during this period. Spatially, intra-basin differences can be detected that are caused by local 

variation in vegetation emergence patterns or wetness conditions within the drained lake basin 

as shown in the cross-section of index slopes (Figure 2.12). Outside the basin, all slopes 

exhibit a spatially consistent pattern with values close to zero.  

In the entire Lena Delta region, more than 40 full or partial lake drainage events were 

observed, causing highly significant trends (T-S confidence intervals, α=0.05) with the same 

trend directions and similar magnitudes that are clearly distinguishable from stable land forms 

or regional-scale changes (see Section 2.3.1). Most lake drainage events occurred in the active 

parts of the Lena Delta, predominantly in the vicinity of river channels, which tap and drain 

lakes by lateral erosion. 
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Figure 2.11: RGB composite maps of Tasseled Cap Index trend slopes (TCB–TCG–TCW) and Landsat 

color-infrared images (NIR-R-G) of thermokarst lake drainage (A-1). A: Trend slopes of drained 

thermokarst lake with temporal profile location and cross-section. B: Landsat-7 acquired on July 28th 

2000. C: Landsat-5 acquired on July 25th 2007. D: Landsat-8 acquired on July 16th 2013. Map 

coordinates: UTM52N. 
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Figure 2.12: Temporal profile of and cross-section through drained thermokarst lake (A-1). Left: 

Temporal profile of Tasseled Cap (top) and normalized (bottom) multi-spectral indices from 1999 to 2014 

with Theil-Sen trend lines. Potential timing of disturbance indicated in the background. Right: Cross 

section of trend slopes of all multi-spectral indices through drained thermokarst lake basin super-imposed 

by land cover and disturbance locations. 

Lake expansion 

Thermokarst lake expansion, a typical process in permafrost landscapes involving thermal and 

mechanical erosion of shore bluffs containing ice-rich permafrost, was observed for most of 

the lakes in the study area. In contrast to the sudden drainage, this process is characterized by 

a gradual erosion of lake shores, usually with average rates of tens of cm to few meters per 

year for typical thermokarst lakes (Jones B. M., et al., 2011). 

For this process, the transition from vegetated tundra surface to water exhibits trends in the 

opposite direction of a lake drainage site (Figures 2.13-2.14). The water sensitive indices 

TCW and NDWI exhibit a strong positive trend in a pure change pixel (0.03, 0.253), whereas 

NDVI and TCB react with a negative trend of -0.245 and -0.047, respectively. TCG and 

NDMI however, do not seem to be sensitive to this kind of change, as indicated by values 

close to zero. Due to the slow expansion in conjunction with the pixel size of 30 meters, this 

type of change is subject to a large number of mixed pixels. Depending on the rate of the lake 

expansion and the point in time where the respective pixel or parts thereof became subject to 

change the trend slopes may lie in between the pure end-members of water and tundra. 

Additional factors such as suspended sediment loads also influence the trend slopes. 
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Figure 2.13: RGB composite map of Tasseled Cap Index trend slopes (TCB–TCG–TCW) of thermokarst 

lake expansion on Sobo-Sise Island (A-2). Map coordinates: UTM52N. 

 

Figure 2.14: Temporal profile of Tasseled Cap (top) and normalized (bottom) multi-spectral indices from 

1999 to 2014 with Theil-Sen trend lines of eroding lake shore (A-2). 
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Fluvial dynamics 

The Lena Delta is a highly active hydrological system with different fluvial processes, 

including the erosion of terrestrial areas, the accumulation and movement of sandbanks (cf. 

Figures 2.10, 2.16), and other morphological changes such as shifting river channels. 

Examples of rapid fluvial erosion can be found in the southern portion of the delta where the 

main channels of the river cut into the elevated surface of the third delta terrace consisting of 

ice-rich Yedoma permafrost deposits. This erosion causes the formation of steep cliffs of up to 

25 meters in height. A prime example is located on the northern shore of Sobo-Sise island, 

where erosion rates of up to 20 m per year are detected and a vertical bluff has formed (Figure 

2.15). This rapid cliff retreat creates pronounced trend slopes with a strong increase in the 

water sensitive indices and a decrease in both vegetation indices as well as TCB (Figures 

2.16-2.17). All change magnitudes within the transition zone are significant and deviate 

strongly from the surrounding tundra and water surfaces (Figure 2.17).  

The spatially most extensive changes take place in the main channels of the Lena Delta. 

Downstream migration of sandbanks in shallow waters is a typical process in the active parts 

of the delta. These changing areas are characterized by strong slopes in the calculated trends, 

representing the transition from water to sand or vice versa. The trend directions of these 

processes are similar to the above presented changes. They show a stronger magnitude in 

TCB trends, but weaker trends in both VIs since these islands consist of bright sandy surfaces 

and have only sparse or no vegetation. The slope magnitude is lower than transitions from a 

permanently vegetated surface to water with an increased sensitivity of NDMI. Opposite 

trends are observed in areas of emerging sandbanks due to sediment accumulation. In contrast 

to the other indices, TCG appears to be rather insensitive to changes in riverbed morphology, 

due to little involvement of vegetation. 
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Figure 2.15: Cliff face of rapidly eroding ice-rich permafrost deposits (A-3) on Sobo-Sise Island, eastern 

Lena Delta. Photo: G.Grosse 

 

Figure 2.16: RGB composite maps of Tasseled Cap Index trend slopes (TCB–TCG–TCW) and Landsat 

color-infrared images (NIR-R-G) of rapidly eroding cliff (A-3). A: Trend slopes of rapidly eroding cliff on 

Sobo-Sise island and migrating sandbanks within the Lena river. B: Landsat-7 acquired on July 28th 

2000. C: Landsat-5 acquired on July 25th 2007. D: Landsat-8 acquired on July 16th 2013. Images 

superimposed with shoreline of year 2000. Map coordinates: UTM52N. 
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Figure 2.17: Temporal profile of and cross-section through rapidly eroding cliff (A-3). Left: Temporal 

profile of Tasseled Cap (top) and normalized (bottom) multi-spectral indices from 1999 to 2014 with Theil-

Sen trend lines. Potential timing of disturbance indicated in the background. Right: Cross section of trend 

slopes of all multi-spectral indices through cliff super-imposed by land cover and disturbance locations. 

Coastal Processes 

The Lena Delta has an extensive and morphologically diverse coastline. Coastal erosion and 

marine flooding can be detected along some parts of the coastline of the study area. Positive 

trend slopes of the moisture sensitive indices are a dominant feature of the flat northwestern 

coastal zone, hence indicating a transition to water. Due to the mostly very flat and sometimes 

slightly undulating terrain the spatial extent of submerged areas varies strongly (Figure 2.18).  

The long stretch of barrier islands on the western delta shore is characterized by a slow 

eastward migration towards the coast with yearly rates of around 3-8 m. However, along the 

observed stretch of around 60 km these rates are highly variable locally. On their seaward side 

all index trends indicate the transition from land to water. On the leeward side the signal is 

mixed, where some places exhibit a drying trend with an accumulation of sandy substrate, but 

others being subject to flooding (Figure 2.18). 

The remaining, active parts of the Lena Delta generally exhibit a more stable pattern. 

However, various other types of coastal dynamics can be observed, such as sediment 

deposition and erosion around major outlets, the transformation of near-shore lakes to lagoons 

or thermal erosion on coasts of the Bykovsky Peninsula, and warrant a detailed analysis in the 

future. 
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Figure 2.18: RGB composite map of Tasseled Cap Index trend slopes (TCB–TCG–TCW) of coastal 

dynamics. A: Marine inundation along northwestern shore (B-1). B: Barrier island migration along 

northwestern shore (B-2). Map coordinates: UTM52N. 

2.5 Discussion 

2.5.1 Regional scale changes 

The trend analysis of dense Landsat time-series has the potential to reveal gradual as well as 

sudden landscape changes in the permafrost dominated Arctic Lena Delta on multiple 

temporal- and spatial scales. General regional trends for the Lena Delta, such as a near 

ubiquitous increase in both vegetation indices (NDVI, and TCG), indicate large scale 

greening, which is in agreement with previous observations of an overall Arctic greening 

trend in most tundra landscapes, based on coarse resolution satellite data (Beck & Goetz, 

2011; Epstein, et al., 2012; Raynolds, Comiso, Walker, & Verbyla, 2008; Verbyla, 2008) 

Landsat data (Raynolds, Walker, Verbyla, & Munger, 2013), or field studies (Myers-Smith, et 

al., 2011). The specifically strong increase in both Vegetation Indices in the eastern near-

coastal delta regions, as well as in the active floodplains of the delta, can likely be attributed 

to the influence of diminishing sea ice cover in the recent decades. Ice-free periods for the 

Laptev Sea increased by around 10 days per decade (Markus, Stroeve, & Miller, 2009), which 

likely promoted increasing air temperatures and vegetation changes in the Lena Delta similar 

to other Arctic coastal regions (Post, et al., 2013). An increase in NDVI of tundra 

environments has been linked to the increase in biomass and productivity, e.g. through shrub 

encroachment, caused by rising summer temperatures (Bhatt, et al., 2010; Forbes, Fauria, & 
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Zetterberg, 2010; Raynolds, Comiso, Walker, & Verbyla, 2008). Sea-ice loss driven land 

temperature changes may also lead to increased permafrost degradation in coastal regions, 

including the Lena Delta (Lawrence, Slater, Tomas, Holland, & Deser, 2008).  

However, increasing air temperature alone does not explain the spatial pattern of greening, as 

the coastal areas of the second terrace do not exhibit such a strong magnitude. According to 

the Landsat- and field data-based land cover classification of Schneider et al. (2009) the areas 

most affected by greening are covered by “Moist to dry dwarf shrub-dominated tundra”, while 

the land cover in the less affected northwestern regions is dominated by “Dry moss-, sedge- 

and dwarf shrub-dominated tundra”. The differences in land cover and probably also 

vegetation trends in both regions seem to be partially tied to subsurface substrate conditions 

and terrace morphology (Ulrich, Grosse, Chabrillat, & Schirrmeister, 2009). While the first 

terrace is dominated by ice-rich sandy and silty sediments with overall flat and therefore 

regularly flooded terrain, the second terrace is dominated by ice-poor fluvial sands and a more 

undulating terrain that is usually not flooded anymore. Therefore, local environmental 

conditions need to be considered in order to explain the cause of tundra greening trends. In 

the Lena Delta, wet and moist sites such as the active floodplain or some coastal areas seem to 

be more affected by tundra greening than dry sites. Several factors, such as plant type or local 

factors like moisture have been found to influence the vegetation response on warming 

(Elmendorf, et al., 2012), which is in agreement with the patterns of greening we observe.  

The detected regional changes in wetness or moisture cannot be directly related to any single 

process. While summer precipitation is an important driver of the tundra water balance in the 

Lena Delta (Boike, Wille, & Abnizova, Climatology and summer energy and water balance of 

polygonal tundra in the Lena River Delta, Siberia, 2008), the observed spatial patterns of soil 

moisture trends are difficult to explain with precipitation alone that would rather affect the 

entire region. Increasing soil moisture in very low-lying coastal areas in the eastern delta may 

already be influenced by rising sea-levels and thus higher susceptibility to flood events, which 

has been observed in other deltas (Terenzi, Jorgenson, Ely, & Giguère, 2014). Increasing 

moisture levels of terrestrial sites farther from the coast may be related to changing 

hydrological runoff conditions or to active layer deepening in conjunction with near-surface 

ground-ice thaw. Field data on all these factors are sparse in the Lena Delta and a final 

conclusion cannot be made at this point.  
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Some locations with very ice-rich sediments, e.g. the Bykovsky Peninsula and the third delta 

terrace in general, exhibit a strong wetting trend. Local-scale ground ice-thaw (e.g., ice wedge 

collapse or thaw pond formation) may be a factor of increasing surface moisture, which has 

been observed in several areas around the Arctic (Liljedahl, et al., 2016). However, the spatial 

resolution may not be sufficient to safely link the spectral changes to processes on such fine 

scales and diffuse spatial patterns. Additional studies on a more local scale and better 

information about widespread ground-ice thaw may help to improve the interpretation of 

these trends.  

Changes in soil moisture in the Lena Delta will have a significant effect on biogeochemical 

cycling in permafrost-affected soils, where aerobic versus anaerobic conditions in the active 

layer determine whether organic matter is decomposed into methane or carbon dioxide 

(Kutzbach, Wagner, & Pfeiffer, 2004; Sachs, Giebels, Boike, & Kutzbach, 2010). Many 

different factors could influence moisture sensitive MSI, particularly in a regional-scale 

analysis.  

An inter-comparison with field based measurements, high resolution imagery, or specific soil 

moisture-related analysis could help to validate and better understand these trend findings in 

the future. Our trend dataset could thus provide valuable information for selection of future 

field study sites in locations that exhibit interesting trends in land surface properties. 

2.5.2 Local scale changes 

In contrast to the subtle regional-scale analysis, the spatio-temporal observation of specific 

local scale landscape disturbances allows for a much more straight-forward analysis. 

Landscape disturbances produced highly significant trend magnitude deviations from the 

general regional-scale observations. The trajectories of the trend analysis allow for a direct 

interpretation of disturbances. The drainage of thermokarst lakes for example is characterized 

by decreasing values in all moisture/water sensitive indices (TCW, NDMI and NDWI), 

whereas the brightness and vegetation sensitive indices (TCB, TCG, NDVI) exhibit a strong 

increase, driven by the changing surface properties. In contrast to regional changes of the land 

area, NDWI proved to be useful in the local scale detection of water surfaces and thus to 

detect changes in water body extent.  
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Each of the presented examples were significant outliers from the non-change regions and 

have therefore the potential to be used for further process classification and improved 

quantification of disturbances in permafrost and river delta landscapes. 

2.5.3 Data quality 

The inclusion of multiple generations of Landsat sensors is suitable for such applications, 

with minor remaining issues. The high preprocessing level and calculation of sensor-specific 

TOA-reflectance values results in a major radiometric normalization of imagery. With this 

level of pre-processing, the sensor signal can be expected to be highly normalized among the 

different sensors with an uncertainty of less than 5% between TM and ETM+ (Markham & 

Helder, 2012). Similar studies, which are mostly based on TM and ETM+ data, either did not 

mention sensor calibration issues (Fraser R. H., et al., 2014) or only minor differences 

between the sensor signal (Ju & Masek, 2016). Within our analysis, we did not find noticeable 

differences between the different sensors. Minor radiometric differences may still occur due 

to slight differences in radiometric bandwidths for the sensors. However, the Tasseled Cap 

MSI are designed to take these into account, in contrast to the normalized MSI (NDVI, 

NDMI, NDWI).  

The usage of ETM+SLC-OFF data causes some noise to the calculated trend products with 

slight striping artefacts in cross-direction of the Landsat flight paths. These artefacts are more 

pronounced with fewer observations, as the relative difference in the number of image 

acquisitions is stronger between SLC gap and no-gap areas. Within the different trend 

components the artefacts are more pronounced for slope than intercept and exhibit slightly 

different magnitudes between the indices.  

Multiple MSI were used to represent different surface properties. The vegetation sensitive 

MSI (NDVI and TCG) generally exhibit a strong correlation, but differ in their sensitivity. 

The same behavior of the moisture sensitive MSI NDMI and TCW can be explained by the 

different dynamic ranges, but also their calculation and inclusion of different spectral bands. 

There is no clear preference of a MSI for either vegetation or moisture and the differences can 

be seen as complementary information. NDWI, which has been chosen as another water or 

moisture sensitive index, reacts strongly to vegetation and is therefore only suitable for pure 

water detection, a useful property for local disturbance detection. TCB, which has been 
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chosen as a proxy for albedo, exhibits a rather unexpected positive trend over large areas, 

where TCW also increases over time. An increase in NIR reflectance caused by a 

simultaneous greening may be a factor, as the NIR band is a major factor in the calculation of 

TCB. The sensor-specific weighing factors are probably not completely appropriate, so that 

the TCB trend probably exhibits a slight bias. For local disturbances with strong change 

magnitudes, there is no measurable influence of this effect. Over presumably invariant water 

surfaces, the TC based trends have a very stable behavior with a narrow range around zero. 

2.5.4 Data usage and outlook 

We here provide the first comprehensive high-resolution land cover trend dataset for the entire 

Lena Delta, where joint Russian-German research focusing on permafrost and ecosystem 

dynamics around the centrally located field research station Samoylov Island has now taken 

place for almost 2 decades (Boike, et al., 2013; Hubberten, Wagner, Pfeiffer, Boike, & Gukov, 

2006). Therefore, our dataset can be a valuable resource for numerous applications including 

general Land-Use/Land- Cover (LULC) change classifications, detection and quantification of 

specific deltaic processes or disturbances, and field work preparation. With improved process 

knowledge based on this spatial dataset, costly field work and validation campaigns can be 

much better targeted on specific locations.  

With the free and open access to the Landsat archive and a highly automated and generic 

processing chain, our methodology can be easily transferred to other sites, which allows for a 

great opportunity to compare different regions regarding their response to disturbances and 

land cover changes in a rapidly changing Arctic. The strong normalization and generalization, 

due to the usage of long and dense time-series in conjunction with a robust linear regression 

method, ensure the robustness and transferability between different localities. However, 

additional types of information, such as more complex time-series models for an improved 

seasonality analysis or the detection of time-series breakpoints could be desirable for a more 

detailed investigation of specific landscape features. Going forward, the model complexity 

has to be determined by the objective, with a rather generalized simple model for large 

datasets or more complex and dynamic time-series models for the analysis of vegetation 

dynamics or breakpoints with sophisticated time-series methods such as BFAST (Verbesselt, 

Hyndman, Newnham, & Culvenor, 2010) or DBEST (Jamali, Jönsson, Eklundh, Ardö, & 

Seaquist, 2015). Going beyond the Landsat-data, interesting opportunities are provided by the 
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successful launch of ESA's Sentinel-2 satellite that collects comparable multispectral data. 

Sentinel-2 data could be integrated in the processing chain to further increase the observation 

density and future monitoring capabilities in high latitude permafrost regions. 

2.6 Conclusion 

The entire Landsat archive was used to calculate robust trends of key surface indicators within 

the ~29,000 km2 Lena Delta in north-eastern Siberia. A generic and highly automated 

processing chain was developed to quickly process data for large and remote permafrost 

areas.  

The robust trends of different multi-spectral indices (Landsat Tasseled Cap, NDVI, NDMI, 

NDWI) revealed several processes in multiple-spatial scales. On a regional basis, noticeable 

greening trends were detected in the active parts of the Lena Delta. Surface wetness changes 

were observed in different sub-regions either associated with near-coastal areas, ice-rich 

permafrost of the third delta terrace, or major delta channels. Typical local disturbances, such 

as thermokarst lake dynamics, fluvial and coastal processes were identified and analyzed in 

their temporal development with the presented methodology. With Landsat's spatial resolution 

of 30 meters, compared to other sensors with short revisit times, even small localized 

disturbances were detected. Due to the high process automation and standardization, our 

approach can be easily applied to other study sites, which may help to understand and 

quantify critical disturbances within remote permafrost landscapes across extensive regions. 

2.7 Data Archive 

Spatial datasets produced in this study have been archived in the open access PANGAEA 

repository (http://doi.pangaea.de/10.1594/ PANGAEA.854640). A detailed dataset description 

is given on the website. 
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3.1 Abstract 

Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong 

impact on carbon, energy and water fluxes and can be quite responsive to climate change. The 

monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and 

temporal resolution, is crucial for understanding the underlying processes driving lake 

change. To date, lake change studies in permafrost regions were based on a variety of 

different sources, image acquisition periods and single snapshots, and localized analysis, 

which hinders the comparison of different regions. Here, we present a methodology based on 

machine-learning based classification of robust trends of multi-spectral indices of Landsat 

data (TM, ETM+, OLI) and object-based lake detection, to analyze and compare the 

individual, local and regional lake dynamics of four different study sites (Alaska North Slope, 

Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 
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1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (−0.69%), 

Western Alaska (−2.82%), and Kolyma Lowland (−0.51%) largely include increases due to 

thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake 

drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 

48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the 

study period. Within all study regions, variability in lake dynamics was associated with 

differences in permafrost characteristics, landscape position (i.e., upland vs. lowland), and 

surface geology. With the global availability of Landsat data and a consistent methodology for 

processing the input data derived from robust trends of multi-spectral indices, we demonstrate 

a transferability, scalability and consistency of lake change analysis within the northern 

permafrost region. 

3.2 Introduction 

More than 25% of the lakes on Earth are located in the northern high latitude region (Lehner 

& Döll, 2004). The distribution of lakes can primarily be explained by prior glaciation 

histories, the presence of peatlands, and the presence of ice-rich permafrost (Smith, Sheng, & 

MacDonald, 2007). Lakes and ponds can occupy more than 20–40% of the landscape in 

Arctic lowland regions (Grosse, Jones, & Arp, 2013; Muster, et al., 2017). Grosse et al. (2013) 

estimate that more than half of the lakes found in permafrost regions are likely of thermokarst 

origin; however, many other lake types in the Arctic are recognized (Jorgenson & Shur, 2007; 

Jones, et al., 2017). Thus, thermokarst lakes and non-thermokarst lakes are a key component 

of northern ecosystems and have a strong impact on carbon, energy and water fluxes (Walter 

Anthony, et al., 2016; Langer, et al., 2016; Olefeldt, et al., 2016; Boike, et al., 2016). Arctic 

lakes have developed in a highly dynamic environmental setting that is subject to both 

hydroclimatic and geomorphic changes (Arp, Jones, Schmutz, Urban, & Jorgenson, 2010; 

Lantz & Turner, 2015). With respect to thermokarst lakes, they may undergo several 

generations that include phases of formation, growth, drainage, and reformation (Grosse, 

Jones, & Arp, 2013; Jorgenson, Shur, & Pullman, 2006; Jones B. M., et al., 2011). With a 

rapidly warming Arctic the direction and magnitude of these dynamics and fluxes may change 

dramatically due to changes in lake hydrology, lake ice characteristics, and permafrost 

degradation (Arp, Jones, Urban, & Grosse, 2011; Liljedahl, et al., 2016; Lindgren, Grosse, 

Romanovsky, & Farquharson, 2016). Therefore, monitoring of lake-rich Arctic regions at high 
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temporal and spatial resolution as well as across very large regions is crucial for 

understanding their response to climate change and consequently their feedbacks with various 

environmental conditions. The dynamics of northern high latitude lakes may also serve as a 

critical climate change indicator or essential climate variable. 

Until recently, global or continental scale water datasets have been too limited in spatial 

resolution to capture the entire range of lake sizes, such as MODIS-derived products at 250 m 

resolution (Carroll & Loboda, 2017). Now, global water body change datasets based on 

Landsat data have been developed (Donchyts, et al., 2016; Pekel, Cottam, Gorelick, & 

Belward, 2016), but in particular high-latitude regions may not be represented with high 

accuracies due to snow, ice, persistent cloud cover, sediment suspension or poor data quality. 

Moreover, these studies mostly focus on overall water body change, not lakes in particular. 

Due to the sheer number of lakes in the northern high latitude region, ranging in the many 

millions (Muster, et al., 2017; Paltan, Dash, & Edwards, 2015; Muster, Heim, Abnizova, & 

Boike, 2013), and the considerable extent of the northern permafrost region (~23 million km
2
) 

(Zhang, Barry, Knowles, Heginbottom, & Brown, 2008), their broad range in size and 

dynamics makes the monitoring of these locally dominant and important landscape features 

across the permafrost region a challenging task. Remote sensing, with its capability of 

establishing calibrated observations over decadal-scale time periods and at sufficiently high 

spatial resolution (≤30 m), is therefore a key tool to achieve a better insight into permafrost 

region lake dynamics.  

Several local and regional studies focus on the dynamics of selected thermokarst lake regions 

in the permafrost domain using a variety of spatial and temporal remotely sensed datasets 

(Lantz & Turner, 2015; Jones B. M., et al., 2011; Karlsson, Lyon, & Destouni, 2014; Smith L. 

C., Sheng, MacDonald, & Hinzman, 2005; Olthof, Fraser, & Schmitt, 2015; Riordan, Verbyla, 

& McGuire, 2006; Roach, Griffith, & Verbyla, 2013; Kravtsova & Tarasenko, The Dynamics 

of thermokarst lakes under climate change since 1950, 2011). The findings from these studies 

indicate that regional lake dynamic trends often follow a general pattern. Within the 

continuous permafrost zone, regional lake area trends were found to be mostly positive or 

neutral, but lake area loss may exceed lake growth in some regions. Eventually, some lakes 

ultimately drain, predominantly caused by bank overflow or reaching a drainage gradient 

(Jones B. M., et al., 2011; Jones & Arp, 2015; Hinkel, et al., 2007). These processes of lake 

growth and drainage are typical for thermokarst lakes (Grosse, Jones, & Arp, 2013; Jorgenson 
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& Shur, 2007). Some studies find an increase in the number of lakes independent of the 

regional lake area changes, which may be caused by new thermokarst lake initiation and 

splitting of larger lakes into multiple remnant lakes (Jones B. M., et al., 2011; Smith L. C., 

Sheng, MacDonald, & Hinzman, 2005). Lake area increase has been observed over several 

regions in North America (Arp, Jones, Urban, & Grosse, 2011; Olthof, Fraser, & Schmitt, 

2015; Plug, Walls, & Scott, 2008), and Siberia (Smith L. C., Sheng, MacDonald, & Hinzman, 

2005; Walter, Zimov, Chanton, Verbyla, & Chapin, 2006; Boike, et al., 2016). In contrast, lake 

area loss was found in Western Alaska (Jones B. M., et al., 2011) in Northwestern Canada 

(Lantz & Turner, 2015; Labrecque, Lacelle, Duguay, Lauriol, & Hawkings, 2009), and in the 

northeastern part of European Russia (Elsakov & Marushchak, 2011), and Siberia (Boike, et 

al., 2016; Kravtsova & Bystrova, 2009). In the discontinuous permafrost zones (<90% 

permafrost cover), a decrease of lake area has been observed for most regions (Smith L. C., 

Sheng, MacDonald, & Hinzman, 2005; Riordan, Verbyla, & McGuire, 2006; Roach, Griffith, 

& Verbyla, 2013). On a local scale, however, large variation of lake area increase, stability, or 

decrease may occur. Disappearing or shrinking lakes are often caused by increased 

evaporation and/or the development of connectivity to groundwater following permafrost 

thaw (Roach, Griffith, & Verbyla, 2013; Jepsen, Voss, Walvoord, Minsley, & Rover, 2013; 

Yoshikawa & Hinzman, Shrinking thermokarst ponds and groundwater dynamics in 

discontinuous permafrost near Council, Alaska, 2003). However, the variation in regional net 

lake change and related hydrological dynamics across different environmental settings 

depends on a large number of factors affecting hydrological dynamics such as climate, 

permafrost, geology, topography, and landscape age.  

Most prior remote sensing studies focused on lake area changes have been temporally limited, 

relying on the comparison of imagery from two to three time slices e.g. (Jones B. M., et al., 

2011; Karlsson, Lyon, & Destouni, 2014; Smith L. C., Sheng, MacDonald, & Hinzman, 2005; 

Boike, et al., 2016). The analyses typically spanned several decades, since the availability of 

aerial or space-borne imagery at higher temporal frequency in sufficient spatial resolution was 

not available until recent years. With high spatial resolution images (<5 m) waterbodies can 

be accurately delineated even to very small sizes (<100 m²) (Andresen & Lougheed, 2015; 

Sannel & Brown, 2010). However, due to the limited extent and availability of very high 

resolution imagery, the studies were usually focused on rather small, image-footprint limited 

regions (Andresen & Lougheed, 2015; Sannel & Brown, 2010; Necsoiu, Dinwiddie, Walter, 

Larsen, & Stothoff, 2013; Ulrich, et al., 2017). With the focus on single observations so far, 
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the potentially strong intra-annual variation of water-bodies (Olthof, Fraser, & Schmitt, 2015; 

Tarasenko, 2013) cannot be sufficiently accounted for. Moreover, the diversity of data sources 

and acquisition timing results in limited comparability between different studies. In contrast, 

moderate or low spatial resolution (≥250 m) remote sensing observations offer temporally 

high resolution, large area monitoring capabilities, with the drawback that the monitoring of a 

very large portion of small thermokarst lakes remains impossible at these spatial resolutions.  

With the increase of computation capacities and free data availability, the extensive Landsat 

imagery archive has become increasingly popular for environmental monitoring purposes on 

local to global scales (Pekel, Cottam, Gorelick, & Belward, 2016; Hansen, et al., 2013; 

Wulder, et al., 2016). This type of data stream at relatively high spatial and temporal 

resolutions, with an observation period spanning several decades, allows very detailed 

observations of the often small-scale but widespread land surface dynamics in permafrost 

landscapes. Trend analyses based on widely used Landsat multi-spectral indices have been 

applied for land cover change monitoring to various sites in northwestern Canada (Fraser R. 

H., et al., 2014; Brooker, Fraser, Olthof, Kokelj, & Lacelle, 2014), the Siberian Lena Delta 

(Nitze & Grosse, 2016) or even continental scales (Ju & Masek, 2016). With the application 

of spectral unmixing, sub-pixel lake changes were reliably detected and analyzed (Olthof, 

Fraser, & Schmitt, 2015). The combination of sub-pixel analysis and its temporal and spatial 

capabilities makes Landsat a potentially valuable data source for the detection of lake 

dynamics. 

Due to the rapid nature of reported lake and landscape changes occurring in the northern high 

latitudes, we developed a workflow to analyze Landsat-based trend data with machine-

learning classification (MLC) and object-based image analysis (OBIA) for the detection and 

analysis of lake dynamics in two lake-rich regions in Alaska and two lake rich regions in 

Siberia spanning a total of 200,000 km². The regions cover different permafrost types 

(continuous and discontinuous) as well as different eco-zones (coastal lowland tundra to 

boreal forest), allowing us to test the applicability of our approach over large regions and a 

wide range of environmental conditions within the permafrost region. Our analysis aims at 

detecting decadal scale changes in the surface water balance while reducing sensitivity to 

short-term fluctuations. With the global availability of Landsat data and a consistent 

methodology for processing the input data derived from robust multi-spectral trends, we here 
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demonstrate a transferable, scalable and consistent lake change analysis within the northern 

permafrost region. 

3.3 Study Sites 

We chose four different study sites (Figure 3.1) to test our combined MLC and OBIA 

approach in regions with different environmental properties, including the permafrost type, 

lake-abundance, eco-zone, and the availability of auxiliary data for comparison and 

validation. In addition to the environmental conditions, the extent of the study sites was 

selected to remain within one UTM Zone.  

In Alaska, the central part of the northern Arctic Coastal Plain and Foothills (North Slope, 

NSL) and the Kobuk-Selawik Lowlands (AKS) region in Western Alaska were selected. In 

Siberia, we analyzed the Сentral Yakutian Lena river basin (CYA) as well as the lower 

Kolyma Lowland region in Northeastern Siberia (KOL). Each region is described in detail 

below. 

 

Figure 3.1: Overview Map of eastern Siberia and Alaska with study sites and Circum-Arctic Vegetation 

Map (CAVM) Zones after (Walker, et al., 2005). 
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3.3.1 Alaska North Slope (NSL) 

The Alaska North Slope (NSL) study site is located along the northern coast of Alaska north 

of the Brooks Range and completely within the continuous permafrost that reaches depths of 

300 to 600 m (Hinkel, et al., 2012; Jorgenson, et al., 2008). For our study, we chose a 31,715 

km² study region centered around Teshekpuk Lake. This region is characterized by a very 

high density of lakes and drained thermokarst lake basins, which cover around 20% and 50 to 

65% of the land surface, respectively (Jones & Arp, 2015; Hinkel, et al., 2012). The area has 

an arctic continental climate with a mean annual air temperature (MAAT) of −11.2 °C and a 

mean annual precipitation (MAP) of 115 mm at Barrow (NOAA, 2017) (1981–2010).  

The study site is separated into several distinct geological zones, Young Outer Coastal Plain 

(YOCP), Outer Coastal Plain (OCP), Inner Coastal Plains (ICP), and the Arctic Foothills (AF) 

which are characterized by different thermokarst features (Farquharson, Mann, Grosse, Jones, 

& Romanovsky, 2016) (Figure 3.2). The YOCP and OCP are directly located closer to the 

Beaufort Sea and are characterized by flat terrain with mostly fine grained ice-rich marine silt 

(YOCP) or sand (OCP) and numerous shallow lakes, drained thermokarst lake basins, and 

other lowland thermokarst features (Jones & Arp, 2015; Arp, Jones, Urban, & Grosse, 2011; 

Lenz, et al., 2016). The ICP in the southern and central part is characterized by undulating 

terrain with sandy deposits of marine and eolian origin and with a high density of lakes that 

have shallow margins and deep centers (Jorgenson & Shur, 2007; Hinkel, et al., 2012; 

Sellman, Brown, Lewellen, McKim, & Merry, 1975; Jones, et al., 2009). The AF in the 

southern margin of our study area are characterized by sloped rolling topography, fine-

grained, ice-rich yedoma deposits (Kanevskiy, et al., 2013; Schirrmeister, Froese, Tumskoy, 

Grosse, & Wetterich, 2013) and a low abundance of relatively deep lakes. The land cover 

generally is dominated by low tundra vegetation of vegetation subzones C, D, and E as well 

as surface water bodies (Walker, et al., 2005). In particular along the eastern coastline, 

economic development affects land cover in the form of hydrocarbon exploration and 

extraction activities such as construction of roads, pipelines, exploration and extraction pads, 

pump stations, housing, and other facilities (Raynolds, et al., 2014).  
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Figure 3.2: Overview Map of Alaska North Slope study site (NSL) with generalized geological subzones. 

YOCP: Younger Outer Coastal Plain; OCP: Outer Coastal Plain; ICP: Inner Coastal Plain; AF: Arctic 

Foothills. 

3.3.2 Alaska Kobuk-Selawik Lowlands (AKS) 

The Alaska Kobuk-Selawik Lowlands (AKS) study site is located in the northwestern coastal 

region of Alaska bordering the Kotzebue Sound to the west and continuing further east along 

the Kobuk and Selawik river valleys near the Arctic Circle (Figure 3.3). The study site has a 

size of 31,135 km². The region is located at the transition between the continuous and 

discontinuous permafrost zones (Jorgenson, et al., 2008). Based on the climate record of 

Kotzebue, the region has a subarctic continental climate with a MAAT of −5.1 °C and a MAP 

of 279 mm (NOAA, 2017) (1981–2010). 

The AKS site contains a large variety of landscape types with river valleys and deltas, alluvial 

plains, coastal lowlands, and gently rolling uplands (Larsen, O'Donnell, Schmidt, Kristenson, 

& Swanson, 2017). Some regions feature ice-rich permafrost with a high abundance of 

thermokarst lakes and basins, while other areas are permafrost-free (Cable, Romanovsky, & 
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Jorgenson, 2016). These lowland features are encompassed by several hill ranges, which are 

partially located within the study area. 

The land cover mostly consists of water bodies. The vegetation in the permafrost transition 

zone ranges from wetland tundra in the coastal area to the shrub tundra of vegetation subzone 

E (Walker, et al., 2005) in the river deltas and valleys, to boreal forest in the eastern portion of 

the study area (Jorgenson, et al., 2009). 

 

Figure 3.3: Overview Map of Alaska Kobuk-Selawik Lowlands study site (AKS) with generalized 

geological subzone boundaries. C-PF: Continuous permafrost; D-PF: Discontinuous permafrost. 

Permafrost zonation after Jorgenson et al. (2008). 

3.3.3 Central Yakutia (CYA) 

The Central Yakutia (CYA) study site is located in the middle Lena river basin around the city 

of Yakutsk and encompasses an area of 56,700 km². Central Yakutia belongs to the continuous 

permafrost zone with permafrost that reaches depths of 450 m (Ivanov, 1984) and is subject to 

extreme continental climate conditions. Yakutsk has a MAAT of −9.7 °C (1930–2010) with 

strong seasonal air temperature differences that can exceed 60 K between very warm summers 

and extremely cold winters (Fedorov, Ivanova, Park, Hiyama, & Iijima, 2014). The MAP is 

low at 234 mm, but can be subject to strong decadal variation (Ulrich, et al., 2017). Large 

streams, like the Lena or Aldan rivers, have a strong influence on the landscape by shaping 

large valleys and alluvial plains, which are seasonally flooded during spring ice-break-up 

(Yang, et al., 2002). 

Permafrost in this study area is dominated by ice-rich silty yedoma ice-complex deposits, 

which are almost completely thawed below thermokarst basins (termed “alas” in this region) 
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and ice-poor sandy floodplains (Soloviev, 1959). Within the study site, several distinct 

terraces with predominantly very ice-rich deposits can be differentiated (Ulrich, et al., 2017; 

Nitze & Grosse, 2016) (Figure 3.4). On these terraces there are abundant thermokarst lakes 

and alas basins. Over recent decades, there has been an increase in the development of 

thermokarst lakes (Ulrich, et al., 2017; Fedorov, Ivanova, Park, Hiyama, & Iijima, 2014). 

Boreal forest with larch, pine, and birch is the dominant land cover within this study site, 

while grasslands are ubiquitous within alas basins. The region is affected by frequent wildfires 

during the warm summer months (Boike, et al., 2016; Hansen, et al., 2013). Compared to the 

other study sites, this region is considerably influenced by land use activities in the form of 

agriculture, forestry, and infrastructure development for several centuries and in particular 

over recent decades (Crate, et al., 2017).  

 

Figure 3.4: Overview Map of Central Yakutia study site (CYA) with generalized geological subzones on 

the eastern banks of the Lena river after Soloviev (1959). BeT: Bestyakhskaya Terrace; TyT: 

Tyungyulyuyskaja Terrace; AbT: Abalakhskaya Terrace; MaT: Maganskaya Terrace; EmT: Emilskaya 

Terrace. 

3.3.4 Kolyma Lowland (KOL) 

The Kolyma Lowland study site (KOL) west and northwest of the Kolyma river mouth is 

completely located within the continuous permafrost zone of northeastern Siberia with depths 

of 300 to 500 m (Kaplina, 1981; Ershov, 1989), and encompasses an area of 73,339 km². The 
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region has a polar tundra climate with a MAAT of −9.2 °C and MAP of 237 mm at Cherskiy 

(2009 to 2014). 

 

Figure 3.5: Overview Map of Kolyma Lowland site (AKS) with generalized geological subzones after 

Shmelev et al. (2017). 

The region is mostly flat terrain and consists of different geological regions (Shmelev, et al., 

2017) (Figure 3.5). The western and southern part is dominated by fine-grained and ice-rich 

late Pleistocene yedoma deposits interspersed with thermokarst basins and river valleys and 

an abundance of thermokarst lakes and basins (Yedoma-Alas Complex) (Veremeeva & 

Glushkova, 2016). Within this zone, the low lying northern coastal regions are dominated by 

thermokarst basins, which cover 80–100% of the area, whereas the southern part, north and 

south of the Kolyma river, has a higher abundance of ice-rich yedoma deposits, covering 

about 30–50% of the area (Veremeeva & Glushkova, 2016). 
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West of the Kolyma river mouth, the Alluvial-Marine Complex, composed of sandy deposits 

(Spector, 1980), forms the landscape and exhibits a high abundance of large oriented lakes. 

Along its course the Kolyma river forms a wide floodplain and a delta on its outflow into the 

East Siberian Sea. On its eastern margin, the study site is bordered by hill ranges of up to 700 

m. The land cover is dominated by tundra lowlands of vegetation subzones C, D, and E 

(Walker, et al., 2005). The southeastern part of the study site, around the town of Cherskiy, is 

situated in the northern taiga zone. 

3.4 Data and Methods 

3.4.1 Data and Trend Analysis 

In this study, we used the entire archive of Landsat data available for our four study regions 

between 1999 and 2014 filtered to the peak summer months July and August, and a cloud 

cover of less than 70%. We used only Landsat data from TM, ETM+ and OLI sensors, which 

have a common spatial resolution (30 m) and (six) overlapping spectral bands: Blue, Green, 

Red, Near-Infrared (NIR), Shortwave Infrared 1 (SWIR1), and Shortwave Infrared 2 

(SWIR2). In order to keep data commonality for all sites, we decided not to include and 

analyze imagery before 1999. Large parts of Northeastern Siberia and Northwestern Alaska 

are affected by a very sparse acquisition frequency before 1999.  

Data were acquired from United States Geological Survey (USGS) via the EROS Science 

Processing Architecture (ESPA) ordering system. All scenes were ordered as surface 

reflectance data and provided with the pre-processed FMask layer (Zhu, Wang, & Woodcock, 

2015), which includes pixel quality flag information on cloud, snow, and shadow presence for 

each scene. The preprocessed scenes were downloaded and processed using an automated 

processing pipeline consisting of several steps: file extraction; masking of snow/ice, clouds, 

and shadows; re-projection (where necessary) and sub-setting. The data were structured into 

subsets of 30 × 30 km and projected into each site’s primary UTM zone.  

After data-preprocessing, robust linear trends based on the Theil-Sen regression algorithm 

(Fraser R. H., et al., 2014; Olthof & Fraser, 2014; Sen, 1968; Theil, 1992) were calculated for 

each pixel and six different multi-spectral indices (MSI): Tasseled Cap Brightness (TCB), 

Tasseled Cap Greenness (TCG), Tasseled Cap Wetness (TCW), Normalized Difference 
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Vegetation Index (NDVI), Normalized Different Water Index (NDWI), and Normalized 

Different Moisture Index (NDMI). These indices are well established for Landsat and have 

been widely used in land cover remote sensing applications (Fraser R. H., et al., 2014; 

Brooker, Fraser, Olthof, Kokelj, & Lacelle, 2014; Ju & Masek, 2016; Rover, Ji, Wylie, & 

Tieszen, 2012; Raynolds & Walker, 2016; Kennedy, Yang, & Cohen, 2010). The trend 

calculation output consists of four trend parameters: slope, intercept, lower confidence 

interval, and upper confidence interval. Therefore each pixel carries 24 different types of 

information, i.e., four parameters for each of the six MSI. More detailed information on the 

processing chain is available in Nitze and Grosse (2016). 

Since lakes and their areal changes are the main scope of this study, we chose a combined 

approach of machine-learning classification (MLC) of the pre-calculated spatio-temporal 

trend information in conjunction with object based image analysis (OBIA). 

3.4.2 Pixel-Based Machine-Learning Classification 

We first applied a supervised MLC approach which translates the spectral-temporal signal 

into semantic information and separates the trend information into four target classes. These 

include two static classes, stable water (S-W) and stable land (S-L), as well as two dynamic 

classes, water to land (C-WL) and land to water (C-LW) (cf. Table 3.1). For the classification 

process we used a Random Forest (RF) (Breiman, 2001) MLC algorithm. This non-parametric 

method has been established as one of the most accurate and widely used algorithms (Nitze, 

Barrett, & Cawkwell, 2015; Barrett, Nitze, Green, & Cawkwell, 2014; Belgiu & Dragut, 

2016) for remote sensing and other classification applications because of its robustness, 

independence of statistical data distributions, and capabilities to work with a wide array of 

input data types. 

Table 3.1: Classification scheme with class name, class ID, number of training samples and examples of 

observed land cover or changes. 

Class Name Class ID 
Number of 

Training Samples 
Examples of Observed Land Cover or Changes 

Stable water S-W 148 Lakes, sea water, river 

Stable land S-L 270 Tundra, forest, bare ground 

Change water to land C-WL 193 
Lake drainage (water to bare ground, water to 

vegetation), river channel migration 

Change land to water C-LW 84 
Thermokarst lake expansion, riverbank erosion, 

coastal erosion 



 3 - Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions  

 58 

 

Training Sampling 

We selected 568 training samples within and in close proximity to our study sites with respect 

to a variety of surface conditions, such as permafrost type, geological properties, vegetation 

types, water color and target classes. The extensive choice of ground truth locations, beyond 

the footprint of our study sites, allows us to account for a wider range of landscape surface 

conditions.  

The ground truth selection process is based on a hybrid of random sampling and stratified 

manual sampling. As the change regions (classes C-WL and C-LW) cover only a small fraction 

of the study areas, we manually selected and over-sampled the training data for these classes. 

A purely random or gridded approach would have led to very small sample sizes of the 

change classes and was therefore not applicable. As stable land can have a variety of different 

surface conditions, we increased its sample size to attribute for this variety. The same 

reasoning was applied for the choice of training areas for lake drainage, which has a wide 

range of potential spectral and temporal signatures depending on the speed of drainage and 

post-drainage re-vegetation. In contrast, changes from land to water have a narrower range of 

appearances and therefore needed a smaller size of training samples. The calculated Landsat 

trend data as well as high-resolution images and local knowledge of in situ conditions were 

used for determining suitable locations of the manually selected and determined ground truth 

locations. 

Classification Method Details 

Slope, intercept as well as the lower and upper confidence intervals (CI) for each of the six 

MSI were used as input features for the pixel-based classification process. In addition, the 

difference between upper and lower CI (confidence interval range) was calculated. Therefore, 

30 input variables were used in the MLC (Table 3.2). 

The RF classification model was trained using the 568 training samples (see Table 3.1) with 

200 decision trees. This number of trees has been found to be sufficient for most classification 

purposes (Nitze, Schulthess, & Asche, 2012). Two different methods were used for quality 

assessment of the classification. First, the RF-specific internal quality parameter out-of-bag 

accuracy (OOB) (Breiman, 2001) was used, which provides the classification accuracy 

through bootstrapped sampling. Second, a 5-fold cross-validation was carried out, based on a 
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stratified randomized sampling of the ground truth data and the overall accuracy and Cohen’s 

kappa were used as a metrics of the classification quality. 

Table 3.2: Used input features for the MLC classification process. Each trend metric (n = 5) was calculated 

for each Multi-spectral index (n = 6) leading to 30 features. 

Multi-Spectral Index Trend Metric 

TC Brightness Slope 

TC Greenness Intercept 

TC Wetness Lower CI 

NDVI Upper CI 

NDWI CI Range 

NDMI  

The classification output contains a hard classification output with the four pre-defined 

classes (Table 3.1). Furthermore, a confidence layer for each class was calculated, which 

contains the classification probability of each single class in a range from 0 to 1.  

The classification with four defined classes (cf. Table 3.1, S-W, S-L, C-LW, and C-WL) 

yielded a perfect separation on the ground truth data of the defined classes. With both 

evaluation methods, the RF-internal OOB as well as the and the 5-fold cross-validation, all 

accuracy measures (OOB, overall accuracy, Cohen’s kappa) achieved 100%. This shows a 

very high separability of pure pixels or endmembers of the four defined classes. 

3.4.3 Object-Based Image Analysis 

Lake Object Creation 

Based on the hard classification results, lake objects (LO) were defined (Figure 3.6). 

Connected pixels of water and both change classes were aggregated into objects, where only 

4-point-connected pixels, with neighborhood along pixel edges, were defined as a single LO. 

Each LO represents either a lake with adjacent change regions, e.g., an expanding or partially 

draining lake; a lake without any change; or an area which underwent full transition such as a 

completely drained or newly formed lake.  
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Figure 3.6: Example of workflow steps from satellite image to lake zoning on a lake in the Alaska North 

Slope study site: (a) raw Landsat satellite image (R-G-B); (b) RGB-Visualization of Tasseled Cap Index 

Trends with R: Brightness, G: Greenness and B: Wetness; (c) classified trend data and lake object 

delineation; and (d) subdivision into stable (A) and dynamic (B) lake zones. 

During the next step, each LO was sub-divided into a static (Zone A) and a dynamic (Zone B) 

zone (Figure 3.6). For the static Zone A, we used the hard-classified water mask (class S-W) 

within each object and applied a morphological erosion to reduce the lake’s radius by 1 pixel 

to avoid the lake margin, where mixed pixels may occur. This zone represents the non-

changing water surface. Zone B represents the dynamic boundary of the lake objects, which is 

comprised of two different parts. B-1 includes the outside boundary of the stable water zone A 

with a width of 2 pixels, where thermokarst lake expansion likely occurs on a sub-pixel scale 

(<30 m). Zone B-2 represents the change region (classes C-WL and C-LW), which is dilated 

by 1 pixel to capture the transition zone to stable land. Both zones, B-1 and B-2, are merged 

into a single zone B. Finally, lake objects of less than 1 ha in area were removed. 

Lake Change Calculation 

During the final step, we calculated the areal extent of spatial dynamics for each lake object. 

Each of the two defined zones was treated differently. The stable Zone A was regarded as 

permanent water and its area was therefore calculated as static surface water over the entire 

period. For Zone B we chose a more dynamic sub-pixel analysis approach to account for its 
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location on the lake margins and the transition zone. Each class’ area is represented by the 

classification probability (p-values), which is assumed to be the fraction of each 

endmember/class and they were tested for plausibility on high-resolution imagery as well as 

field measurements and observations, which were available for selected locations. These p-

values were used as a weighing factor of each class within each pixel of Zone B. A calculation 

example for the 3-pixel transect through the margin of a large thermokarst lake in the NSL 

study site is presented in Table 3.3 and Figure 3.7. The western pixel has a p-value of 0.705 

for stable water representing 70.5% of the 900 m² pixel, hence 634.5 m² are calculated as 

steady water surface within this pixel. The same applies to each class and pixel. Within this 

short transect 720 m² of the 2700 m² were subject to a transition from land to water caused by 

lake shore erosion through thermokarst (cf. Figure 3.12). 

Table 3.3: Calculation example for three pixels through the margin of a thermokarst lake. 

Example 

Pixel 

S-W S-L C-LW C-WL 

p-Value m² p-Value m² p-Value m² p-Value m² 

px-West 0.705 634.5 0.005 4.5 0.29 261 0 0 

px-Central 0.065 58.5 0.39 351 0.51 459 0.035 31.5 

px-East 0 0 1 900 0 0 0 0 

Σ 0.77 693 1.395 1255.5 0.8 720 0.035 31.5 

 

Figure 3.7: p-value datasets for the calculation of sub-pixel fractions of lake objects: (a) Change land to 

water (C-LW); (b) Change water to land (C-WL); and (c) Stable water (S-W). Example pixel locations 

highlighted. 
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3.4.4 Data Quality and Post-Processing 

In order to optimize the data quality for the lake change analysis we applied a two-step 

filtering mechanism to exclude non-lake water bodies, such as rivers or sea areas and their 

related changes, since these are subject to strong dynamics and would have influence on the 

lake statistics. In addition, waterbodies intersecting the edge of the study area were removed. 

Although the defined classes are perfectly separable, other unrelated disturbances, such as 

burn scars or cast shadows in mountain areas were classified as stable water or one of the 

change classes in several instances and needed to be addressed in the post-processing. 

For the automated removal of these invalid or false positive objects, we classified the water 

objects based on spatial statistics and shape attributes as well as using topographic 

information from a pan-Arctic DEM (Santoro & Strozzi, 2012) and vegetation information 

from the Global Forest Change dataset (Hansen, et al., 2013) as auxiliary data. Spatial 

statistics and shape parameters were calculated with the scikit-image python software package 

for each identified lake. They include shape parameters, such as area, perimeter, orientation, 

eccentricity, and solidity, as well as spatial statistics of the classified data, DEM data 

(elevation, slope), and binary forest change dataset information. 

We created a spatially stratified training dataset with a binary distinction of manually selected 

valid and invalid (rivers, cast shadows, and burn scars) lake objects to train a Random Forest 

machine-learning classifier. The classification model was then applied to each lake object. All 

lake objects classified as invalid were removed from the analysis. In general, rivers were 

detected by their particular shape, whereas shadows and fire are predominantly located in 

sloped terrain during this post-processing procedure. In a second and final filtering step, all 

objects with a maximum p-value (any class) of less than 0.95 were automatically discarded, 

which further allowed the removal of remaining false positive lake objects.  

3.4.5 Calculation of Lake Change Statistics 

We calculated area specific metrics (water area, water gain, water loss) to map and 

characterize individual lake specific changes. Regional statistics were then calculated based 

on the individual lake change metrics (c.f. Table 3.4). Furthermore, gridded results were 

calculated for the spatial representation of lake specific water area changes. Each region was 

subdivided into 3 × 3 km large squares and net lake area changes per pixel within each grid 
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cell were accumulated. Only pixels belonging to detected lakes were included to the 

calculation. 

Table 3.4: Regional results of lake analysis. 

Attribute Unit NSL AKS CYA KOL 

Total land area km² 31,715 31,135 56,700 73,339 

Number of lake objects # 19,922 9771 13,254 38,838 

Net lake area change % −0.69 −2.82 48.48 −0.51 

Net lake area change ha −3849.25 −2806.63 45,288.11 −6083.14 

Lake area 1999 ha 555,478.54 99,398.59 93,417.39 1,197,262.70 

Lake area 2014 ha 551,629.28 96,591.97 138,705.50 1,191,179.56 

Lake area gain ha 3936.53 2024.47 50,115.75 21,826.55 

Lake area loss ha 7785.78 4831.10 4827.64 27,909.69 

Mean lake size 1999 ha 27.88 10.17 7.05 30.83 

Mean lake size 2014 ha 27.69 9.89 10.47 30.67 

Median lake size 1999 ha 3.91 3.23 2.28 5.58 

Median lake size 2014 ha 3.84 3.01 3.56 5.59 

Max lake size 1999 ha 84,847.11 2384.02 1828.07 22,445.77 

Max lake size 2014 ha 84,732.23 2427.16 5008.44 22,448.93 

Lakes with strong growth # 4 16 1720 64 

Lakes with strong loss # 43 394 183 205 

Stable water >95% # 12,736 5547 2076 23,515 

Change <1 ha, % lakes % 96.61 88.77 56.35 90.24 

3.5 Results 

3.5.1 NSL (Alaska North Slope) 

Within the NSL study site, 19,922 lakes were detected (cf. Table 3.4). During the observation 

period, the overall lake area changed from 555,478 ha to 551,629 ha, which translates to a net 

loss of 2806 ha or −0.69%. Lake growth accounted for 3937 ha, while shrinkage resulted in 

7786 ha lake area loss. Most lakes remained predominantly stable over the observation period 

from 1999 to 2014 with 96% of the lakes having a net area change of less than 1 ha. In 

contrast to the majority of lakes with little or no change, few water bodies accounted for the 

majority of fluctuations in both directions. Strong relative changes as lake formation or full 

lake drainage (greater than 300% increase or 75% decrease) occurred infrequently with 4 and 

43, respectively. 
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The largest lakes are typically located in the Younger Outer Coastal Plain (YOCP). A second 

cluster of large lakes can be found in the Outer and Inner Coastal Plain (OCP, ICP) region. 

Between the larger lakes, many small lakes and ponds are distributed within the entire study 

area. The lake area distribution is dominated by a large number of small lakes with a median 

area of 3.84 ha and a maximum size of 84,732 ha for Teshekpuk Lake. The overall lake 

density is very high in nearly the entire study site, with only small regions of low limnicity, 

predominantly in the rolling hills of the Arctic Foothills (AF). Overall, the lake area 

accounted for 17.5% of the land surface in the NSL study site. 

Spatially, the strongest lake dynamics were on the YOCP, where both strong lake growth and 

shrinkage were detected (Figure 3.8). Particularly, northeast of Teshekpuk Lake (TL) there 

was a distinct cluster of lake drainage activity, while lake expansion is dominant north of TL, 

where the strongest individual lake expansion (+70.2 ha) was measured. The western YOCP is 

also characterized by widespread lake growth. Based on in-situ observations and overflights 

(Figure 3.13), lake change rates were clearly dominated by thermokarst processes, but 

localized flooding or drying of these very shallow lakes and basins also played an important 

role for lake water budgets on the YOCP. At Teshekpuk Lake, water area loss, e.g., due to 

sediment input or drying, outweighed lake growth by 111 ha which translates to 0.14% of the 

total lake surface.  

The OCP and ICP were dominated by lake stability with fluctuations around zero net change. 

Apart from the dominating stable pattern, several instances of partial lake drainage were 

registered on the OCP, e.g., west of Teshekpuk Lake (Figures 3.8b-2 and 3.14). In the so-

called Pik Dunes basin (Figures 3.8b-3 and 3.15), a flat drained lake basin in the ICP region 

with exposed sand, a more dynamic pattern was observed with fluctuating lake levels inside 

the basin. In addition, a new lake of around 7 ha area had been naturally dammed up by the 

formation of large sand dunes at this site. 

The AF region, which has a lower lake density, showed a slightly more dynamic pattern, with 

predominantly growing lakes, but also occasional lake drainage. Within the oil extraction 

region in the eastern margin of the study site, few occurrences of lake drainages and the 

construction of artificial water basins were detected. 
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Figure 3.8: Regional lake change of NSL study site: (a) gridded spatial net lake change distribution in ha. 

Gridsize: 3 × 3 km; (b-1) detailed view of thermokarst lake expansion and drainage on the Younger Outer 

Coastal Plain north of Teshekpuk Lake; (b-2) detailed view of partial lake drainage on the Outer Coastal 

Plain west of Teshekpuk Lake; and (b-3) detailed view of lake dynamics within Pik Dunes Basin with the 

formation of a new lake. 

3.5.2 AKS (Alaska Kobuk-Selawik Lowlands) 

Within the AKS study site, 9771 lakes were detected (cf. Table 3.4). During the observation 

period the overall lake area changed from 99,399 ha to 96,592 ha, which translates to a net 

loss of 2807 ha or 2.82%. Lake growth accounted for 2024 ha, while shrinkage resulted in 

4831 ha lake area loss. The majority of lakes remained predominantly stable over the 

observation period from 1999 to 2014 with 88.8% of the lakes having a net area change of 

less than 1 ha. However, 16 and 394 lakes were subject to strong expansion (>+300%) or 

drainage (<−75%), respectively. 

The median area of lakes is 3.01 ha and a maximum size of 2430 ha. The large Inland Lake 

and Selawik Lake, as well as few other lakes within the Kobuk Delta are connected to the 

open sea and therefore automatically excluded. Generally, the largest lakes are predominantly 

located within or close to the Kobuk and Selawik deltas. In the inland regions and the 

Baldwin Peninsula, lake sizes are generally smaller. Overall, the lake area accounts for 3.2% 

of the land surface in the AKS study site, but can be much higher locally. 
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This region has a highly heterogeneous pattern of lake area change (Figure 3.9). Within the 

Kobuk and Selawik river deltas, we observed mostly lake growth. The largest increase in lake 

area predominantly took place in the Kobuk Delta close to the deltaic front and in proximity 

to the river’s main channels with a similar pattern in the Selawik Delta. However, despite the 

general lake expansion pattern within these sub-regions, several individual lakes were 

affected by lake area loss. 

 

Figure 3.9: Regional lake change of AKS study site: (a) gridded spatial net lake change distribution in ha. 

Gridsize: 3 × 3 km; (b-1) detailed view of catastrophic lake drainage in the northern Selawik valley; (b-2) 

detailed view of lake area growth in the northern Kobuk river delta; and (b-3) detailed view of flooding on 

a lagoon on the western Baldwin Peninsula. 

In contrast to the deltas, the river valleys exhibit a much more diverse pattern. These regions 

were characterized by highly dynamic lake change patterns where widespread lake drainage 

was the dominating change process, though lake expansion occurred frequently in close 

proximity. Aerial survey flights in summer 2016 confirmed the spatial pattern of high 
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dynamics and hydrological connectivity of this wetland region (see Figures 3.8b-1 and 3.16). 

These dynamics can be observed along the Kobuk and Selawik rivers and its tributaries. 

Along the northern Selawik valley, many potential small lakes of up to 5 ha were not detected 

by the lake detection algorithm.  

On the Baldwin Peninsula, lake changes of both directions were common, with several 

drainage events of different intensities and frequent thermokarst lake expansion. The lagoons 

on the western shore were detected as lakes and were subject to strong wetting, where the 

northern lagoon was subject to a water area gain of 80.6 ha alone (see Figures 3.8b-3 and 

3.17). 

3.5.3 CYA (Central Yakutia) 

Within the CYA study site, 13,254 lakes were detected (cf. Table 3.4). During the observation 

period the overall lake area changed from 93,417 ha to 138,705 ha, which translates to a net 

gain of 45,288 ha or highly exceptional 48.5%. Lake growth accounted for 50,116 ha, while 

shrinkage resulted in 4828 ha lake area loss. Barely half of lakes remained predominantly 

stable over the observation period from 1999 to 2014 with 56.3% of the lakes having a net 

area change of less than 1 ha. The large lake area increase comes with 1720 lakes, which were 

subject to a large lake expansion, while 188 were subject to strong water area loss. Among all 

study regions, the ratio of newly formed or very strongly expanded lakes versus near 

complete drainage was the opposite in CYA. 

The median area of lakes grew from 2.28 ha to 3.56 ha. The largest lake, which is located 

close to the confluence of the Lena and Aldan rivers nearly tripled in area from 1828 ha to 

5008 ha (Figure 3.10b-2). At the end of the observation period, the limnicity was at 2.4% for 

the entire study area, up from 1.6% at the beginning of the study period. 

The proximal eastern terraces of the Lena river (Bestyakhskaya and Tyungyulyunskaya), as 

well as the southeastern corner of the study area (Abalakhskaya T.) exhibited an extraordinary 

increase in lake area (Figure 3.10). In this region, formerly dry (Desyatkin, 2008) or only 

partially filled thermokarst basins (alas) apparently were re-filled with water during the 16-

year observation period. Additionally, thermokarst activity formed new ponds and widened 

lake basins (Figure 3.10b-3). Furthermore, numerous large basins were severely affected by 

the same flooding trend leading to this massive increase in lake area. The northeastern part 
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and southern margin of the CYA study site (Maganskaya T., Abalakhskaya T., Emilskaya T.) 

were apparently not affected by the exceptional lake growth, which occurred in other parts of 

the region. 

 

 

Figure 3.10: Regional lake change of CYA study site: (a) gridded spatial net lake change distribution in ha. 

Gridsize: 3 × 3 km; (b-1) detailed view of lake area loss due agricultural practices; (b-2) detailed view of 

very strong lake area growth close to the confluence of the Lena and Aldan rivers; and (b-3) detailed view 

of widespread lake growth on the Tyungyulyuy Terrace. 

Lake drainage was less widespread than expansion in this part of the study region, but some 

clusters of lake drainages exist. Most occurrences can be found on the eastern margin of the 

Tyungyulyunskaya T., in particular within larger alases, for example around the villages 

Syrdakh and Tyungyulyu, where anthropogenic activity, e.g., through intense water 

management practices for agriculture in alas basins, likely had a strong influence on the 

detected lake area (Figure 3.10b-1). On the lake-poor western bank of the Lena river, lake 

change was not as drastic as east of the river and rather evenly distributed between growth 

and shrinkage. 
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3.5.4 KOL (Kolyma Lowland) 

Within the KOL study site, 38,838 lakes were detected (cf. Table 3.4). During the observation 

period, the overall lake area changed from 1,197,263 ha to 1,191,180 ha, which translates to a 

net loss of 6083 ha or 0.51%. Lake growth accounted for 21,827 ha, while shrinkage resulted 

in 27,910 ha lake area loss. The majority of lakes remained predominantly stable over the 

observation period from 1999 to 2014 with 90.2% of the lakes having a net area change of 

less than 1 ha. In total, 64 lakes were affected by strong lake expansion or formation, whereas 

205 lakes were subject to near complete lake drainage. The median area of lakes is 5.59 ha 

and the largest lake has size of 22,449 ha.  

Within this study region, several spatial clusters of noticeable change can be distinguished 

(Figure 3.11). The Yedoma-Alas Complex (YAC) is clearly structured into a northern part, 

where lake expansion and a southern part, where drainage were the dominant lake change 

processes. The boundary of these zones nearly forms a straight line from northeast to 

southwest, which coincides with the boundary between the elevated ice-rich yedoma deposits 

in the south and the low-lying thermokarst basins in the north. Particularly, in the northeastern 

coastal region, very strong lake expansion rates of up to 1097 ha for one lake were measured 

(Figure 3.11b-1). This particular lake exemplifies probably the two main drivers of lake 

expansion in this region. First, thermokarst caused lake expansion occurs along the shorelines 

of most lakes in this region. The second driver is the flooding of shallow and low-lying basins 

along the coast, which might be caused by seawater inundation. 

The southern part of the YAC is dominated by lake area loss. Most of the lake area reduction 

was fueled by the partial drainage of several large lakes, e.g., Bolshoy Oler lake on the 

western margin of the study region (Figure 3.11b-3). This particular lake alone lost 752 ha of 

its water surface. Several other lakes were also affected by lake are loss of more than 100 ha, 

each. Lake expansion was measured for a large fraction of lakes, but does not outweigh the 

widespread water area loss. 

In the YAC, south of the Kolyma river, lake area loss was more pronounced than lake growth, 

predominantly caused by the partial drainage of several large lakes. The majority of lakes did 

not follow a specific spatial pattern and changes in both directions were recorded. 
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The Alluvial-Marine Complex region west of the Kolyma river mouth showed widespread 

lake area loss in nearly the entire region. Particularly the northern part, where several large 

lakes are located, was affected by a strong reduction of lake area (Figure 3.11b-2). Lake 

growth was infrequent and only measured for the minority of lakes. 

The floodplain of the Kolyma river is dominated by strong dynamics, predominantly as lake 

expansion. Several individual lakes were affected by drainage of varying degrees. In the river 

delta, lake drainage and expansion was more evenly distributed with a slight excess of lake 

area loss. 

 

Figure 3.11: Regional lake change of KOL study site: (a) gridded spatial net lake change distribution in 

ha. Gridsize: 3 × 3 km; (b-1) detailed view of lake growth in the coastal region of the Yedoma-Alas 

Complex; (b-2) detailed view of lake area loss in the Alluvial-Marine Complex; and (b-3) detailed view of 

lake drainage at Bolshoy Oler lake. 

3.6 Discussion 

3.6.1 Data Analysis 

Within the KOL study site, 38,838 lakes were detected (cf. Table 3.4). During the observation 

period, the overall lake area changed from 1,197,263 ha to 1,191,180 ha, which translates to a 
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net loss of 6083 ha or 0.51%. Lake growth accounted for 21,827 ha, while shrinkage resulted 

in 27,910 ha lake area loss. The majority of lakes remained predominantly stable over the 

observation period from 1999 to 2014 with 90.2% of the lakes having a net area change of 

less than 1 ha. In total, 64 lakes were affected by strong lake expansion or formation, whereas 

205 lakes were subject to near complete lake drainage. The median area of lakes is 5.59 ha 

and the largest lake has size of 22,449 ha.  

Within this study region, several spatial clusters of noticeable change can be distinguished 

(Figure 3.11). The Yedoma-Alas Complex (YAC) is clearly structured into a northern part, 

where lake expansion and a southern part, where drainage were the dominant lake change 

processes. The boundary of these zones nearly forms a straight line from northeast to 

southwest, which coincides with the boundary between the elevated ice-rich yedoma deposits 

in the south and the low-lying thermokarst basins in the north. Particularly, in the northeastern 

coastal region, very strong lake expansion rates of up to 1097 ha for one lake were measured 

(Figure 3.11b-1). This particular lake exemplifies probably the two main drivers of lake 

expansion in this region. First, thermokarst caused lake expansion occurs along the shorelines 

of most lakes in this region. The second driver is the flooding of shallow and low-lying basins 

along the coast, which might be caused by seawater inundation. 

The southern part of the YAC is dominated by lake area loss. Most of the lake area reduction 

was fueled by the partial drainage of several large lakes, e.g., Bolshoy Oler lake on the 

western margin of the study region (Figure 3.11b-3). This particular lake alone lost 752 ha of 

its water surface. Several other lakes were also affected by lake are loss of more than 100 ha, 

each. Lake expansion was measured for a large fraction of lakes, but does not outweigh the 

widespread water area loss. 

In the YAC, south of the Kolyma river, lake area loss was more pronounced than lake growth, 

predominantly caused by the partial drainage of several large lakes. The majority of lakes did 

not follow a specific spatial pattern and changes in both directions were recorded. 

The Alluvial-Marine Complex region west of the Kolyma river mouth showed widespread 

lake area loss in nearly the entire region. Particularly the northern part, where several large 

lakes are located, was affected by a strong reduction of lake area (Figure 3.11b-2). Lake 

growth was infrequent and only measured for the minority of lakes. 
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The floodplain of the Kolyma river is dominated by strong dynamics, predominantly as lake 

expansion. Several individual lakes were affected by drainage of varying degrees. In the river 

delta, lake drainage and expansion was more evenly distributed with a slight excess of lake 

area loss. 

The combined MLC and OBIA classification into four classes (land, water, and temporal 

transitions between both) based on the 16-year (1999–2014) Landsat trend data yielded an 

excellent separation of the input data based on different metrics, such as RF’s internal 

accuracy estimator (OOB) or five-fold cross-validated classification accuracy and Cohen’s 

kappa. Area estimates of pure pixels of the defined classes can therefore be considered as 

highly accurate within the spatial resolution of the data.  

However, as thermokarst lakes are characterized by a dynamic, asymmetric behavior with a 

large number of slowly growing lakes and a low number of quickly draining lakes, and 

Landsat’s spatial resolution of 30 m, sub-pixel analysis becomes crucial to properly account 

for the magnitude and direction of changes. Therefore, we included a sub-pixel analysis of 

changes along the lake margins based on the probability values of the MLC. 

The processing step from pixel based classification to lake or lake-change objects worked 

generally well in most cases. Lakes embedded in tundra, boreal or transitional environments 

were clearly detected and separated without notable differences between the different eco-

zones. However, more dynamic zones without a clear distinction of water and land, e.g., 

wetlands, are a potential error source for lake change calculations, due to their constantly 

changing surface conditions, local-scale permafrost landscape features conditions, and its 

transitional nature between water and non-water, which is a common issue identified in 

previous studies e.g., (Karlsson, Lyon, & Destouni, 2014; Boike, et al., 2016; Chen, Rowland, 

Wilson, Altmann, & Brumby, 2013). These particular settings usually occurred in coastal or 

delta regions and river valleys or flat drained lake basins. Such regions might be more 

susceptible to larger errors than for most other regions. Particularly, the highly dynamic AKS 

study site was affected by this effect, where many small basins constantly changed their 

surface water conditions. 

Few misclassifications were identified in regions of frequent wildfires, such as boreal taiga or 

forest tundra regions as wildfires were occasionally classified as change in either direction, 

due to its strong spectral change over time. The use of global forest cover change information 
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(Hansen, et al., 2013) and DEM data (Santoro & Strozzi, 2012) helped to detect and mask 

these regions by automatically discarding false positive classified lake objects. However, as 

large regions in the tundra-taiga transitional zone are not accounted for in the global forest 

cover change map, the removal of false positive lake objects due to fire may lack the 

reliability of boreal regions.  

3.6.2 Comparison of Sites and Prior Studies 

Each of the four analyzed regions shows a slightly different behavior in the dynamics of its 

lakes. The more northerly coastal regions NSL and KOL, have a small decline in lake area 

with 0.69% and 0.51%, respectively. Lake dynamics are locally varying, and spatial 

differences, based on several factors, such as geology (types of sediments, ice-content) and 

geographical setting (e.g., proximity to the coast or rivers) have an influence on the lake 

dynamics. The western Alaskan site (AKS) is subject to a decrease in lake area by 2.8% and is 

characterized by frequent dynamics, predominantly as lake drainage. As in the first two 

regions, clear small-scale local spatial patterns can be distinguished. The Central Yakutian 

study site (CYA) is characterized by extreme lake expansion of 48.48% between 1999 and 

2014, which strongly deviates from the other sites. 

The predominantly stable conditions on the Alaska North Slope (NSL) compare well with 

Jones et al. (2009), who found no significant long-term trends of lake area change between 

1985 and 2007. Our characterization of mostly stable conditions over most of the North Slope 

study site confirms Hinkel et al. (2007) who found two lake drainage events per year from the 

mid 1970s to 2001/2002 on a similar sized and largely overlapping part of the North Slope. 

Considering the same criteria, we observed 2.44 drainage events per year. Arp et al. (2011) 

detected net lake expansion of 3.4% using high-resolution data and 4.1% using Landsat data, 

between 1979 and 2002 on a small sample of 13 lakes in a more dynamic subset on the 

YOCP, north of Teshekpuk Lake. For twelve of the same lakes together, we found a zero net 

change, but strong changes in both directions for individual lakes. The missing lake L195 

drained catastrophically in summer 2015 (Jones & Arp, 2015) and lost a significant portion of 

its 80 ha area. Due to the close proximity to the sea, the lake was automatically discarded in 

our processing, as it was detected as connected to the sea. 

In the Kolyma Lowland region, our calculated net lake area decrease of 0.5% reveals a strong 

discrepancy to Walter et al. (2006), who detected a lake area increase of 14.7% along the 
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Kolyma river for a longer time period from 1974 to 2000. The strong difference can be 

explained by the extent and setting of study areas, as we also found a strong lake area increase 

within the Kolyma floodplain. Their use of sensors with a different spatial resolution (Landsat 

MSS to ETM+), may have also had an influence on the results. Considering the discrepancy 

to the regional statistics, this particular subset is not representative for the entire region, which 

stresses the spatial variety of lake change processes, particularly within this region. 

Veremeeva and Gubin (2009) found a trend of lake area decrease in the range of 0.9 to 10.7% 

for a small region in the western Yedoma-Alas Complex from 1973 to 2001. Within this 

specific region, our results also indicate a strong loss of lake area, largely due to the partial 

drainage of the around 50 km² large Bolshoy Oler lake. The sharp boundary of lake growth 

trends and lake shrinkage trends coincided very well with boundary of geomorphology with 

old low-lying thermokarst basins in the Yedoma-Alas Complex region. 

In a comparable Arctic coastal lowland setting, to NSL and KOL, with thick continuous 

permafrost on the NW Canadian Tuktoyaktuk Peninsula, Olthof et al. (2015) found a slight 

lake area increase of 0.64% over eight years with strong inter-annual fluctuations of up to 4%. 

Within the same region Plug et al. (2008) found substantial lake area fluctuations for large 

lakes of +14% from 1978 to 1992 and −11% from 1991 to 2001, however with an 

anomalously low lake area in 2001.  

In the western Alaskan study site (AKS), located in the transition zone from continuous to 

discontinuous permafrost, we observed a net lake area loss of 2.8%. It compares well to 

Roach et al. (2013) who measured a lake area loss of 0.81% per year. Their study site largely 

covers the area affected by widespread lake drainage and trends of lake change nicely 

resemble the spatial pattern we found in our study, e.g., lake growth in the Selawik river delta 

and widespread loss in the northern Selawik river valley. In a more continental site east of the 

Kobuk Dunes, Necsoiu et al. (2013) found an overall decreasing lake area trend from 1978 to 

2005 within 22 lakes or ponds. We could detect 14 of these lakes and found a lake area loss of 

13.4%, largely fueled by the partial drainage of one lake. Similar trends were detected on the 

nearby northern Seward Peninsula where Jones et al. (2011) found 11% lake area loss where 

the drainage events of few large lakes were the main drivers for a net lake area loss. Each of 

the coastal sites showed trends of lake area increase in near-shore areas. To our knowledge 

this effect has not been described or discussed in other lake change studies. It may be caused 
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by several factors, such as local climatic effects; surface geology, e.g. sediments more prone 

to erosion; or very flat terrain, which is affected to sea water inundation. 

The abundance of disappearing lakes in discontinuous permafrost regions in Central Alaska 

(Riordan, Verbyla, & McGuire, 2006; Rover, Ji, Wylie, & Tieszen, 2012) has been linked to 

increased connectivity to groundwater (Jepsen, Voss, Walvoord, Minsley, & Rover, 2013; 

Yoshikawa & Hinzman, Shrinking thermokarst ponds and groundwater dynamics in 

discontinuous permafrost near Council, Alaska, 2003). Permafrost degradation or 

disappearance along the continuous-discontinuous permafrost interface in the AKS site would 

be a good explanation for the strong lake drainage trend within this region. Other causes in 

areas with relative high continentality, such as the central Alaskan Yukon Flats or northwest 

Canadian Old Crow Flats, include increased evapotranspiration (Lantz & Turner, 2015; 

Riordan, Verbyla, & McGuire, 2006; Labrecque, Lacelle, Duguay, Lauriol, & Hawkings, 

2009). 

However, for the highly continental Central Yakutia site, we calculated a 48.48% increase in 

lake area for the 1999–2014 period, which is a significant outlier in terms of thermokarst lake 

dynamics. The same wetting pattern has been described by Boike et al. (2016), who used 

Landsat snapshots and found an increase of around 85% from 2002 to 2009 within the 

strongest wetting part of the CYA study site. The strongest increase in lake area occurred in 

2007 after above-average precipitation in the prior year (Tarasenko, 2013). Furthermore, this 

particular region has been subject to very strong rates of lake expansion over the last decades 

due to several factors, including anthropogenic activity and the change of climatic conditions 

(Ulrich, et al., 2017; Fedorov, Ivanova, Park, Hiyama, & Iijima, 2014). The recharge of lakes 

here may be connected to a wetter and warmer climate over the recent decades (Boike, et al., 

2016; Ulrich, et al., 2017; Iijima, et al., 2010) and shifting agriculture practices, where 

meadows and grasslands in alas basins are increasingly managed to produce richer pastures 

(Crate, et al., 2017). In addition to the climatic conditions and anthropogenic influence, the 

local geological conditions seemingly had a strong influence on the lake area changes, where 

the terraces with ice-rich sediments showed a much more pronounced lake area expansion in 

comparison to the remaining area.  

The comparison of different studies as well as the analysis of local trends highlights the 

variability of lake dynamics within the northern permafrost region. The wide variety of spatial 

scales poses a large challenge for the comparison of different studies and regions, as results 



 3 - Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions  

 76 

 

may vary strongly even for nearby locations. Furthermore, seasonal or short-term lake area 

fluctuations, which can exceed long-term trends (Olthof, Fraser, & Schmitt, 2015), may mask 

long-term trends in studies based on the widely applied practice of using snapshots (Jones B. 

M., et al., 2011; Karlsson, Lyon, & Destouni, 2014; Smith L. C., Sheng, MacDonald, & 

Hinzman, 2005; Riordan, Verbyla, & McGuire, 2006; Hinkel, et al., 2007; Walter, Zimov, 

Chanton, Verbyla, & Chapin, 2006). The trend analysis of single date lake masks (Olthof, 

Fraser, & Schmitt, 2015; Roach, Griffith, & Verbyla, 2013) can help to suppress short-term 

fluctuations and produce more reliable and comparable results. In our study we applied the 

trend analysis at an earlier stage and translated spectral trends to semantic information with 

MLC, which allowed us to accurately distinguish between zones of stable water or land and 

changing transition zones around lake margins. With the inclusion of classification probability 

values, we exploited sub-pixel information to detect permafrost region specific thermokarst 

lake growth.  

Using the trend calculation helps generalize the input data regardless of its location and 

enables the comparison and upscaling across multiple spatial scales, starting from individual 

lakes up to very large regional scales. The successful application of the method to different 

study sites across the permafrost zone proved the transferability and scalability of the highly 

automated processing method and highlights its strong potential for applying it to the entire 

permafrost domain to fully characterize lake changes and associated permafrost dynamics. 

3.7 Conclusions 

We used a highly automated and hybrid approach based on Landsat TM, ETM+ and OLI data, 

robust trend analysis, machine-learning classification and object oriented analysis to quantify 

lake change dynamics for four large study regions in Alaska (North Slope and Kobuk-Selawik 

Lowlands) and Siberia (Central Yakutia and Kolyma Lowland) encompassing a total area of 

about 200,000 km². Landsat trend data analysis allowed for the comparison of different study 

sites over a specific period (1999–2014) and the observation of trends where short-term 

fluctuations do not affect the long-term change trajectories. In total, around 80,000 individual 

lakes larger than 1 ha were mapped and analyzed regarding their spatial dynamics over a 16-

year period from 1999 to 2014. Regional lake area statistics revealed weak lake area loss for 

the more northerly Alaska North Slope (−0.69%) and Kolyma Lowland regions (−0.51%), 

while the lake area in the west Alaskan Kobuk-Selawik Lowlands was subject to a more 
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pronounced area loss (−2.82%). Lake area in Central Yakutia grew considerably by 48.48%. 

In this latter area, massive recharging of large lakes in alas basins was likely connected to 

climatic wetting and warming and changes in agricultural practices.  

Despite similar regional net change, considerable differences in local dynamics were 

distinguishable. The lakes in northern Alaska within continuous permafrost exhibited a rather 

stable and uniform behavior with widespread lake stability and a limited region of 

pronounced lake dynamics. Lakes in the Kolyma Lowland region showed a low net area 

change, but were subject to a clear regional zonation of lake growth and drainage. In the 

warmer west Alaska site, widespread drainage of lakes in inland regions dominated the lake 

change dynamics. Within this region, where permafrost is transitioning from continuous to 

discontinuous, the spatial dynamics were locally very diverse and likely affected more 

strongly by the landscape surface geology and local permafrost conditions. 

As lakes and lake dynamics are an important driver of change in the northern permafrost 

lowlands, these findings will help to better understand the landscape response to a rapidly 

warming Arctic and degrading permafrost with all its hydrological and biogeochemical 

consequences. For example, the improved knowledge of large scale lake change dynamics 

will allow for a better quantification of thermokarst lake-related fluxes of the greenhouse 

gases methane and carbon dioxide. With the global availability and continuity of Landsat data, 

the increasing availability of comparable Sentinel-2 data, and the scalability of our method, 

we envision the expansion of the analysis to a pan-arctic scale. 

3.8 Supplementary Materials 

Supplementary data are available at the PANGAEA data repository (Nitze I. , et al., 2017) 

(https://doi.org/10.1594/PANGAEA.876553). They include the georeferenced outlines and 

centroids of detected lakes with major lake area statistics. Furthermore, gridded net lake 

changes are also made available. 
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3.10 Appendix A 

 

Figure 3.12 Photo of example location (Figure 3.7) with thermokarst lake shore erosion. Looking north. 

Photo taken on 14 July 2015 by I. Nitze. 
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Figure 3.13: Oblique aerial photo of partially drained lake on the Alaska North Slope presented in Figure 

3.8b-1. Looking southeast. Photo taken on 15 July 2015 by I. Nitze. 

 

Figure 3.14: Oblique aerial photo of partially drained lake on the Alaska North Slope presented in Figure 

3.8b-2. Looking northwest. Photo taken on 19 July 2015 by I. Nitze. 
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Figure 3.15: Oblique aerial photo of refilled, naturally dammed lake on the Alaska North Slope presented 

in Figure 3.8b-3. Looking southwest. Photo taken on 19 July 2015 by I. Nitze. 

 

Figure 3.16: Oblique aerial photo of drained and filled lakes in Kobuk-Selawik Lowlands in Figure 3.9b-1. 

Looking north. Photo taken on 8 August 2016 by J. Lenz. 
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Figure 3.17: Oblique aerial photo of wetting lagoon on the western Baldwin Peninsula in Figure 3.9b-3. 

Looking northeast. Photo taken on 8 August 2016 by M. Fuchs. 
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4.1 Abstract 

Earth’s permafrost region is becoming increasingly vulnerable in response to rapid climate 

change and shifting disturbance regimes. Permafrost degradation results in rapid alteration to 

biogeochemical cycles, hydrology, and ecosystems in Arctic and Boreal environments. Here, 

we quantify the abundance and distribution of three primary permafrost region disturbances 

(lakes and lake dynamics, wildfires, and retrogressive thaw slumps) using dense time series of 

30-m resolution Landsat satellite imagery and Pan-Arctic data products across four 

continental-scale transects in North America and Eurasia.  We identify these disturbances 

across 2.3x10
6
 km², or 10% of the permafrost region, during a period of recent, rapid climate 

change (1999 to 2014).  More than 640,000 analyzed lakes indicate that their influence on 

permafrost disturbances are likely decreasing through widespread lake drainage (Net decrease 

of -1737 km² or -0.98%).  Fires on the other hand are widespread across all boreal permafrost 

regions (6.62%) as well as the Alaska tundra region (1.07%).  Retrogressive thaw slumps, 

while dramatic, only impact less than 10
-5

% of the permafrost region analyzed and are highly 

spatially restricted. Our comprehensive remote sensing analysis allows for correlation of 

disturbances with ground thermal regime, permafrost extent, and permafrost characteristic and 

indicates the vulnerability of permafrost terrain to disturbance and potentially future thaw.   
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4.2 Introduction 

Climate change and disturbance regime shifts are amplified in the northern high-latitudes and 

global and regional projections indicate that environmental thresholds will be crossed during 

this century (IPCC, RPC 8.5) (Lenton, 2012). Permafrost, which underlies roughly 24% of 

Earth’s land surface, is an important component of cryosphere.  It is warming in response to 

these changes (Romanovsky, et al., 2017; Streletskiy, et al., 2017) and from 50 to 90 % of 

near surface permafrost in Arctic and Boreal regions are projected to be lost by 2100 

(Lawrence, Slater, & Swenson, 2012).  Widespread loss of near surface permafrost will 

mobilize a large reservoir of perennially frozen soil carbon (Hugelius, et al., 2014) which will 

have ramifications for Earth’s climate system (Schuur, et al., 2015). Increased carbon 

emissions from thawing permafrost may further enhance warming temperatures, a process 

known as permafrost carbon feedback (Schaefer, Lantuit, Romanovsky, Schuur, & Witt, 

2014). A recent synthesis study combining spatial datasets of permafrost, soil carbon, and 

terrain with an empiric classification scheme of landscape-scale thaw-vulnerability indicates 

that landscapes vulnerable to rapid thaw processes contain a major portion of the permafrost-

stored soil carbon (Olefeldt, et al., 2016). Due to rapidly changing climate and increased local 

anthropogenic influences from economic development in high northern latitude regions, 

permafrost increasingly shows signs of rapid degradation in many Arctic and Boreal regions 

(Jorgenson, Racine, Walters, & Osterkamp, 2001; Jorgenson, Shur, & Pullman, 2006; 

Liljedahl, et al., 2016; Raynolds, et al., 2014; Kokelj S. V., Lantz, Tunnicliffe, Segal, & 

Lacelle, 2017; Ulrich, et al., 2017; Jones, et al., 2016). However, spatially and temporally 

consistent inventories of permafrost region disturbances in sufficiently high spatial resolution 

are currently lacking. 

The northern permafrost region (Figure 4.1) varies with respect to spatial extent and 

characteristics of ground thermal regime, ground-ice content, climate, topography, hydrology, 

and land cover (Olefeldt, et al., 2016; Jorgenson, et al., 2008; Walker, et al., 2005; Brown, 

Ferrians Jr, Heginbottom, & Melnikov, 1997). Each of these factors interacts in complex ways 

such that predicting the response of permafrost terrains to climate change and disturbances is 

extremely difficult (Nicolsky, Romanovsky, Panda, Marchenko, & Muskett, 2017).  For 

example, changes in climate and disturbance regimes may trigger an increase or a decrease in 

thermokarst lake numbers (Ulrich, et al., 2017; Jones B. M., et al., 2011) they also may cause 
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widespread ice-wedge degradation or promote stabilization through paludification (Liljedahl, 

et al., 2016; Jorgenson & Shur, 2007), and they may initiate retrogressive thaw slumps or 

detachment slides or promote regional stabilization of currently active features  (Grosse, et al., 

2011; Jorgenson & Osterkamp, 2005).  In addition, with climate warming high northern 

latitude fire regimes are expected to shift towards shorter fire return intervals, increased burn 

severity, and more widespread occurrence (Stocks, et al., 1998; Hu, et al., 2015).  Fire events, 

which are already frequent in boreal regions (Hansen, et al., 2013; Kasischke & Turetsky, 

2006; Conard & Ivanova, 1997), but scarcely studied in tundra (Jones, et al., 2013; Liljedahl 

A. , Hinzman, Busey, & Yoshikawa, 2007), have the ability to initiate or strengthen 

permafrost disturbances depending on fire severity and timing (Jones B. M., et al., 2015). 

Feedbacks and local-scale consequences may trigger widespread changes of permafrost 

related processes, causing the mobilization and potential release of carbon to the atmosphere 

as well as a wide range of ecological and hydrological impacts that remain poorly 

documented (Jorgenson, et al., 2010).  

Currently, contemporary permafrost region disturbances (PRDs) are poorly represented in the 

global system due to the previously unresolved conflict of scales between a large quantity of 

rapid local scale processes and coarse-resolution continental scale remote sensing data and 

processing capabilities. The vast majority of permafrost areas are underrepresented in studies 

and PRDs may remain undocumented, resulting in significant uncertainty of the current 

magnitude of rapid permafrost degradation processes and their role in global scale 

biogeochemical dynamics. With growing archives of freely accessible earth observation data 

of adequate spatial resolution and coverage for permafrost remote sensing as well as rapidly 

growing computational processing capacities, we now have the potential to detect and observe 

widely distributed PRDs in high spatial and temporal resolution across very large regions. 
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Figure 4.1: Study sites with distribution of permafrost types and treeline (Walker et al., 2005) in the 

northern Hemisphere. 

In this study, we analyzed 16 years of 30-m resolution earth observation data from the 

Landsat archive in conjunction with Pan-Arctic scale data products, from 1999 through 2015, 

to track three key PRDs (lake extents and their dynamics, retrogressive thaw slump activation, 

and wildfire regimes; Figure 4.2) across four extensive North-South transects in Alaska, 

Eastern Canada, Western Siberia, and Eastern Siberia that cover more than 2.3 x 10
6
 km² (10 

% of the permafrost region) and feature a broad range of permafrost, climate, topographic, 

and geo-ecological zones (Figure 4.1).  We combined temporal trend-analysis with machine-

learning to map the spatial distribution of PRDs and their relation to permafrost properties, 

ecological zones and climate, allowing comprehensive and unique insights into PRD 

distribution, abundance, and dynamics.   Our results provide a baseline for improving future 

landscape models and carbon emission estimations from permafrost region disturbances. 
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Figure 4.2: Examples of disturbances in permafrost landscapes. a) Dynamic lake rich region in western 

Alaska with frequent drainage, b) Expanding thermokarst lake in northern Alaska, c) coastal 

retrogressive thaw slump on Bykovsky peninsula in northeastern Siberia, d) Selawik slump in western 

Alaska, e) burn scar of wildfire in boreal Alaska, and f) burning tundra fire (Anaktuvuk Fire) in northern 

Alaska. 
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4.3 Results 

 

Figure 4.3: Lake statistics and permafrost conditions in the four selected transects: T1 Western Siberia, 

T2 Eastern Siberia,  T3 Alaska, T4 Quebec. a) Limnicity: Lake fraction of land surface, b) Net lake 

change: lake area change per grid cell (7.5x7.5 km), c) Relative lake change: fraction of changing lake 

area, and d) permafrost conditions with permafrost extent in shades of blue and ice content based on IPA 

Permafrost map (Brown, Ferrians Jr, Heginbottom, & Melnikov, 1997), e) wildfire burn scars with 

treeline, f) retrogressive thaw slumps and LGM glaciation extent (Ehlers & Gibbard, 2003). Retrogressive 

thaw slumps for T1 in e). LGM glacial coverage omitted in T4 for visual purposes. 

4.3.1 Lakes 

Regional lake changes 

Observed lake changes (lake size > 1 ha; n=643,304) were highly diverse in the Alaskan and 

the two Siberian transects with a wide range from stability to rapid high magnitude changes, 

which aligned with the heterogeneous spatial patterns of surface geology, geomorphology, 

permafrost extent and ground-ice conditions (Figure 4.3;  
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Table 4.1). In contrast, the spatial dynamics of lakes in the Eastern Canadian Region were 

coherent with the geomorphological homogeneity and followed a latitudinal gradient of 

increasing lake area loss from south to north. Overall lake area loss outweighed lake area 

gain, particularly in western Siberia with a net change of -5.41% (gross increase and gross 

decrease in brackets hereafter; +1.58; -7.45%) as well as in Alaska and eastern Canada with 

net changes of -0.62% (+3.31%; 3.96%) and -0.24% (+1.87%, -2.12%) respectively. The East 

Siberian transect is characterized by a positive lake area trend with a net change of +3.67% 

(+7.77%; -3.95%). Overall lake area loss totaled 4767 km², whereas lake growth accounted 

for 3030 km² leading to a net loss of 1737 km².  

Lake change and permafrost extent  

Lake area loss is the dominant lake related process in discontinuous and around the 

continuous-to-discontinuous permafrost boundary. Western Siberia and Alaska had a net lake 

loss of 7.89% and 5.96%, respectively in discontinuous permafrost. Intensive gross lake area 

loss, e.g. through drainage or drying, was the key driver of negative lake area balance 

particularly in Alaska with 12.11% gross loss and simultaneous 5.43% gross gain, which 

signifies the rapid lake dynamics in this region with drainage on the one hand and lake 

expansion on the other. Lakes in this region, e.g. Yukon Flats, Kobuk-Selawik Lowlands or 

northern Seward Peninsula were among the most dynamic regions of lake change with 

dominating lake area loss. In western Siberia, zones of strong lake area loss extended from the 

discontinuous into the continuous permafrost zone, where a large cluster of lakes on the 

southern and southeastern Yamal peninsula were particularly affected by partial drainage of 

large lakes (> 10 km²). This pattern may indicate that thermokarst lake changes are likely 

related to the transition between different hydrological regimes when permafrost becomes 

discontinuous. For the other two transects no such relationship was observed since the eastern 

Siberian transect lies nearly completely within continuous permafrost whereas the eastern 

Canadian transect is dominated by bedrock geology, where lakes of non-thermokarst origin 

dominate but still impact the underlying permafrost. 

Lake changes were highly diverse in the continuous permafrost zone. Enormous and 

widespread lake expansion took place on the eastern banks of the Lena River in central 

Yakutia within ice-rich thick continuous permafrost, where lake area increased by a 

staggering 50% within a short time period, fueled by strong precipitation events in 2006 and 
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2007 (Boike, et al., 2016; Ulrich, et al., 2017). Lake area loss dominated the continuous 

permafrost section of western Siberia (-4.29%; +1.7%; -6.26%), with increasing lake stability 

towards the north.  The continuous permafrost zone in Alaska had a diverse pattern of local 

lake change dynamics, with regions of intensive lake dynamics but little net change (North 

Slope-Outer Coastal Plain, YK-Delta), regions with nearly stable conditions (North Slope-

Inner Coastal Plain), or strong lake area loss (Northern Seward Peninsula).  Overall lake 

change is nearly evenly distributed between lake area gain and loss (-0.24%; 3.21%, 3.46%). 

Apart from the continuous to discontinuous permafrost transition zone, the permafrost extent 

did not show a general influence on the net direction and magnitude of (thermokarst) lakes. 

Lake growth consistently increased towards continuous PF in both regions with significant 

discontinuous and continuous permafrost, but much more variable lake area loss rates 

determined the net lake change budget (Figure 4.4, Table 4.1). We could not find a general 

and consistent correlation of ground ice content with the magnitude and direction of lake 

dynamics (Figure 4.4, Table 4.1). However, ground ice content and geomorphological 

differences may have a strong influence on local and regional-scale lake dynamics (Nitze I. , 

et al., 2017), but the coarse resolution and quality of globally available datasets of permafrost 

properties only covers coarser spatial scales, which do not resolve local scale variation present 

in many locations such as northern Alaska, highlighting the need for improved data on 

permafrost distribution and especially on permafrost ice content. 

Non-thermokarst lakes 

Due to the bedrock geology and the complete glaciation during the last glacial maximum, 

lakes in the Eastern Canadian transect are of non-thermokarst origin, which was reflected in 

the homogeneous behavior of gradually increasing intensity of lake dynamics of both growth 

and loss from south to north. The difference was also reflected in suppressed gross growth 

rates, compared to thermokarst in Siberia and Alaska. Strong lake area loss in the northern 

and northwestern coastal and near-coastal zone outweighed weak lake growth with a net lake 

area loss of -2.01% (+0.77%; -2.84%) in the northern continuous permafrost zone, whereas 

the central and southern portions of the transect show little change with a few clusters of lake 

growth, which has been found in earlier studies (Carroll, Townshend, DiMiceli, Loboda, & 

Sohlberg, 2011). The spike in lake area gain at 53-54°N, was caused by the filling of the 

Eastmain-1A reservoir (+470 km²), which is part of a larger series of hydro-electrical dams. 
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Figure 4.4: Boxplot of individual relative lake change statistics of any change (left), lake growth (center), 

and lake loss (right)  by Permafrost extent (top), Ground Ice content (middle), and Thermokarst Lake 

Coverage (bottom). Sample sizes per group (n lakes) indicated in middle column. 

 

Due to the non-thermokarst origin, permafrost extent and ground ice can be disregarded as 

significant influence factors of lake change. The gradual lake change on a latitudinal gradient 

indicates an influence of large scale climatic patterns. The entire transect was affected by an 

increase of temperatures (+1.2 to +1.7 K), in conjunction with a marginal increase in 

precipitation north of 56°N (+1 to +18 mm), but stronger precipitation increase in the 

southern part (+25 to +63 mm) of the observation period in comparison to 1979 to 1998. 
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Table 4.1: Regional lake change results per transect as net change, gross lake area growth and gross lake 

area loss, subdivided by permafrost extent, and ice content.  

  
  Overall Permafrost Extent Ice Content 

  
unit   C D S I High Medium Low 

T1 

Net 
km² -1759.50 -556.19 -390.11 -155.99 -300.98 -636.69 -347.67 -418.89 

% -5.46 -4.29 -7.89 -1.94 -13.58 -3.67 -5.35 -9.70 

Growth 
km² 509.93 220.93 58.24 87.86 114.55 324.59 108.00 48.99 

% 1.58 1.70 1.18 1.09 5.17 1.87 1.66 1.13 

Loss 
km² 2269.42 777.12 448.35 243.84 415.52 961.28 455.67 467.88 

% 7.45 6.26 9.85 3.10 3.10 5.75 7.40 12.00 

n Lakes   218882 97723 45070 57144 10049 117572 55021 37393 

 
 

  
 

  
     

  

T2 

Net 
km² 313.81 320.08 -0.02 0.00 0.00 32.00 97.82 190.65 

% 3.67 3.81 -3.12 0.00 0.00 0.55 8.30 13.99 

Growth 
km² 663.76 657.23 0.02 0.00 0.00 248.28 147.56 262.11 

% 1.87 7.83 3.16 0.00 0.00 4.24 12.52 19.24 

Loss 
km² 349.96 337.14 0.04 0.00 0.00 216.28 49.74 71.46 

% 3.95 3.87 6.48 0.00 0.00 3.67 3.90 4.60 

n Lakes   69151 67156 19 0 0 44058 10670 12579 

  
  

 
  

     
  

T3 

Net 
km² -161.45 -55.61 -109.08 3.20 0.00 -123.32 43.21 -81.38 

% -0.62 -0.24 -5.96 0.28 0.00 -1.12 0.34 -3.53 

Growth 
km² 862.19 736.96 99.40 20.92 0.00 105.48 672.12 79.68 

% 3.31 3.21 5.43 1.83 0.00 0.96 5.34 3.45 

Loss 
km² 1023.64 792.57 208.48 17.72 0.00 228.81 628.91 161.06 

% 3.96 3.46 12.11 1.54 0.00 2.10 4.98 7.23 

n Lakes   158453 133813 20219 3358 0 51279 94101 12010 

  
  

 
  

     
  

T4 

Net 
km² -129.77 -438.72 -82.18 -52.62 447.60 -2.91 -0.27 -122.74 

% -0.24 -2.02 -1.50 -1.07 2.15 -1.32 -1.55 -0.23 

Growth 
km² 994.59 167.69 26.43 22.51 774.63 2.02 0.18 989.06 

% 1.87 0.77 0.48 0.46 3.71 0.91 1.03 1.87 

Loss 
km² 1124.36 606.41 108.61 75.13 327.03 4.93 0.46 1111.80 

% 2.12 2.84 2.02 1.55 1.55 2.26 2.63 2.11 

n Lakes   196818 97742 22311 19470 55226 1506 249 192994 

 

4.3.2 Retrogressive Thaw Slumps 

Actively expanding retrogressive thaw slumps (RTS) and landslides were identified in sloped 

terrain in and along the foot slopes of mountain ranges, as well as coastal bluffs, lake shores 
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or valleys in ice-rich permafrost terrain. They typically formed regional clusters of up to 25 

individual RTS and were limited to the continuous permafrost zone (Figure 4.3). 

On the western and central Yamal Peninsula we identified 23 RTS which are distributed in 

spatial clusters along the western coast and in the vicinity of the Bovanenkovo gas field (cf. 

Table 4.2). In the Lena Delta region of the east Siberian Transect different clusters of 8 RTS 

were detected on steep coastal shores in the south-eastern Lena Delta region, where very ice-

rich Yedoma Ice-Complex sediments are eroded (see Figure 4.2c). Several isolated clusters of 

115 thaw slumps were detected in the western and southern, but only 18 in the eastern 

foreland of the Verkhoyansk mountain range in most cases along lake shores in hummocky 

terrain, which most likely are caused by decaying buried glacial ice (Figure 4.5). In the 

Alaskan transect several clusters of RTS and landslides were detected within the Brooks 

Range and along its northern and western foothills (n=184), most notably in the upper Noatak 

valley (n=52). Furthermore, 31 coastal thaw slumps were observed on the formerly glaciated 

Herschel Island and Yukon coast (Canada), whereas 9 RTS were detected on steep coastal 

bluffs on the northwestern coast of Alaska. The large Selawik Slump (see Figure 4.2d) in 

western Alaska was detected, but it remains a singular feature in its vicinity and marks the 

southernmost detected RTS in the Alaskan Transect. RTS were absent in the east Canadian 

Transect.  

Table 4.2: Number, area and location (transect) of detected retrogressive thaw slumps. 

Transect # of RTS Area km
2 

T1 – Western Siberia 23 0.2079 

T2 – Eastern Siberia 140 1.0809 

T3 – Alaska 245 4.0014 

T4 – Eastern Canada (Quebec) 0 0 

SUM 408 5.2902 

4.3.3 Wildfire 

Burn scars of wildfires for the 2000-2015 period (see Methods section for description of 

temporal shift) were widespread in all transects, particularly within the densely forested 

boreal region. Southern inland locations with continental climatic conditions characterized by 

high annual temperature amplitudes and dry conditions throughout the entire year had a 

higher abundance of fires (cf. Table 4.3).  
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Eastern Siberia was among the most strongly affected region with large fire affected area, 

where around 7.78% of the total area and 8.15% of non-tundra area were burned with 

different intensities between 2000 and 2015. In its southernmost region west of the Lena river, 

around 17% of the land surface was affected by wildfires, predominantly during few severe 

fire seasons (Boike, et al., 2016). Wildfires also affected large swaths of boreal Alaska with 

8.89% burned non-tundra area, correlating with drying conditions over the observation period 

(Figure 4.4). In the Canadian Transect fires were a common occurrence in the southern boreal 

region where they affected 5.06% of non-tundra area, and sharply decreasing wildfire 

frequency north of 53° latitude. In more humid and wetland dominated western Siberia fires 

were less widespread with a total extent of 1.7% or 2.43% in non-tundra area (Figure 4.4).  

Generally, fire frequency and extent decreased sharply towards the taiga tundra ecotone, 

where the density of available fuel decreases and less favorable climatic conditions prevail. 

Tundra fires occurred infrequently and were mostly limited to a small extent. Alaska stands 

out as the only region with tundra fires, most prominently the major Anaktuvuk Fire in 2007 

in northern Alaska (Figure 4.2f) which affected an area of ~1000km².  Overall tundra fires in 

northern and western Alaska burned nearly 4600 km² or 1.07% of the tundra region. 

Table 4.3: Overall and Transect-specific wildfire coverage divided by Fire location (overall, boreal/forest, 

tundra). 

Transect Unit Overall Boreal Tundra 

T1 – Western Siberia 
km² 8470.28 8470.28 0.00 

% 1.70 2.43 0.00 

T2 – Eastern Siberia 
km² 43047.93 43047.93 0.00 

% 7.78 8.15 0.00 

T3 – Alaska 
km² 46162.35 41580.53 4581.82 

% 5.14 8.89 1.07 

T4 – Eastern canada (Quebec) 
km² 13642.20 13642.20 0.00 

% 3.46 5.06 0.00 

SUM 
km² 111322.76 106740.94 4581.82 

% 4.75 6.62 0.63 
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Figure 4.5: Local example of lake changes, retrogressive thaw slumps (RTS) and wildfire burn scars along 

the Lena river in north-eastern Siberia. a) Lake perimeters with net change direction and location of RTS 

and wildfire burn scars, b) detailed view of Landsat trend images with RTS perimeters indicated along 

lake shores. Magenta color indicates strong increase in suspended sediments within the lake, c) Overview 

of site location in East Siberian Transect (T2) 

4.4 Discussion 

Permafrost region disturbances (PRDs) cover specific spatial scales, which are diametrical to 

their local change intensity. Fires are the disturbance with the largest spatial extent of 111,323 

km² in the studied transects of 2.3 x 10
6
 km

2
. They have a wide range of impacts on the 

ground thermal regime, depending on the burn severity and soil moisture conditions 

(Yoshikawa, Bolton, Romanovsky, Fukuda, & Hinzman, 2002; Jafarov, Romanovsky, Genet, 

McGuire, & Marchenko, 2013), and have the potential to rapidly cause permafrost 

degradation (Burn, 1998; Jones B. M., et al., 2015). In consequence, wildfires may cause 

other disturbances, including triggering of thermokarst lake formation (Edwards, Grosse, 

Jones, & McDowell, 2016) or drainage (Jorgenson & Grunblatt, 2013) as well as retrogressive 
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thaw slump development (Huscroft, Lipovsky, & Bond, 2004; Jones B. M., et al., 2015), 

particularly in forested regions. The relatively infrequent occurrence and sparse distribution of 

tundra fires shows its limited impact on continental scales. However, locally tundra fires can 

lead to strong permafrost degradation several years post-fire (Jones B. M., et al., 2015) and 

with continued warming, tundra fires are predicted to increase in frequency (Hu, et al., 2015) 

and may spread to tundra regions where fires are currently exceptional. 

In contrast to fire, lake changes affect a much smaller fraction of the land surface, but have a 

more direct and partially severe impact on the ground thermal regime. Thermokarst and lake 

expansion can lead to a release of the greenhouse gases carbon dioxide or methane (Schuur, et 

al., 2015) due to rapid lake shore erosion or thaw bulb (talik) development underneath lakes 

(Langer, et al., 2016; Arp, et al., 2016). As lake growth is a more gradual process with less 

variance, compared to highly dynamic and variable lake loss, GHG emissions are potentially 

more predictable. In contrast, shrinking lakes may have the potential of carbon sequestration 

due to permafrost aggradation (Briggs, et al., 2014; Grosse, Jones, & Arp, 2013) and peat 

accumulation (Walter Anthony, et al., 2014; Jones M. C., Grosse, Jones, & Walter Anthony, 

2012). The analysis of large regions spread out over the northern permafrost region revealed 

that the key drivers of lake change are highly diverse and could not be linked to single 

mechanisms alone such as permafrost extent, ground ice or climate making lake area 

dynamics a difficult to interpret indicator of climate change impacts on permafrost regions. 

Active RTS are the most localized and smallest PRD as they affected only 5.3 km² of the total 

study area, much smaller than the disturbance footprint of lake changes (4767km²) or fire 

(111,323 km²), but have the most severe and direct impact on permafrost by their ability to 

remove large quantities of ground material within a short period.  RTS impact the thermal 

ground regime, downstream bio-geochemical cycles, and may decrease terrain stability 

triggering further mass wasting activity (Kokelj S. V., Lantz, Tunnicliffe, Segal, & Lacelle, 

2017). Active RTS. However, due to the small footprint of RTS following an exponential 

distribution with features from few m² to a maximum of approximately 70 ha for the largest 

RTS (Batagaika crater), large quantities of particularly smaller features may not be 

sufficiently detected with 30m resolution data. Their clustered occurrence within narrow 

environmental parameters can help to make efficient use of very high-resolution imagery to 

find much smaller RTS and related landscape disturbances and to predict future occurrence. 
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Once permafrost is affected by degradation caused by PRD, different feedback mechanisms 

may get activated leading to changes in the hydrological and carbon cycles. Our 

comprehensive overview of the spatial extent and distribution of three key PRD over more 

than 2.3 x 10
6
 km² provides an unprecedented dataset for a range of use cases. It provides 

insight into the key drivers and their complexity of PRD. The information may serve as 

valuable guidance into which ones and how these disturbances need to be parameterized in 

large scale models to better understand and predict the complexity of landscape processes and 

bio-geochemical cycles in permafrost environments in the present, the past, and the future.  

4.5 Methods 

4.5.1 Remote Sensing Data Processing 

Trend calculation 

We applied trend analyses on all available Landsat (TM, ETM+ and OLI) surface reflectance 

data of the study regions in a defined range of parameters. Data were pre-processed to surface 

reflectance and provided by the ESPA processing interface of the United States Geological 

Survey (USGS) (https://espa.cr.usgs.gov). In order to capture peak-summer season only 

information and to ensure an acceptable data quality, we only used data with land cloud cover 

of less than 70% and imagery from July and August. We narrowed down the observation 

period to years 1999 through 2014, to keep the data amount and quality as consistent as 

possible, because large parts of Siberia and some coastal regions of Alaska have large gaps in 

the Landsat archive before 1999. We masked all low-quality pixels, including clouds, cloud 

shadow and snow, with the FMask layer (Zhu, Wang, & Woodcock, 2015), which is 

distributed with the data products. Between 13 and 169 valid observations were recorded for 

each pixel. 

We calculated six widely used multi-spectral-indices (MSI), NDVI, NDMI, NDWI as well as 

Tasseled Cap Brightness (TCB), -Greenness (TCG) and -Wetness (TCW), which were chosen 

to represent a range of different physical surface properties, such as moisture, albedo or 

vegetation. For each pixel and MSI we calculated robust trends based on the Theil-Sen 

algorithm (Theil, 1992; Sen, 1968), which is more robust against outliers than traditional 
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least-squares regression (Fernandes & Leblanc, 2005) has been applied in several remote 

sensing studies (Fraser R. H., et al., 2014; Nitze & Grosse, 2016; Nitze I. , et al., 2017). The 

trend analysis returned the slope and intercept parameters, as well as the confidence intervals 

of the trend slopes. 

Landscape process classification 

For the detection and delineation of permafrost related disturbances, we translated the spectral 

trend information to semantic classes of land cover and change processes using supervised 

machine-learning classification. Depending on the classification target, lake changes (scenario 

1: 4 classes) or retrogressive thaw slumps and fire (scenario 2: 6 classes), we applied 

machine-learning models based on the Random Forest method (Breiman, 2001). For the 

training process, we selected 973 for scenario 1 and 1254 point locations of known land cover 

and land cover change for scenario 2, which are distributed over several locations in the 

permafrost region (Table 4.4). Due to the spatial heterogeneity and spatial distribution 

occurrence frequency, a randomized or gridded location selection was not feasible. Therefore, 

we applied a mixture of random and manual selection of locations of known land cover or 

changes, based on high-to-moderate resolution imagery (<= 30m). For each of the classes we 

calculated the probability values for each of the defined landscape change/no-change classes. 

The classification model was trained with four calculated trend parameters of the six MSI (see 

above) as well as elevation and slope information, in total 30 different attributes, which were 

calculated for each 30x30m pixel. Both classification scenarios were 5-fold cross-validated. 

Classification results and single class probabilities were used for later object based analysis of 

lakes, wildfires and retrogressive thaw slumps. 

Table 4.4: Overview of number of sample locations and classification scenario for landcover- and change 

classification. 

Class # of reference locations Classification scenario 

Stable Water 299 1 

Stable Land 403 1 

Change Land to Water 85 1 

Change Water to Land 186 1 

Wildfire (tundra and boreal) 201 1, 2 

Retrogressive thaw slumps 80 1, 2 
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Extraction of lake changes  

Lake locations and lake change information were extracted using object-based image analysis 

and sub-pixel analysis of machine learning classified landcover and land cover change 

probabilities, based on the workflow described in Nitze et al. (2017).  

Extraction of Retrogressive Thaw Slumps 

We extracted individual Retrogressive thaw slumps segments (RTS) from the classification 

dataset (scenario 2), where probability values exceeded 30% and extracted the bounding box 

(bbox) of these segments. Due to potentially small object size and expected mixed-pixels, we 

chose a low threshold to 30 %. Final segment boundaries were defined based on a 2-class k-

means clustering algorithm, locally applied on the bbox of each segment, where the class of 

higher p-values was selected as an RTS candidate.  

The initial segmentation includes a high false positive rate, which required data filtering. We 

calculated statistics of RTS-classification p-values, slope and spatial shape attributes. Slope 

values in angular degrees were calculated using the gdaldem software based on 90m ESA 

DUE ARCTIC DEM (Santoro & Strozzi, 2012) (data resampled to 30 m to match Landsat 

resolution). We automatically discarded objects with a mean spectral probability of <0.4 %. 

The final RTS selection was carried out manually on the remaining object candidates with the 

support of Landsat trend data and high-resolution optical imagery, where applicable. 

Extraction of wildfire burn scars 

We used the publicly available Global Forest Change data in version 1.3 (Hansen, et al., 2013) 

available at https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.3.html. This dataset covers the period from 2000 until 2015, which is 

shifted by one year, compared to the trend analysis, but also covers a 16 year period.  

We used the “forest cover loss” data, as a predictor for fire, because wildfires are the 

dominant source for forest loss within the study site. Other non-fire forest loss, such as 

infrastructure development (e.g. oil field development in western Siberia, railway 

construction eastern Siberia) or wood harvest affected very small regions (<1%). Furthermore, 

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.3.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.3.html
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the fire dataset contained several small speckle objects, which due to their limited size were 

discarded as non-wildfire. 

As the GFC dataset is only sensitive to densely forested area changes, we used the multi-

spectral trend dataset to delineate fires in tundra and improved burned area perimeters 

sparsely forested regions (forest tundra), which occurred in Alaska (T3) and Eastern Siberia 

(T2). We applied the same machine-learning based 6-class classification methodology as for 

RTS. Pixels with a fire probability of > 50% were added to the trend based fire mask (TBFM).  

For removing noise in the GFC and TBFM, we applied several morphological filters where 

we removed objects smaller than 64 pixels (px) (20ha), filled holes smaller than 36 px and 

morphologically opened/closed with a round element with a diameter of 5 pixels (150 m) and 

again removed objects smaller than 20ha to remove further noise or non-fire forest loss, such 

as infrastructure development. Image cleaning operations were carried out using the scikit-

image package for the python programming language. 

The TBFM was filtered to fire perimeters, which intersected fire perimeters of the processed 

GFC datasets. The Alaska fire perimeter dataset was further used for selecting (spatial 

intersection) correct fire perimeters in tundra and forest tundra regions. Finally, we merged 

the preprocessed and filtered TBFM and the preprocessed GFC data to a contiguous fire 

extent map.  

For the distinction of tundra and non-tundra wildfires we used the circumpolar Arctic 

vegetation map (CAVM) (Walker, et al., 2005). Tundra extent was calculated from the 

intersection of transect land areas and CAVM. Fire perimeters intersecting the CAVM 

footprint were calculated as tundra fire, the remaining fire perimeters were defined as non-

tundra/boreal fires. 

4.5.2 Auxiliary Data Sources 

We used the permafrost map (Brown, Ferrians Jr, Heginbottom, & Melnikov, 1997) of the 

International Permafrost Association (IPA) for the extraction of ice content and permafrost 

extent. We intersected the centroids of lake objects with permafrost extent polygons for the 

extraction of permafrost extent and ground-ice class statistics. 
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We used ERA-Interim Reanalysis data from 1979 to 2014, which were provided by the 

European Centre for Medium-Range Forecast (ECMWF).  We downloaded monthly means of 

temperatures (id: 130) and total precipitation (id:228). Midday and midnight temperatures 

were averaged to receive monthly temperatures. Precipitation values of 12 hour-periods were 

summed to monthly totals. For the comparison of time periods data were split into the period 

from January 1979 through December 1998 and January 1999 through December 2014.  
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5.1 Abstract 

Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, 

varying in soil moisture, vegetation composition, and surface hydrology over small spatial 

scales (10-100 m). The importance of microtopography and associated geomorphic landforms 

in influencing ecosystem structure and function is well founded, however, spatial data 

products describing local to regional scale distribution of patterned ground or polygonal 

tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on 

regional scale processes (e.g. carbon dynamics) may be limited. We produced two key 

spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km
2
), 

to evaluate climate-geomorphological controls on arctic tundra productivity change (i.e. 

greening and browning), using (1) a novel 30 m classification of polygonal tundra 

geomorphology and (2) decadal trends in surface greenness using the Landsat archive (1999-

2014). These datasets can be easily integrated and adapted for use in an array of local to 

regional applications such as (1) upscaling plot-level measurements (e.g. carbon/energy 

fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem 

biogeochemistry, hydrology, and/or habitat modeling. 
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5.2 Background & Summary 

Arctic polygonal tundra landscapes are highly heterogeneous, disproportionately distributed 

across mesotopographic gradients, varying in surficial geology, ground ice content, and soil 

thermal regimes (Farquharson, Mann, Grosse, Jones, & Romanovsky, 2016; Walker D. A., 

2000). The high density of ice wedges present in this low relief landscape facilitates subtle 

variations (~0.5 m) in surface microtopography, markedly influencing hydrology (Liljedahl, 

Hinzman, & Schulla, 2012; Engstrom, Hope, Kwon, Stow, & Zamolodchikov, 2005), 

biogeochemistry (Lara, et al., 2015; Zona, Lipson, Zulueta, Oberbauer, & Oechel, 2011; 

Olivas, et al., 2011; Rhew, Teh, & Abel, 2007; Lipson, et al., 2012; Newman, et al., 2015), 

and vegetation structure (Villarreal, et al., 2012; Brown, Miller, Tieszen, & Bunnell, 1980). 

Fine-scale differences in microtopography have been shown to control a variety of key 

ecosystem attributes and processes that influence ecosystem function, such as  snow 

distribution and depth (Liljedahl, et al., 2016), surface and subsurface hydrology (Liljedahl, et 

al., 2016; Throckmorton, et al., 2016), vegetation composition (Walker D. A., 2000; Villarreal, 

et al., 2012; Brown, Miller, Tieszen, & Bunnell, 1980), carbon dioxide and methane fluxes 

(Lara, et al., 2015; Zona, Lipson, Zulueta, Oberbauer, & Oechel, 2011; Lara, et al., 2012; 

Wainwright, et al., 2015), soil carbon and nitrogen content (Bockheim, Everett, Hinkel, 

Nelson, & Brown, 1999; Bockheim, Hinkel, Eisner, & Dai, 2004; Biasi, et al., 2005), and an 

array of soil characteristics (Bockheim, Everett, Hinkel, Nelson, & Brown, 1999; Johnson, et 

al., 2011). Despite the prominent control of microtopography and associated geomorphology 

on ecosystem function, land cover data products available to represent landforms across the 

Pan-Arctic are strikingly limited (Bartsch, Höfler, Kroisleitner, & Trofaier, 2016). The relative 

absence of these key geospatial datasets characterizing permafrost lowlands, may severely 

limit our ability to understand local scale controls on regional to global scale patterns and 

processes (Bartsch, Höfler, Kroisleitner, & Trofaier, 2016).  

Datasets presented here were developed to investigate the potential local to regional controls 

on past and future trajectories of arctic tundra vegetation productivity (Lara, Nitze, Grosse, & 

McGuire, in revision), inferred from spatiotemporal patterns of change in the Normalized 

Difference Vegetation Index (NDVI). We present two geospatial data products, (1) a 30 m 

resolution tundra geomorphology map, and (2) a decadal scale NDVI trend map (1999-2014), 

developed to represent the landform heterogeneity and associated productivity change across 
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the Arctic Coastal Plain (ACP) of northern Alaska (~60,000 km
2
). We validated the tundra 

geomorphology map using 1000 reference sites, and evaluated the sensor bias used to develop 

the NDVI trend map. Produced geospatial datasets will be useful for an array of applications, 

some of which may include the (1) upscaling of plot-level measurements (e.g. carbon and 

energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing 

ecosystem biogeochemistry, hydrology, and/or habitat modeling.  

5.3 Methods 

5.3.1 Polygonal tundra geomorphology mapping 

We focused this mapping initiative on the Arctic Coastal tundra region of northern Alaska, 

which stretches from the western coast along the Chukchi sea to the Beaufort coastal plains at 

the Alaskan-Canadian border (latitude: 68-71° N; longitude: 140-167° W). Two ecological 

landscape units (~60,000 km
2
), the Arctic peaty lowlands and the Arctic sandy lowlands were 

used to define the spatial extent of the ACP (Jorgenson & Grunblatt, 2013). The region is 

dominated by continuous permafrost several hundred meters thick (Sellmann & Brown, 

1973). Permafrost ground ice content ranges from low in sandy lowlands to very high in peaty 

lowlands (Jorgenson & Grunblatt, 2013; Jorgenson, et al., 2008), while the maximum active 

layer depth ranges from 20-120cm (Nelson, Anisimov, & Shiklomanov, 2001). These two 

arctic tundra regions (i.e. sandy and peaty lowlands) were specifically targeted in this 

analysis, due to their geomorphologic similarity to ~1.9 million km
2
 of tundra across the Pan-

Arctic (Walker, et al., 2005). The tundra mapping approach described here will be useful for 

the development of comparable products across northern latitudes. Refer to the primary 

research article (Lara, Nitze, Grosse, & McGuire, in revision), for detailed site descriptions. 

5.3.2 Image processing  

Twelve cloud free Landsat 8 satellite images were acquired during the summers of 2013 and 

2014, used in the tundra geomorphology classification (Table 5.1). All Landsat data products 

were downloaded from the United States Geological Survey (USGS) earth explorer web-

based platform (https://earthexplorer.usgs.gov). We used only the 9 spectral bands provided 

by the Operational Land Imager (OLI) instrument for mapping, while ignoring the 2 

https://earthexplorer.usgs.gov/
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additional Thermal Infrared Sensor (TIRS) bands due to defective optics in the infrared sensor 

(Montanaro, Gerace, Lunsford, & Reuter, 2014). Landsat 8 OLI spectral bands include (1) 

coastal/aerosol (Ultra blue), (2) blue, (3) green, (4) red, (5) near infrared (NIR), (6) shortwave 

infrared 1 (SWIR1), (7) shortwave infrared 2 (SWIR2), (8) panchromatic, and (9) cirrus. Prior 

to image mosaicking, reflectance values were normalized across satellite scenes, by 

calculating top-of-atmosphere reflectance (Chavez, 1996), which minimized the radiometric 

difference between images associated with varying atmospheric conditions, acquisition dates, 

and solar zenith angles (Chavez, 1996), while the Landsat Surface Reflectance Code (LaSRC) 

was used  for atmospheric correction. Images were mosaicked within ArcGIS
TM

 10.4 (ESRI). 

5.3.3 Image Classification 

We expand upon geomorphic mapping procedures developed for a subregion of the ACP of 

northern Alaska on the Barrow Peninsula (1800 km
2
) (Lara, et al., 2015), using a novel 

automated object based image analysis (OBIA) approach for tundra geomorphic mapping 

across the ACP (58,691 km
2
). The OBIA land cover classifier (eCognition™ version 9.1, 

Trimble) was parameterized using various rules, thresholds, spectral indices, and proximity 

functions using individual and combined spectral bands, spectral indices, and geometric 

object shapes/sizes (i.e. perimeter, area, roundness) and corresponding reference data (i.e. 

field/ground truth points and high resolution aerial/satellite imagery) to differentiate between 

geomorphic landforms (Figure 5.1). Fifteen tundra geomorphic landforms were mapped at 30 

x 30 m spatial resolution (Figure 5.2a), including (qualitatively ranked from wet to dry), 

coastal saline water (CS), lakes (large:>90ha, medium:≤90 and >20ha, small:≤20ha), rivers, 

ponds, coalescent low-center polygons (CLC), nonpatterned drained thaw lake basins 

(nDTLB), low-center polygons (LC), sandy barrens (SB), flat-center polygons (FC), riparian 

corridors (RC), high-center polygons (HC), drained slopes (DS), sand dunes (SD), ice/snow 

(Ice), and urban. Spectral indices used in image classification included Albedo (Liang, 2001), 

Normalized Difference Vegetation Index (NDVI) (Rouse Jr, Haas, Schell, & Deering, 1974) 

(
 𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

 𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
), Normalized Difference Water Index (NDWI) (Gao, 1996) ( 

 𝜌𝐺𝑟𝑒𝑒𝑛−𝜌𝑁𝐼𝑅

 𝜌𝐺𝑟𝑒𝑒𝑛+𝜌𝑁𝐼𝑅
), and 

BlueMax (
 𝜌𝐵𝑙𝑢𝑒

𝜌𝑀𝑎𝑥𝐷𝑖𝑓𝑓
 ), where MaxDiff refers to the maximum difference between all bands (1-

9). 
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All pixels within the processed Landsat 8 image mosaic were aggregated into clusters or 

image “objects” based on similar spectral properties of neighbouring pixels using 

multiresolution segmentation and spectral difference algorithms. These segmentation 

algorithms were parameterized to represent object characteristics such as shape, compactness, 

and spectral similarity. We split all image objects into two broad classes, wet tundra and dry 

tundra using NDWI thresholds, identified using landform specific field observations (Lara, et 

al., 2012; Lara, et al., 2015). The following classification procedure (Figure 5.1), extracts all 

image objects from wet and dry tundra and reclassifies them into specific geomorphic 

landforms.  

 

 

Figure 5.1: Simplistic schematic representation of the classification procedure used to map polygonal 

tundra geomorphology on the ACP. Underlined text represents Band, Area, Function, or Index thresholds 

used for assigning classes. Proximity functions are used to reclassify image objects based on distance from 

another geomorphic landform. See “Tundra Classification” section for acronym definitions. 
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Table 5.1: Mosaicked Landsat scenes used to create the tundra geomorphology map 

Product ID Sensor Satellite Year* Month* Day* 

LC80690112013249LGN00 OLI/TIRS Landsat 8 2013 Sept. 5 

LC80720112013254LGN00 OLI/TIRS Landsat 8 2013 Sept. 10 

LC80740112014191LGN00 OLI/TIRS Landsat 8 2014 July 9 

LC80770102013193LGN00 OLI/TIRS Landsat 8 2013 July 11 

LC80770112013193LGN00 OLI/TIRS Landsat 8 2013 July 11 

LC80790102013191LGN00 OLI/TIRS Landsat 8 2013 July 9 

LC80800102014217LGN00 OLI/TIRS Landsat 8 2014 Aug. 4 

LC80800112014249LGN00 OLI/TIRS Landsat 8 2014 Sept. 5 

LC80820122013244LGN00 OLI/TIRS Landsat 8 2013 Aug. 31 

LC80830102014222LGN00 OLI/TIRS Landsat 8 2014 Aug. 9 

LC80830112014190LGN00 OLI/TIRS Landsat 8 2014 July 8 

LC80840122013194LGN00 OLI/TIRS Landsat 8 2013 July 12 

*Acquisition date 

 

Wet Tundra Classification 

We decomposed our classification of wet tundra into three steps, (1) extraction of CLC and 

nDTLB, (2) open water body differentiation, and (3) rectification of misclassifications. 

Initially, we differentiated CLC from all wet tundra objects using a low productivity (NDVI) 

threshold, which was associated with sparse vegetation cover and the presence of open water. 

Although, both CLC and nDTLB are found in aquatic to wet environments, we differentiated 

CLC from nDTLB landforms using the characteristically high NDVI values of nDTLB (Lara, 

et al., 2012; Lara, et al., 2015) and morphological features. Due to the rapid formation of 

nDTLB following lake drainage (Jorgenson & Shur, 2007), this young geomorphic landform 

often contains a relatively large non-polygonal surface area (Bockheim & Hinkel, 2012) (i.e. 

limited effects of ice aggregation and heaving processes associated with microtopographic 

variability), thus we use a moderate edge to area ratio and high NDVI threshold for nDTLB 

feature extraction.  

All unvegetated open water pixels were extracted using a low-moderate blue band threshold 

(Figure 5.1). A spectral difference segmentation algorithm, was looped 5x to iteratively 

combine all neighbouring open water objects with similar spectral properties. This object 

merging process enabled the identification of each spatially isolated water body (i.e. lake, 

pond, or river), where structural properties such as area, perimeter, or edge (i.e. perimeter) to 
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area ratio can be used to differentiate waterbodies. Therefore, we defined CS, lakes, and 

ponds using structural properties, area and edge to area ratio. Water bodies were decomposed 

into CS (>100,000 ha) large lakes (≤ 100,000 > 90 ha), medium lakes (≤ 90 > 20 ha), small 

lakes (≤ 20 >1 ha), and ponds (≤ 1 ha). The 100,000 ha area threshold was used to define CS 

to avoid large lake misclassification errors, as Teshekpuk Lake (70.61˚ N, -153.56˚ W), has an 

area of ~83,000 ha. Due to misclassifications of ponds as lakes, associated with the high 

interconnectivity between irregularly structured open water objects, we used a low edge to 

area ratio on lakes, to ensure accurate classification of ponds. Rivers were differentiated from 

all open water objects using a NDVI threshold and a “roundness” function. Integrating both 

approaches successfully extracted rivers, as high NDVI thresholds were used to differentiate 

open water from vegetated aquatic standing water objects, and low roundness values 

identified the characteristic elongated and meandering structure of rivers. Despite the late 

summer image acquisition dates used in this classification (Table 5.1), ice/snow image objects 

identified using high SWIR2 thresholds, were found in large lakes or adjacent to steep 

topographic gradients such as river valleys or near a snow fence. All ice/snow objects that 

occurred on lakes were reclassified as lake area, while the remaining ice/snow was 

reclassified as Ice. 

Although, classification functions developed for wet tundra performed well, the majority of 

misclassifications were associated with the relatively course spatial resolution object patch 

size (30 m). To rectify these misclassifications, we used neighborhood or proximity functions 

to develop relationships between nearby geomorphic landforms using spectral and structural 

parameters for nDTLB, CLC, pond, and lakes. For example, nDTLB was often misclassified 

as CLC or pond, occurring near lake perimeters. Because aquatic-wet landforms occurring 

near lake perimeters are typically represented by nDTLB, having recently formed after partial 

or complete lake drainage, we reclassified older landforms such as CLC and ponds adjacent to 

lakes as nDTLBs. All remaining unclassified wet tundra objects that did not meet the criteria 

for nDTLB, CLC, pond, river, CS, or lakes in wet tundra were classified as LC (i.e. dominant 

wet geomorphic landform). 

Dry Tundra Classification 

We differentiated landforms in dry tundra following two steps, (1) threshold identification and 

extraction of FC and RC, and (2) rectification of misclassifications.  A series of reference sites 
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identified from ground based observations and/or oblique aerial photography were used to 

define NDWI and NDVI thresholds needed to extract FC and RC, respectively. These two 

geomorphic landforms were difficult to classify due to the similarity in vegetation 

composition and surface hydrology. However, we were able to differentiate between these two 

landforms, as FC was slightly higher in surface wetness, associated with the 2 fold difference 

in trough area relative to HC (Lara, et al., 2015). The high variability in NDVI of shrub 

canopies in RC relative to other landforms, made RC difficult to extract. Nevertheless, 

because RC typically occurred near riverine environments, we used both a low-moderate 

NDVI threshold and a proximity function adjacent to rivers to extract RC. Sand and gravel 

objects were easily extracted using a high BlueMax threshold. All lightly vegetated wet-moist 

sand and gravel objects were classified as SB using a moderate-high NDVI threshold, 

whereas drier sand and gravel objects were classified as SD. Due to the use of sand and gravel 

in the development of urban infrastructure such as roads and buildings, automated procedures 

initially classified these feature as SD, as they had a similar spectral signature. However, we 

manually reclassified SD as Urban near native Alaskan villages and oil drilling platforms (i.e. 

near Prudhoe Bay). Although, we made significant progress with the development of 

classification procedures for Urban landforms using spectral patterns and geometric 

structures, we abandoned this development due to the relatively limited area impacted by 

urban infrastructure across the ACP. Additionally, DS was extracted using a high albedo 

threshold, as this landform was very dry and often dominated by lichen plant communities, 

which are highly reflective (Lara, et al., 2012). Similar to misclassifications associated with 

object patch size identified in wet tundra, we found analogous misclassifications of SB near 

rivers as CLC and ponds. Therefore, we reclassified CLC and pond classes that were adjacent 

to rivers as SB. All remaining unclassified dry tundra objects not classified as DS, FC, RC, 

SB, SD, or Urban were classified as HC (i.e. dominant dry geomorphic landform). 
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Figure 5.2: Geospatial datasets representing the heterogeneity in both landform and NDVI across the ACP 

of northern Alaska. The tundra geomorphology map (panel A) was validated with 1000 reference sites 

(700 and 300 in the Arctic Peaty Lowlands and Arctic Sandy Lowlands, respectively) using 249 SPOT-5 

ortho-tiles (panel B), while the NDVI trend map (panel C) was developed using between 40 to 110 image 

observations per 30 m pixel (panel D). 
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5.3.4 Decadal scale NDVI trend analysis 

Following the approach of Nitze & Grosse (2016), the NDVI trend map (Figure 5.2d) was 

computed using all available imagery collected from the Landsat sensors Thematic Mapper 

(TM), Enhanced Thematic Mapper+ (ETM+), and Observing Land Imager (OLI), acquired 

between July 1st and August 30th (i.e. peak growing season) of 1999-2014, across the ACP. 

We excluded imagery preceding 1999 due to the paucity of image acquisition and limited 

coverage across the ACP. All surface reflectance data used to derive this product were 

downloaded as radiometrically and geometrically terrain-corrected product from the USGS 

EROS Science Processing Architecture interface (https://espa.cr.usgs.gov). The “FMask” 

algorithm (Zhu, Wang, & Woodcock, 2015) was used to detect and mask out all non-valid 

data, such as clouds, shadows, snow/ice, and nodata pixels. For each pixel, linear trends of 

NDVI were calculated using the non-parametric Theil-Sen linear regression method, which 

calculates the median of all possible slopes across every point in time (Sen, 1968; Theil, 

1992). The Theil-Sen regression is robust against outliers and outperforms least-squares 

regression in remote sensing data (Fernandes & Leblanc, 2005). Each pixel within the NDVI 

trend map was based on a total of 40-110 Landsat images (Figure 5.2c) for the Theil-Sen 

slope calculation. The final NDVI trend product was spatiotemporally similar to coarser 

resolution products (Bhatt, et al., 2010; Ju & Masek, 2016) identifying heterogeneous patterns 

of greening and browning across the ACP of northern Alaska. 

5.4 Data Records 

The presented ACP tundra geomorphology map (Data Citation 1: Alaskan Arctic Coastal Plain 

Polygonal Tundra Geomorphology Map  https://doi.org/10.21429/C9JS8S) and NDVI trend 

map (Data Citation 2: Alaskan Arctic Coastal Plain NDVI trend (1999-2014) Map 

https://doi.org/10.21429/C9F04D) are both archived at the USGS Sciencebase Climate 

Science Center. These maps were clipped to the ACP domain and formatted as geotiff rasters. 

Additionally, all spatial and climate data used in Lara et al. (Lara, Nitze, Grosse, & McGuire, 

in revision) are archived in the Scenarios Network of Alaska and Arctic Planning (SNAP) data 

portal (http://ckan.snap.uaf.edu/). 

https://webmail.illinois.edu/owa/redir.aspx?C=Td6OOMpwzRj_jVJJvwpTW1xoPFP2GPA-wre9Wz5IPyw-NuMufcXUCA..&URL=https%3a%2f%2fdoi.org%2f10.21429%2fC9JS8S
https://webmail.illinois.edu/owa/redir.aspx?C=un53TLP7nzuaZGU9ETBRtclxrv5GzqrFX1cEDdN6ISI-NuMufcXUCA..&URL=https%3a%2f%2fdoi.org%2f10.21429%2fC9F04D
http://ckan.snap.uaf.edu/
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Although the tundra geomorphic map was developed using OBIA which clusters spectrally 

similar nearby pixels into objects, the final map was resampled at the original 30 x 30 m pixel 

resolution and presented as a single-band raster (Figure 5.2a). The map attribute table includes 

the following data columns: geomorphic landform (i.e. sand dune, low-center polygon), area 

(km²), and soil moisture regime (SMR). In addition, a color palette file (.clc) is provided to 

reproduce map (Figure 5.2a). The annotated functions and code used for the classification of 

tundra landforms within eCognition™ v. 9.1, are made available in the supplementary 

information. All threshold values were replaced with qualitative ranges (i.e. low, low-

moderate, moderate, moderate-high, or high) as reflectance values and image statistics will 

vary between scenes, thus user specific refinement will be required. Further, it is important to 

note that the classification procedure developed here has only been evaluated in lowland 

arctic tundra ecosystems and misclassifications may arise if applied in dissimilar tundra 

environments. For example, we applied the developed classification procedure to higher 

elevation drier hillslope tundra, south of the ACP, finding the rate of misclassification to 

increase, as algorithms/functions were initially developed explicitly for polygonal tundra 

similar to the ACP of northern Alaska. To include different tundra landforms with different 

vegetation, hydrology, and soil characteristics, further development will be required. 

The NDVI trend map is presented as a four-band raster (Figure 5.2d). Band 1 represents the 

decadal scale rate of change or slope calculated by the Theil-Sen regression. Band 2 

represents the intercept or the NDVI data scaled to the year 2014. While, Band 3 and 4 are the 

upper and lower 95% confidence intervals of the slope of each individual pixel. 

5.5 Technical Validation 

5.5.1 Tundra Geomorphology Map 

To validate the tundra geomorphology map, we used an array of oblique aerial/ground based 

photography and 249 high resolution Satellite Pour l’Observation de la Terre 5 (SPOT-5) 

orthorectified image tiles covering >80% of the ACP, provided by the Geographic Information 

Network of Alaska (GINA, gina.alaska.edu). A stratified random sampling of 700 and 300 

reference sites in the Arctic peaty lowlands and Arctic sandy lowlands (Jorgenson & 

Grunblatt, 2013), respectively (Figure 5.2b), were used for the accuracy assessment. At each 
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of the 1000 sites, we manually generated a reference dataset for geomorphic landforms using 

high resolution products. This process has been used previously (Lara, et al., 2015), 

identifying 95.5% agreement between reference sites (e.g. geomorphology) generated from 

satellite platforms relative to that observed on the ground. 

Table 5.2: Accuracy assessment represented as a confusion matrix. Bolded diagonal values within the 

matrix represent correctly identified pixels, where User and Producer accuracies are presented on the 

right vertical axis and bottom horizontal axis.   

 

Overall map accuracy was 75.7% and Cohens Kappa was 0.725 (Table 5.2), suggesting the 

strength of agreement between the independent validation (i.e. reference) dataset and 

classification to be good to very good (Fleiss, Cohen, & Everitt, 1969; Congalton, 1988). Our 

map had relatively high user and producer accuracies (Table 5.2), with the exception of FC, 

which had a producer accuracy of 40.5%. This relatively low producer accuracy was expected 

as we had difficulties identifying unique spectral and structural characteristics of FC that that 

differed from HC. This identification challenge was highlighted in the accuracy assessment, 

as 64% of misclassified FC were classified as HC, similar to other tundra geomorphic 

classifications (Lara, et al., 2015). The relatively low producer accuracies for FC, CLC, and 

DS are likely associated with the challenge of decomposing a complex continuously evolving 

geomorphic landscape (Liljedahl, et al., 2016; Jorgenson & Shur, 2007; Billings & Peterson, 

1980; Jorgenson, Shur, & Pullman, 2006) such as the Arctic tundra into discrete landform 

units. Despite these difficulties, our accuracy assessment suggests the tundra geomorphology 

map well represented the spatial distribution and heterogeneity of tundra landforms. We 
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present for the first time, a detailed framework for characterizing arctic tundra landforms 

across the Pan-Arctic. 

5.5.2 NDVI Trend Map 

We evaluated the potential sensor bias between TM, ETM+, and OLI, used to derive the 

NDVI Trend Map by comparing the mean value for each pixel, year, and sensor computed 

from three different locations in northern Alaska (Figure 5.3). Each location was composed of 

40,000 pixels (~36 km
2
). The three centroids of each location are found in the (1) Arctic sandy 

lowlands of the ACP (longitude: -154.50, latitude: 70.09), (2) foothills of the Brooks Range 

on the North Slope (longitude: -159.61, latitude: 66.60), and (3) Selawik lowlands in 

northwestern Alaska (longitude : -152.92, latitude: 69.29). Minor discrepancies were to be 

expected between sensor platforms as the images were not acquired at the same time or day.  

We identified minor NDVI sensor biases between sensors (Figure 5.3), while sensor specific 

NDVI distributions were consistent. Most of the data used to generate the NDVI trend map 

was acquired from the ETM+ sensor, as it was available throughout our data acquisition 

window (i.e. 1999-2014), whereas data from TM and OLI were only available between 2005-

2011 and 2013-2014, respectively. Mean sensor bias estimates for TM and OLI across all 

subregions of Alaska, indicate NDVI to be slightly under- and overestimated relative to 

ETM+, though the variability was high within each year and subregion (Figure 5.3). The 

minor sensor bias identified here, was similar to that identified across North American high 

latitude terrestrial ecosystems (Ju & Masek, 2016). Although, it is likely that sensors are 

slightly positively (OLI) and negatively (TM) biased with respect to ETM+ across northern 

Alaska, sensor calibrations appeared to well represent the tundra subregion on the ACP 

(Figure 5.3). NDVI values from both TM and OLI sensors clustered above and below the 1 to 

1 line for the subregion on the ACP (Figure 5.3), suggesting NDVI data was not positively or 

negatively skewed between sensors.  A slight positive linear NDVI bias (+0.00063) was 

detected across all sensor data, suggesting a satisfactory agreement between sensors used to 

compute NDVI on the ACP. 
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Figure 5.3: Estimate of NDVI bias between Landsat sensors, represented at three subregions of northern 

Alaska. Each point represents the mean (± standard deviation) of NDVI for a single year and subregion. 

Circles and diamonds represent TM and OLI plotted against ETM+. Grey points represent means from 

polygonal tundra within the ACP, while black points represent more southerly sites (i.e. foothills of the 

Brooks Range and Selawik lowlands). Dashed and dotted lines represent trend lines for TM and ETM+ 

and OLI and ETM+, respectively. The solid black line indicates a 1:1 line. 

5.6 Data Citation 

Lara, M. J. SNAP Data Portal https://doi.org/10.21429/C9JS8S (2017). 

Lara, M. J. SNAP Data Portal https://doi.org/10.21429/C9F04D (2017). 

 

 

  

https://webmail.illinois.edu/owa/redir.aspx?C=Td6OOMpwzRj_jVJJvwpTW1xoPFP2GPA-wre9Wz5IPyw-NuMufcXUCA..&URL=https%3a%2f%2fdoi.org%2f10.21429%2fC9JS8S
https://webmail.illinois.edu/owa/redir.aspx?C=un53TLP7nzuaZGU9ETBRtclxrv5GzqrFX1cEDdN6ISI-NuMufcXUCA..&URL=https%3a%2f%2fdoi.org%2f10.21429%2fC9F04D
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6. Discussion/Synthesis 

This PhD thesis was aimed to detect and characterize landscape dynamics and particularly 

rapid disturbances in permafrost landscapes with remote sensing and to determine underlying 

spatial patterns and causes. In the past these changes were difficult to analyze in their full 

breadth due their small size, large abundance, and quick dynamics in a very large, sparsely 

populated, and logistically difficult region. This knowledge gap was primarily caused by 

scarce data availability, challenging environmental conditions, and limited processing 

technology. The impact of landscape changes and disturbances on local-to-global scale bio-

geo-chemical cycles remained therefore highly uncertain. The synthesis discusses the results 

of my thesis in the scope of the research questions.  

6.1 Landsat-based trend analysis 

I developed a highly automated approach for the detection of land surface changes based on 

Landsat time-series (Chapter 2). One single image can only cover the spatial dimension at one 

point in time, which may help to characterize the spatial distribution and the status of specific 

features or land surface properties. Using several images over a longer period adds the 

temporal dimension to track changes or dynamics, which adds a third dimension in addition to 

the spatial analysis alone. 

6.1.1 Spatial Scale 

The trend analysis proved to be a helpful source to identify a large variety of different 

landscape change processes in the north-east Siberian Lena Delta (Chapter 2). Typical 

processes of thermokarst lakes, such as expansion or drainage, coastal inundation, or fluvial 

dynamics were among the detected processes, which can be found in permafrost regions.  

As lake drainage is usually a quick (hours to few years) and spatially expansive process 

(Jones & Arp, 2015; Jones B. M., et al., 2011), images with coarser spatial resolution (e.g. 

MODIS) may detect that event temporally, but with limited spatial accuracy and higher 

uncertainty due to the common problem of mixed pixels. Lake expansion in contrast, is a 

much slower, more continuous, and more localized process. Its detection is dependent on 

very-high resolution images, which are not always available and in most cases very expensive 



 6 - Discussion/Synthesis  

 116 

 

to acquire. However, with the inclusion of time-series and the observation of longer time 

periods, local sub-pixel dynamics (<30m) can be detected as they change over time (see 

chapters 2 and 3).  

Disturbances or landscape features in permafrost regions typically follow exponential 

distributions with a large quantity of small features and only few large features. However, the 

bias towards quick and large-footprint processes may persist even in the used high Landsat 

resolution, which is particularly significant in permafrost environments with many very small 

features, such as ponds or initial thermokarst (Muster, Heim, Abnizova, & Boike, 2013).  

The heterogeneity of Arctic tundra landscapes with a pronounced variation of local scale 

microtopography, hydrology, biogeochemistry, and vegetation composition plays an important 

role for lowland tundra ecosystems (Walker D. A., 2000; Villarreal, et al., 2012; Brown, 

Miller, Tieszen, & Bunnell, 1980). Datasets representing detailed land cover and the influence 

of geomorphic landforms across the pan-Arctic are limited (Bartsch, Höfler, Kroisleitner, & 

Trofaier, 2016). The combination of decadal-scale trends of vegetation (Chapter 2) and 

detailed mapping of local-scale geo-morphological landforms in a representative site in 

northern Alaska (Lara, et al., 2015) was used to create a comprehensive high-resolution 

dataset (Chapter 5) to detect recent and to predict future tundra vegetation productivity 

(appendix). Although a resolution of 30 m is rather detailed in comparison to large scale 

tundra vegetation analysis e.g. (Walker, et al., 2005; Beck & Goetz, 2011), lowland tundra 

landscapes are locally highly heterogeneous and local landscape features can be better 

accounted for with such spatial resolution. 

6.1.2 Time series analysis 

Using time-series over several years and with a large amount of observations helps to reduce 

the influence of the intra-seasonal variation of vegetation and hydrology, which could 

otherwise be masking the long-term trend while using only few images. Finally, using trend 

analysis with the robust linear Theil-Sen regression method (Theil, 1992; Sen, 1968) on multi-

spectral indices, provides the magnitude and direction of surface properties. As most typical 

landscape change processes have characteristic trajectories of surface properties, it becomes 

possible to relate them to individual trend signals in conjunction with spatial context. Lake 

drainage e.g. evolves in different development stages, starting from the lake initiation stage 

with a dark wet surface, to the drained lake stage with a bare moist intermediately bright 
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surface of the former lake bottom to the vegetation succession stage with a brighter surface 

with a spectral signal of greening. This creates typical linear trends in the multi-spectral index 

response, such as in increase in brightness and greenness as well as a decrease in wetness. 

6.1.3 Model complexity 

The linear temporal trend model is a very simple time-series model, which captures slow and 

gradual (e.g. greening), but also rapid high-magnitude processes (e.g. lake drainage, wildfire) 

in one direction. Simple models, with only few degrees of freedom, are robust against 

overfitting and therefore better suited for broad and general applications (Hawkins, 2004). 

This allowed for the spatial transferability of the method, where the ground conditions, image 

acquisition dates, and data quality may vary, but where the same type of input data is used. 

The trend analysis, which was tested and developed in the Lena Delta region (Chapter 2) and 

later transferred to several large regions across the northern high latitude (Chapters 3 to 5) 

with a total extent of more than 2.3 million km², proved to be a helpful and transferrable 

methodology for the detection of local to regional scale landscape disturbances and changes. 

However, landscape process are often non-linear, therefore more complex models may be 

more accurate to capture short-term dynamics of landscape processes. Landscape processes 

are often characterized by more complex dynamics, e.g. cyclic behavior (Kokelj S. V., Lantz, 

Kanigan, Smith, & Coutts, 2009) or dynamics with several breaks and recovery periods 

(Kennedy, Yang, & Cohen, 2010). Complex models can be successful for large-scale and 

specialized analysis, such as global forest change (Hansen, et al., 2013) or water dynamics 

(Pekel, Cottam, Gorelick, & Belward, 2016), but still tend to be more inaccurate at the edges 

or extreme data as well as for regions with sparse data of limited quality, such as in the high 

Arctic. Furthermore, a higher model complexity is much more computationally intensive, 

which increases processing time, and is associated with a lower level of generalization, which 

may reduce the spatial transferability and decrease interpretability of results.  

6.2 Mapping of permafrost landscape dynamics 

Land surface disturbances are an omnipresent feature of permafrost landscapes and they can 

be an indicator of permafrost degradation. Increasing average and maximum air temperatures 

in the Arctic are projected to put further pressure on the stability of permafrost. Lake changes, 
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retrogressive, thaw slumps and fire are some of the most important pulse disturbances in 

permafrost regions (Grosse, et al., 2011), which can be readily analyzed with remote sensing 

techniques.  

6.2.1 Lake dynamics  

I analyzed the distribution and dynamics of lakes over several large regions in Siberia and 

Alaska with a more local to-regional scale focus in the second research paper (Chapter 3) and 

a broader spatial scale in our third research paper (Chapter 4). The approach, based on a 

combination of the previously developed trend analysis (Chapter 2), machine learning and 

object-based analysis is novel and able to detect individual lakes larger than 1 ha and their 

changes with subpixel accuracy from 1999 through 2014  (Chapter 3). The focus on statistics 

of individual lake changes on Landsat-like spatial scale (30m) and large extent (>2.3 million 

km²) is novel and applied in only few studies (Chapter 4). Global products of dynamic lake 

extent based on Landsat data have been published recently (Pekel, Cottam, Gorelick, & 

Belward, 2016; Donchyts, et al., 2016), but they locally have large inaccuracies, e.g. strong 

bias of wetting, in Arctic environments due to ice and snow cover and other data challenges. 

There are many local scale analyses in usually lake rich-regions (Jones B. M., et al., 2011; 

Riordan, Verbyla, & McGuire, 2006; Tarasenko, 2013; Lantz & Turner, 2015; Jones, et al., 

2017), which capture local dynamics, but cannot take regional- or continental-scale landscape 

heterogeneity into account. 

Lakes are a highly frequent feature in the northern high latitudes, where they have the highest 

abundance globally (Lehner & Döll, 2004; Pekel, Cottam, Gorelick, & Belward, 2016). Most 

of the lakes in permafrost regions are thermokarst lakes that actively degrade surrounding and 

underlying frozen ground (Grosse, Jones, & Arp, 2013). Within the analyzed regions their 

spatial distribution follows different patterns, which are dependent on several parameters, 

such as geology and geomorphology, permafrost extent and ground-ice content or glacial 

history (Kokelj & Jorgenson, 2013; Olefeldt, et al., 2016). Thermokarst lakes are most 

abundant in lowlands of sedimentary surface geology, such as coastal plains, river deltas or 

interior basins, where the land surface is sufficiently flat to develop lakes due to suppressed or 

absent water runoff. These general patterns became apparent within the lake analysis in this 

project, where very high lake densities (>20%) were predominantly located in ice-rich 

lowland permafrost. However, ice-poor sediments, which are less affected by thermokarst 

(Farquharson, Mann, Grosse, Jones, & Romanovsky, 2016) can still have very high lake 
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densities (>20%), e.g. in northern Alaska. They may have different underlying processes 

compared to the typical thermokarst cycle with multiple generations in ice-rich sediments 

(Jorgenson & Shur, 2007). 

Lakes in permafrost have a wide range of dynamics from stagnation to quick growth or rapid 

drainage. Overall lake area loss outweighed lake area gain with strong spatial heterogeneity 

(Chapter 4). The magnitude and direction of lake changes and dynamics is dependent on a 

complex set of cryo-geological, geomorphological, climatic and spatial influencing factors. In 

discontinuous permafrost and in the transition zone from discontinuous to continuous 

permafrost frequent and widespread lake drainage has been observed in thermokarst lakes 

(Chapters 3 and 4). Degradation and destabilization of permafrost has been identified or 

proposed as a potentially important factor along the margins of continuous permafrost 

(Riordan, Verbyla, & McGuire, 2006; Jones B. M., et al., 2011; Smith L. C., Sheng, 

MacDonald, & Hinzman, 2005). Vertical connectivity to groundwater due to talik penetration 

(Yoshikawa & Hinzman, 2003) as well as lateral exchange following lake shore erosion, 

breaching, and overflow due to near-surface permafrost degradation (Jones B. M., et al., 

2011) or tapping by rivers (Hinkel, et al., 2007), are among the most likely scenarios, which 

would explain the accelerated lake area loss (Grosse, Jones, & Arp, 2013). Within this 

transition zone, lake expansion occurs simultaneously with drainage in Alaska, whereas the 

transition zone in western Siberia (southern Yamal Peninsula) is only affected by drainage 

without significant lake expansion (Chapter 4). The difference in expansion rates indicates 

diverse underlying mechanisms of lake area loss in different regions, which could be a great 

scientific topic to target in further, local scale studies. 

I found that other regions have a large diversity from net growth (e.g. Central Yakutia, Kobuk 

Delta or northern Kolyma Lowland) to loss (Northern Seward Peninsula, Yukon Flats, Yamal 

peninsula, northern Quebec). The spatial pattern is very diverse and does not follow simple 

relationships that could be linked to one single environmental factor. The studies in this thesis 

showed very localized regional dynamics, which related to geological and geomorphological 

heterogeneity. The strongest changes were recorded in Central Yakutia, within very ice-rich 

yedoma ice-complex sediments, where lake area expanded by nearly 50% (Chapter 3) within 

a very short period, from 2006 to 2008 caused by strong precipitation events and local 

agricultural practices (Boike, et al., 2016; Ulrich, et al., 2017). In contrast, large net lake area 
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loss occurred in several clusters on the Yamal Peninsula in western Siberia, also in ice-rich 

sediments. 

Ground ice is generally claimed as an important driver of thermokarst initiation and lake 

dynamics (Grosse, Jones, & Arp, 2013; Olefeldt, et al., 2016). Lake change analysis results 

and the correlation to ground-ice distribution maps (Chapter 4) could not generally back up 

this proposed effect on a pan-arctic scale. However, local-scale analysis (Chapter 3), where 

the spatial diversity of large scale patterns (e.g. climate) are minimized and more accurate 

auxiliary site-specific datasets are available, revealed intensified lake dynamics in ice-rich 

sediments. With the spatial expansion of the analysis, more large-scale environmental factors 

(e.g. climate) potentially come into effect in addition to local-scale influencing factors. 

6.2.2 Wildfire 

Wildfires are caused by the availability of dry climatic conditions, sufficient fuel/biomass, and 

ignition mechanisms (Johnson E. A., 1996; Veraverbeke, et al., 2017). These conditions 

prevail in highly continental climates in eastern-central Siberia (8.15%) and a wide swath 

from interior Alaska (8.89%) to north-western Canada. More humid conditions, as in boreal 

western Siberia and eastern Canada, suppressed wildfires, where they affected a smaller area 

(2.43%; 5.06%) (Chapter 4). Most of the fires are limited to forested regions of the boreal 

zone, where many studies on wildfire have focused their efforts (Kasischke & Turetsky, 2006; 

Stocks, et al., 1998; Yoshikawa, Bolton, Romanovsky, Fukuda, & Hinzman, 2002). 

Due to the decreased amounts of dry biomass and less favorable climatic conditions tundra 

wildfires occurred very rarely and were restricted to Alaska. With the trend analysis and 

machine learning classification several tundra fires were detected affecting a total area of 

4600 km² (out of 732,000 km
2
 of tundra in the analyzed study area) (Chapter 4) including the 

Kougarok fire in western Alaska (Liljedahl A. , Hinzman, Busey, & Yoshikawa, 2007) and the 

severe Anaktuvuk fire in northern Alaska (Jones B. M., et al., 2015). With current technology 

tundra fires can be detected and monitored, e.g. with coarse resolution MODIS fire products 

(Giglio, Csiszar, & Justice, 2006), but past fire events may not have been recognized properly 

even in official fire databases (Jones, et al., 2013), which leaves a high uncertainty in 

estimates of tundra fire abundances. The multi-spectral trend analysis developed in this thesis 

(Chapter 2) allows detecting old burn scars from before the actual observation period, due to 

the trajectory of vegetation succession and the potential occurrence of thermokarst. However, 
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due to the changing climate the frequency and intensity of tundra fires is predicted to increase 

(Hu, et al., 2015) and the method developed here could be used to monitor and quantify these 

developments. 

The influence of fire on permafrost is dependent on fire extent, burn intensity and local 

permafrost and ground conditions (Liljedahl A. , Hinzman, Busey, & Yoshikawa, 2007). With 

current monitoring techniques, fire extent in can be quantified with sufficient accuracy. Burn 

intensity in contrast is not sufficiently monitored over large spatial scales, which leaves large 

uncertainties about the consequences of wildfire on the ground thermal regime and subsurface 

carbon stocks and fluxes in permafrost. 

6.2.3 Retrogressive Thaw Slumps 

The occurrence of retrogressive thaw slumps (RTS) is bound to a narrow margin of 

environmental conditions. They are primarily limited to regions with very ice-rich permafrost 

conditions, topographic gradients and sufficiently cold conditions in the past to preserve the 

ground-ice (Chapter 4) (Kokelj S. V., Lantz, Tunnicliffe, Segal, & Lacelle, 2017). Ground ice 

in these regions may have different origins, including buried glacial ice or syngenetic ice 

wedge ice. In large regions along the margins of the former Laurentide ice sheet in northern 

and north-western Canada large amounts of massive buried glacial ice remains in the ground 

and is prone to melting upon disturbance (Kokelj S. V., Lantz, Tunnicliffe, Segal, & Lacelle, 

2017). 

The spatial analyses over several large regions from this thesis support prior findings (Kokelj 

S. V., Lantz, Tunnicliffe, Segal, & Lacelle, 2017) that RTS are generally located in ice-rich 

conditions and sloped terrain, where disturbances of the ground thermal regime may cause the 

ground ice to degrade or collapse. RTS typically occur in clusters, where favorable conditions 

for their initiation occur. These clusters, some more, some less extensively studied, were 

found in the vicinity of formerly glaciated mountain ranges, e.g. the northern Alaska Brooks 

Range (Balser, Jones, & Gens, 2014), or the Verkhoyansk mountain range in eastern Siberia, 

along former ice-sheet margins in northwestern Canada, e.g. Herschel Island and the Yukon 

Coast (Lantuit, et al., 2012; Obu, et al., 2017) or in very ice-rich yedoma ice-complex 

deposits in the Lena delta region (Lantuit, et al., 2011) and northern Alaska. The occurrence 

of a single RTS in a region, such as the large Selawik slump in western Alaska, is rare and an 

outlier from the typical clustered pattern. 
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The relation of RTS clusters to former glacial ice margins has great potential for applying this 

method for the reconstruction of past ice sheet and glacier extents in northern Siberia and 

northern Canada. Several clusters of RTS I identified in the vicinity of the Verkhoyansk 

mountain range (Chapter 4) are an indicator of former glaciations extent for a region where 

such information is very sparse so far and datasets of LGM extent (Ehlers & Gibbard, 2003) 

are potentially inaccurate.  

Retrogressive thaw slumps and other thermo-erosion features such as active layer detachment 

slides or thermo-erosion gullies usually cover small spatial footprints ranging from few m² up 

to nearly one km² (Balser, Jones, & Gens, 2014; Kokelj S. V., Lantz, Tunnicliffe, Segal, & 

Lacelle, 2017; Murton, et al., 2017). The majority of small features have an aerial extent 

below the detection limit of Landsat data, but larger features are observable. RTS-abundant 

regions can be outlined based on the developed analysis methods within the framework of this 

PhD thesis (Chapter 4). Analysis with high-resolution imagery and field work could provide 

detailed information and monitoring capabilities on appropriate spatial scales. As RTS are 

three-dimensional landscape features, high-resolution digital elevation models (DEM) derived 

from space-borne, air-borne or field-based instruments (LiDAR, RADAR, Stereo 

photogrammetry), will provide improved understanding and quantification of RTS on bio-

geochemical cycles. 

6.3 Pan-arctic scale distribution and consequences of changes in permafrost 

The key disturbances in permafrost landscapes affect different regions and spatial extent as 

they are bound to specific climatic, geomorphological, and permafrost conditions. The local 

impact of disturbances is often inversely related to its spatial extent. 

Retrogressive thaw slumps (RTS) and related mass wasting processes can have a massive 

influence on the local environment and bio-geochemical cycles. However, the spatial extent of 

single RTS and accompanied clusters cover very small total areas (5.4 km²) compared to lake 

changes or fire, and particularly compared to the full extent of the permafrost region. 

However, their narrow range of conditions, where they could occur (Chapter 4), makes them a 

significant disturbance in regions of high abundance (Kokelj, et al., 2015; Balser, Jones, & 

Gens, 2014). 
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The impact of individual lake changes is locally not as severe as RTS and often less 

expansive. Due to the sheer quantity of several million lakes and ponds (Muster, et al., 2017; 

Paltan, Dash, & Edwards, 2015) and their widespread distribution, their individual impact 

adds up to a potentially large impact on for example the carbon cycle. Lake change is an 

important process in the scope of carbon emissions where expanding lakes are a likely source 

of GHG emissions (Walter, Zimov, Chanton, Verbyla, & Chapin, 2006), whereas draining 

lakes are considered potential GHG sinks (Walter Anthony, et al., 2014). In contrast, wildfires 

in boreal regions are frequent and affect large areas, but their local impact on permafrost 

varies strongly. The impact of wildfires on permafrost stability is largely dependent on burn 

severity, and below ground permafrost conditions.  

The gained knowledge about areas of morphological and ecological changes in permafrost 

regions, based on novel trend analysis of Landsat time-series, has the potential to bridge the 

gap between local high-resolution information and coarse scale regional models of permafrost 

change and consequently carbon fluxes. On the one hand, local high-resolution and field 

studies can be better targeted based on spatially and temporally detailed knowledge of 

landscape processes. On the other hand, regional to global scale permafrost and climate 

models may in the future benefit from the spatially and temporally detailed knowledge about 

permafrost landscape dynamics and improved process quantification for enhanced model 

parametrization and validation. 

6.4 Outlook 

The recent and ongoing technological advance with the continuing paradigm shift from local 

computer-based to cloud-based processing is a great opportunity to automatically process and 

analyze a huge amount of data. These technologies can help to examine an unprecedented 

amount of rapidly growing remote sensing data archives to retrieve information, in highly 

improved spatial and particularly temporal detail over very large regions. These new 

techniques and data sources provide approaches to better understand the response of 

permafrost to a changing climate: 
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1) Detection of change events 

The knowledge about short term fluctuations and the particular timing of disturbances is not 

well monitored yet. Several processes, such as lake initiation, lake drainage or retrogressive 

thaw slumps have shown a cyclic behavior, but the available data records are still very sparse. 

Enhancing information about trend details and event identification would be an important step 

to understand the triggers and key factors of non-linear thermokarst processes. 

2) Spatial upscaling 

The analyses in this thesis covered a very large spatial extent of over 2 million km². However, 

the permafrost region covers an area about 10 times larger and an upscaling from the currently 

processed transects to the pan-arctic scale would allow the full understanding of permafrost-

related landscape processes and better estimations of carbon budgets. The synergistic use of 

the presented methodologies and state-of-the art computing facilities would allow to process a 

pan-arctic scale analysis. 

3) Near-real-time monitoring 

Past permafrost landscape changes from 1999 to 2014 were analyzed within this thesis. This 

period covers only a portion of the available satellite record, but the permafrost landscape is 

currently and will be changing constantly. Recently launched constellations of similar sensors, 

e.g. Landsat-8 and Sentinel-2 or Planet, further decrease satellite revisit times and shift focus 

to near-real time monitoring and up-to-date information of the Earth’s surface processes. 

Adaptation of the presented methods to additional sensors as well as integration of different 

sensors would significantly enhance the information content for longer observation periods 

and increase monitoring detail. In addition, near-real time processing would allow enhanced 

field work planning for expeditions. 
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A-1.1 Abstract 

Arctic tundra ecosystems have experienced unprecedented change associated with climate 

warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface 

greenness have trended positively over the period of satellite observation. However, since 

2011 these trends have slowed considerably, showing signs of browning in many regions. It is 

unclear what factors are driving this change and which regions/landforms will be most 

sensitive to future browning. Here we provide evidence linking decadal patterns in arctic 

greening and browning with regional climate change and local permafrost-driven landscape 

heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness 

across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive 

(1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional 

watersheds, finding landscape heterogeneity and regional climate change to be the most 

important factors controlling historical greenness trends. Browning was linked to increased 

temperature and precipitation, with the exception of young landforms (developed following 

lake drainage), which will likely continue to green. Spatiotemporal model forecasting 

suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic 
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conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree 

than previously expected. 

A-1.2 Introduction 

Over the past few decades, greening or increased vegetation productivity in Arctic tundra 

lowlands has been inferred from trends in satellite-derived Normalized Difference Vegetation 

Index (NDVI) (Bhatt, et al., 2010; Goetz, Bunn, Fiske, & Houghton, 2005; Jia, Epstein, & 

Walker, 2003). Researchers have speculated that these positive NDVI trends may be in 

response to reduced snow cover or warming, which may manifest on the landscape in the 

form of shrubification
 
(Myers-Smith, et al., 2011), increased vegetation biomass (height, 

length, density) (Jia, Epstein, & Walker, 2003; Elmendorf, et al., 2012), changing 

phenoperiods
 
(Bokhorst S. , Bjerke, Street, Callaghan, & Phoenix, 2011), or increased surface 

water associated with thermokarst
 
(Liljedahl, et al., 2016). However, others have hypothesized 

that greening trends may have been in response to summer sea ice retreat
 
(Bhatt, et al., 2014) 

or increased rates of infrastructure development associated with oil drilling and exploration
 

(Raynolds & Walker, 2016). It is important to recognize that arctic tundra landscapes are 

highly heterogeneous and have historically been in a slow but continuous state of change 

associated with permafrost thaw and aggradation processes related to periglacial landscape 

dynamics
 
(Jorgenson & Grosse, 2016). Consequently, patches of browning or negative NDVI 

trends have also been commonly observed across arctic tundra regions, but until recently the 

greening signal prevailed
 
(Bhatt, et al., 2013). Since 2011, regional shifts toward surface 

browning have reversed the direction of the trend after nearly 33 years of arctic greening 

(Bhatt, et al., 2013). If such change in greening indeed corresponds with a reduction in 

vegetation productivity or carbon uptake capacity via photosynthesis, then nearly all 

ecosystem and earth system models have not foreseen this shift. Therefore, it is urgent to 

understand what may be controlling this spatiotemporal shift in browning across the Arctic 

and if this change is anomalous or represents a new long-term trajectory towards reduced 

vegetation productivity and carbon uptake in the Arctic tundra
 
(Phoenix & Bjerke, 2016).  

To date, our knowledge of circumpolar patterns of greening are derived from coarse-

resolution sensors on board satellites, such as the global 8 km and 1 km resolution Advanced 

Very High Resolution Radiometer (AVHRR) and to a lesser extent the 1 to 0.25 km resolution 
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Moderate Resolution Imaging Spectroradiometer (MODIS) (Bhatt, et al., 2010; Jia, Epstein, 

& Walker, 2003), all of which robustly produce spectral observations spanning gradients of 

time and space. However, data products generated by these observation platforms are limited 

in their ability to evaluate meso- to fine-scale patterns that may control greening and 

browning at coarser resolutions
 
(Bhatt, et al., 2013). Although, notable progress in the 

evaluation of landscape-level patterns of Arctic NDVI at fine-scales has been made (Raynolds 

& Walker, 2016; Nitze & Grosse, 2016; Pattison, Jorgenson, Raynolds, & Welker, 2015; 

Emmerton, et al., 2016; Frost, Epstein, & Walker, 2014; Morton, et al., 2012), these studies 

typically feature a similar physiography and/or climate, limiting the evaluation of how similar 

vegetation types and/or landforms may respond to different climate regimes. It is difficult to 

assess such patterns across Arctic regions for a variety of reasons, but perhaps most 

importantly because of the limited availability of high quality land cover datasets, which do 

not exist, are only regionally specific, or do not adequately represent heterogeneity across the 

tundra landscape to decipher meaningful patterns
 
(Bartsch, Höfler, Kroisleitner, & Trofaier, 

2016). Thus, without adequate spatial coverage and resolution of land cover data products 

used to link plot to landscape-level datasets, our ability to monitor and interpret patterns of 

change in the Arctic remains severely limited (Bartsch, Höfler, Kroisleitner, & Trofaier, 

2016). 

The Arctic Coastal Plain (ACP) of northern Alaska represents an expansive geographic region 

of tundra where decadal trends in greening have recently strengthened
 
(Bhatt, et al., 2010; 

Bhatt, et al., 2013; Goetz, Bunn, Fiske, & Houghton, 2005), yet the magnitude of change 

varied nearly two-fold between the western and eastern ACP (i.e. eastern Chukchi and 

Beaufort, respectively) (Bhatt, et al., 2013). Concurrently, the climate of the ACP has changed 

and appears to be regionally specific, with some regions warming more extensively than 

others and increasing/decreasing in precipitation. Additionally, across the ACP, the spatial 

distribution of fine-scale tundra landforms (here after referred to as “geomorphic types”), 

varies significantly (Lara, et al., 2015; Jorgenson & Grunblatt, 2013; Jorgenson & Heiner, 

2003), likely with different sensitivities to climate variability and change (Phoenix & Bjerke, 

2016; Lara, et al., 2012). Here we focus on evaluating key factors controlling decadal scale 

surface NDVI (i.e. greening versus browning), and evaluate what regions and geomorphic 

types are most sensitive to future climate change. We calculated decadal NDVI trends using 

Landsat imagery from sensors, Thematic Mapper (TM), Enhanced Thematic Mapper Plus 
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(ETM+), and the Observing Land Imager (OLI), and assessed the variability in greenness 

from local to regional scales by using novel mapping techniques
 
(Lara, et al., 2015) to create a 

polygonal tundra map (30 x 30 m resolution), which represents fifteen of the most dominant 

tundra geomorphic types (e.g., high/low-center polygon; Figure A-1.1), nested within regional 

watersheds
 
(USGS, 2006), and ecological landscapes

 
(Jorgenson & Grunblatt, 2013) spanning 

the ACP. 

 

Figure A-1.1: Dominant geomorphic types on the Arctic Coastal Plain of northern Alaska, as observed 

from high resolution satellite imagery (de Jong, Bruin, Wit, Schaepman, & Dent, 2011) (copyright 

DigitalGlobe, Inc.). Figure created in Esri® ArcMap
TM 

10.4. 

A-1.3 Methods 

We studied the effects of climate and tundra geomorphic types on decadal scale trends in 

greening across the ACP, which stretches from the western coast along the Chukchi sea to the 

Beaufort coastal plains at the Alaskan/Canadian border (latitude: 68-71ᵒ N; longitude: 140-

167ᵒ W). This region is representative of ~1.9 million km
2 

of Arctic coastal tundra
 
(Walker, et 

al., 2005), characterized by low topographic relief, with abundant ice wedge polygons
 

(Kanevskiy, et al., 2013), thick permafrost
 
(Jorgenson & Grunblatt, 2013), and predominantly 

wet sedge or herbaceous vegetation
 

(Jorgenson & Heiner, 2003). Summer and winter 

temperatures range from 5 to 15 ᵒC and -18 to -40 ᵒC, respectively (www.ncdc.noaa.gov). 
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Annual precipitation is variable but typically ranges from 120-200 mm. We defined the ACP 

spatial domain by the geographic land area within the Northern/Southern Chukchi Sea Coast, 

Beaufort Sea Coast, Beaufort Coastal Plain, and a section of the Brooks Range Foothills on 

the Krusenstern Coastal Plain, all of which are composed of a high density of polygonal 

tundra or patterned ground (Figure A-1.1).  

We expand upon a novel automated object based image analysis (OBIA) geomorphic 

mapping approach
 
(Lara, et al., 2015), for characterizing tundra geomorphology across the 

ACP (58,691 km
2
). The initial application of tundra mapping was developed for a polygonal 

coastal tundra ecosystem on the Barrow Peninsula (1800 km
2
) (Lara, et al., 2015). Twelve 

LandSat-8 OLI (summer) satellite images (Supplementary Table 1) were processed and 

mosaicked within ArcGIS
TM

 10.4 (ESRI) for tundra geomorphology mapping. An OBIA land 

cover classifier (eCognition
TM

 v.9.1, Trimble) was parameterized using various rules, 

thresholds, spectral indices, and proximity functions to differentiate between geomorphic 

types
 
(Lara, Nitze, Grosse, & McGuire, in revision). Multiresolution segmentation and 

spectral difference algorithms were used to separate pixels into “image objects”, which were 

divided into open water, aquatic, wet, moist, dry classes using reference data (i.e. field/ground 

truth points and high resolution aerial/satellite imagery) and class thresholds based on 

Normalized Difference Water Index (NDWI). 

 A series of proceeding functions were developed using individual and combined spectral 

bands, geometric object shapes/sizes (i.e. perimeter, area, roundness), and proximity functions 

to further differentiate respective geomorphology classes (Lara, Nitze, Grosse, & McGuire, in 

revision). Using this approach we mapped fifteen geomorphological and hydrologically 

distinct geomorphic types (Figure A-1.1, Figure A-1.2) at 30 x 30 m spatial resolution, 

including (qualitatively ranked from wet to dry), 1) coastal saline water, which commonly 

encroach into terrestrial lakes due to processes related to coastal erosion or lagoon formation, 

2) lakes (large:>90ha, medium:≤90 and >20ha, small:≤20ha), 3) rivers, 4) ponds, 5)  

coalescent low-center polygons, 6) nonpatterned drained thaw lake basins, 7) low-center 

polygons, 8) flat-center polygons,9) riparian corridors 10) high-center polygons, 11)  sandy 

barrens,  12) drained slopes, 13) sand dunes, 14) ice/snow, and 15) urban. Refer to 

Supplementary Table 2 for surface characteristics related to moisture, relief, and vegetation 
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communities specific to geomorphic type. For this analysis, all lake sizes were grouped into 

one “Lake” category.  

The tundra geomorphic map (Figure A-1.2) was validated using an array of oblique 

aerial/ground based photography
 
(Jorgenson & Heiner, 2003) and 249 high resolution (2.5 m 

resolution) SPOT-5 orthorectified image tiles covering >80% of the ACP (Supplementary 

Table 3; gina.alaska.edu)
 
(Lara, Nitze, Grosse, & McGuire, in revision). We used a stratified 

random sampling design, where 1000 reference sites were used to evaluate map accuracy 

within both the Arctic Peaty Lowlands and the Arctic Sandy Lowlands
 
(Jorgenson & 

Grunblatt, 2013).  

We computed and analyzed NDVI trends using Landsat imagery following workflows 

developed for the Siberian, Lena River Delta
 
(Nitze & Grosse, 2016), where each pixel has a 

temporal coverage of 40 to 110 observations collected between 1999-2014
 
(Lara, Nitze, 

Grosse, & McGuire, in revision). Throughout this paper, we refer to greening and browning as 

increased and decreased NDVI, respectively. Prior to data extraction from NDVI maps 

(Figure A-1.2), all coastal saline water, lakes, rivers, and urban pixels were removed. 

Primarily due to limited data acquisition across the ACP prior to 1999, we restrict decadal 

greenness trends (i.e. absolute change and percent change relative to 1999) to 1999-2014 

throughout this paper.  

Due to our use of multiple Landsat sensors (i.e. TM, ETM+, and OLI) within the NDVI trend 

map product, we calculated the sensor bias of NDVI at three different locations across Alaska, 

each containing a sample of 40,000 pixels (Lara, Nitze, Grosse, & McGuire, in revision). We 

found minor calibration differences between sensors (i.e. one percent of the signal), while 

sensor specific NDVI distributions were consistent (Lara, Nitze, Grosse, & McGuire, in 

revision). 

Two data subsets were extracted from decadal NDVI products (i.e. absolute and percent 

change), where local to regional absolute and percent change in greenness was extracted for 

each geomorphic type in each Hydrological unit code 8 (HUC 8) watershed (Supplementary 

Figure 1, Supplementary Table 4), for use in boosted regression tree  (BRT)
 
(Elith, Leathwick, 

& Hastie, 2008)
 

and multivariate regression model analysis (Supplementary Table 5), 

respectively. Hydrological unit code 8 watersheds were computed by the Alaska Watershed 
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and Stream Hydrography Enhanced Dataset Project
 
(USGS, 2006), where each watershed was 

divided into two subunits (i.e. lowland/upland) associated with the second elevation quantile. 

Prior to spatial analysis, we identified outlier pixels by determining if NDVI change was > 

75.0% or < -75.0% per decade, and used a nearest neighbor filtering algorithm for the 

recalculation of pixels within a 5 x 5 pixel window, which represented < 0.1% of all pixels on 

the ACP (residual unfiltered open water pixels).  

 

Figure A-1.2: Decadal time scale Landsat derived greenness (NDVI) trend and regional watersheds (top 

panel), and tundra geomorphology map (bottom panel). Tundra geomorphology map was developed at a 

30 x 30 m spatial resolution (see methods for more details). Note the variability in geomorphology 

distribution associated with regional watersheds (stacked bar chart). Greenness Trend map was created 

following established workflows
 
(Nitze & Grosse, 2016), while tundra geomorphology map was created in 

Trimble® eCognition
TM

 v.9.1, both maps projected in Esri® ArcMap
TM 

10.4. 

Datasets used in all analyses included the following predictor variables: elevation (60 m 

resolution), climate normals (1960-1999), change (difference between 2000-2010 and 

“normals”), and anomalies (“change”/”normal”) for annual temperature, precipitation, and 

potential evapotranspiration downscaled to 771 m resolution by the Scenarios Network for 

Alaska and Arctic Planning
 
(SNAP, 2017). In addition, we calculated the percent cover of soil 

moisture regime for each 771 x 771 m pixel (resolution standardized with input climate data), 

estimated by associations between geomorphic type and field observations
20,23,30

. We 
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combined geomorphic classes into their respective moisture categories as follows: open water 

(coastal saline water, lakes, rivers), aquatic (ponds, coalescent low-center polygons), wet 

(nonpatterned drained thaw lake basins, low-center polygons), moist (flat-center polygons, 

riparian corridors), dry (high-center polygons, drained slopes) and other (sandy barrens, sand 

dunes, ice/snow, urban). 

The TreeNet Gradient Boosting machine, developed within the Salford Predictive Modeler
TM

 

v.8.0 (Salford Systems), was used to run all BRT analyses. A “shaving” procedure was used to 

iteratively remove and rerun the BRT analysis to minimize the mean squared error, where 

80% (n=276) of the dataset was used for model development (i.e. learning) and 20% (n=53) 

was used for independent model evaluation (i.e. testing). BRT learning rate, tree complexity, 

and loss criterion, was set to 0.1, 6, and Huber-M, respectively. To ensure reproducibility, we 

used a seed state of 987654321 for model initialization. Partial dependency plots were used to 

show the response of individual predictor variables to the BRT analysis, using fitted 

functions
28

. Fitted functions detail the effect of a variable on the response after accounting for 

average effects of all other variables in the model
 
(Elith, Leathwick, & Hastie, 2008). 

Stepwise multivariate regression and Pearson’s correlation analyses were ran in Jmp Pro
TM

 

v.10 (SAS). Input datasets used in the stepwise procedure (Supplementary Table 5) were all 

transformed to fit the assumptions of normality, and only important factors identified by the 

preceding BRT analysis were input into the stepwise procedure, used to predict regional 

greenness trends by fitting potentially important climate and/or environmental variables. A 

five-fold cross validation was concurrently performed, which divided the dataset into 5 

subsets or 80:20 and iteratively used each 80% subset to predict the other 20% (e.g. k-1). The 

average R2 of all models was then calculated. Multivariate regression models were used to 

forecast change in the NDVI over the next decade (i.e. 2020-29), forced by the top five 

climate models to accurately represent Arctic and Alaskan regions (SNAP, 2017; Walsh, 

Chapman, Romanovsky, Christensen, & Stendel, 2008) used in the IPCC Fifth Assessment 

Report (). These included the Community Earth System Model 4 (NCAR-CCSM4), Coupled 

Model 3.0 (GFDL-CM3), ModelE/Russell (GISS-E2-R), Institut Pierre-Simon Laplace 

Coupled Model v5A (IPSL-CM5A), and the Coupled General Circulation Model v3.0 (MRI-

CGCM3). Selected model runs included the AR5 representative concentration pathways RCPs 
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8.5 (high) and 4.5 (low). We assumed no change in tundra geomorphic type distribution for 

model simulations. 

Table A-1.1: Projected change in precipitation and temperature (2020-2029) relative to climate normals 

for the Arctic Coastal Plain of northern Alaska by climate model and RCP emission scenario. Models are 

generally listed from lowest to highest projected change. 

 

A-1.4 Results 

We found the regional distribution of tundra geomorphic types and greenness to vary 

markedly across the Arctic Coastal Plain of northern Alaska (Figure A-1.2, Supplementary 

Figure 1). The newly developed tundra geomorphology map represented the spatial 

distribution of polygonal tundra well with an overall map accuracy and Cohen’s Kappa 

coefficient of 76% and 0.73, respectively (Supplementary Table 3)
 
(Lara, Nitze, Grosse, & 

McGuire, in revision). Map statistics indicated that high-center polygons, low-center 

polygons, and lakes were the predominant features across the ~60,000 km² ACP representing 

69.3% of the total land cover area (Figure A-1.2). Watersheds ranged from 15 to 13,406 km² 

with a median of 2,128 km², which also varied in geomorphic type distribution (Figure A-1.2, 

Supplementary Figure 1). Historical NDVI trends varied between regional watersheds 

(Supplementary Figure 1), and across geomorphic types (Supplementary Tables S4-S5), 

suggesting that indeed trends in greening and browning are locally and regionally specific. 

Generally, across the ACP historical trends in NDVI (±standard deviation) differed by 

 
Climate Model 

     RCP 4.5       RCP 8.5 

 
Mean Stdev Mean Stdev 

Te
m
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e
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an

ge
 (

ᵒC
) MRI-CGCM3 1.37 0.22 1.21 0.18 

GISS-E2-R 1.4 0.767 1.94 0.114 

IPSL-CM5A 1.62 0.129 3.45 0.2 

NCAR-CCSM4 2.93 0.19 2.56 0.2 

GFDL-CM3 5.46 0.58 4.63 0.44 

P
re

ci
p

it
at

io
n

 

ch
an

ge
 (

m
m

) MRI-CGCM3 9.27 15.96 17.18 10.28 

GISS-E2-R 31.27 10.31 16.52 11.98 

IPSL-CM5A 35.15 11.15 9.48 7.93 

NCAR-CCSM4 14.85 8.22 28.4 10.19 

GFDL-CM3 46.6 19.99 45.47 9.45 

Temp. Normal (1960-1999): -11.51 ᵒC, ±0.93   
Precip. Normal (1960-1999): 236.63 mm, ±21.29 

 1 
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geomorphic type as observed in ponds (0.005 ± 0.22), coalescent low-center (0.035 ± 0.11), 

nonpatterned drained thaw lake basins (0.032 ± 0.14), low-center (0.044 ± 0.06), flat-center 

(0.046 ± 0.05), riparian corridor (0.039 ± 0.13), high-center (0.041 ± 0.05), and drained slope 

(0.042 ± 0.04).  

The gradient boosting analysis used 183 regression trees to construct a robust model that well 

represented the variability in historical greenness trends (learning/testing, R
2
= 0.72, 0.62). 

After “shaving” or recursive predictor elimination procedures were complete, the final BRT 

analysis determined geomorphic type (100.0), temperature change (64.5), precipitation change 

(61.5), elevation (49.1), and precipitation normal (50.3) to be the most important factors (i.e. 

“variable importance”, expressed as a percentage, scaled to the most important factor) 

controlling greenness trends (Figure A-1.3, Supplementary Figure 2). Partial dependency 

plots illustrate the strong control of geomorphic type on NDVI (Figure A-1.3), as generally, 

the higher the soil moisture the lower the rate of decadal greening. This is in line with partial 

dependency plots for precipitation and temperature change, which indicate that NDVI 

increased (i.e. greening) with reduced precipitation and cooler temperatures, whereas the 

NDVI decreased (i.e. browning) with increased precipitation and warmer temperatures 

(Figure A-1.4). Specifically, precipitation change greater than +31 mm was associated with 

substantial decreases in NDVI, while precipitation change associated with drier conditions, 

less than -10 mm increased NDVI. Interestingly, partial dependency plots for temperature 

change reveal that a potential NDVI threshold exists, inferring that if warming is limited to 

below +1.06 ᵒC, the tundra continues to experience increased NDVI, but if warming exceeds 

that threshold NDVI is substantially reduced (Figure A-1.3, Supplementary Figure 2). 

However, greening may slowly resume after +1.70 ᵒC of warming. Although elevation and 

precipitation normal did not account for most of the BRT model variability, they nevertheless 

notably impacted tundra geomorphology greenness (Figure A-1.3). Because temperature and 

precipitation change predictors did not meet the assumption of normality, we used log 

transformed temperature and precipitation anomalies in the ensuing multivariate analysis. 
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Figure A-1.3: Three dimensional partial dependency plots from gradient boosting analysis, illustrating the 

strong interaction between geomorphic type and temperature change (A), precipitation change (B), 

precipitation normal (C), and elevation (D). Generally, green and brown colors indicate positive and 

negative NDVI trends, respectively. Geomorphic type acronyms correspond to sandy barren (SB), sand 

dune (SD), drainage slope (DS), high-center polygon (HC), flat-center polygon (FC), low-center polygon 

(LC), riparian corridors (RC), nonpatterned drained thaw lake basins (nDTLB), and coalescent low-

center polygon (CLC). Figure created in Salford Systems® TreeNet Salford Predictive Modeler
TM

 v.8.0. 
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Figure A-1.4: Three dimensional partial dependency plot from gradient boosting analysis, illustrating the 

impact both temperature change and precipitation change may have on NDVI trends. Figure created in 

Salford Systems® TreeNet Salford Predictive Modeler
TM

 v.8.0. 

Table A-1.2: Pearson correlation coefficients for geomorphic type and potential drivers of NDVI change. 

Positive and negative correlations indicate greening and browning, respectively, with increasing climate or 

elevation parameters. See Figure A-1.3 for geomorphic type definitions. Bolded = p≤0.05; Italics = p ≤ 0.1. 

Geomorphic 
Type 

Temperature 
Anomaly 

Precipitation 
Anomaly 

Elevation 
SD 0.13 -0.43 0.14 
DS -0.15 -0.36 -0.07 

SB -0.58 0.13 0.12 
HC -0.42 -0.07 -0.27 
RC -0.48 0.23 0.1 
FC -0.27 -0.13 -0.02 
LC -0.49 0.18 -0.18 
nDTLB -0.31 -0.19 0.03 
CLC -0.21 -0.21 0.17 
Pond 0.53 -0.60 0.27 

Regionally, the cross-validated multivariate regression model identified climate anomalies of 

precipitation and temperature, wet%, and elevation to be the most important predictors of 

historical NDVI trends (R² = 0.49, p < 0.001; five-fold cross validation R²=0.30), which 
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suggests that increasing the decadal precipitation and temperature anomalies will decrease 

NDVI trends (i.e. browning), whereas an increase in wet% (i.e. nonpatterned drained thaw 

lake basins and low-center polygons) area will increase NDVI trends, both consistent with the 

BRT analysis. Furthermore, NDVI correlations with temperature and precipitation anomalies 

specific to geomorphic type, provide insight into regional scale controls on decadal NDVI 

change, as nearly all geomorphic types were sensitive to either temperature or precipitation 

anomalies (Table A-1.2). Significant decreases in NDVI with warmer temperatures were 

found for high-center polygons, low-center polygons, sandy barrens, nonpatterned drained 

thaw lake basins, and riparian corridors, whereas pond NDVI increased with warming. 

Decreases in NDVI were also identified for sand dunes, drained slopes, and ponds associated 

with increased precipitation (Table A-1.2). The geomorphic type most sensitive to 

temperature-mediated NDVI change, inferred from the highest decadal rate of change, were 

ponds (R² =0.28, p = 0.002, n=30) and riparian corridors (R² =0.30, p = 0.001, n=31), which 

increased and decreased NDVI with warming, respectively. In contrast, the geomorphic types 

most sensitive to precipitation-mediated reduction in the NDVI trend, were ponds (R² =0.36, 

p < 0.001, n=30), followed closely by drained slopes (R² =0.22, p = 0.008, n=31). We did not 

identify any significant relationships linking increased greening with increased precipitation 

among geomorphic types (Table A-1.2), consistent with BRT analysis and regression model. 

We associated climate sensitivities to patterns of greenness in sandy barrens and sand dunes to 

spectral differences associated with saturated versus unsaturated soils in response to 

warmer/wetter conditions and not explicitly a vegetation response in these sparsely vegetated 

types (Table A-1.2). Cumulatively, the relative importance of regional climate change for 

predicting the trajectory of greening versus browning was made strikingly apparent as ~61% 

or 35,800 km
2
 of the ACP were sensitive to change in temperature, whereas only ~10% or 

5,900 km
2
 were sensitive to change in precipitation. 

To evaluate how NDVI trends may change over the next decade (i.e. 2020-2029) derived 

multivariate models were applied across the ACP using five IPCC climate models and two 

emission scenarios (i.e. RCP 8.5 and 4.5). Generally, we find the projected change in NDVI 

will likely vary in magnitude and spatial distribution (Figure A-1.5) associated with future 

climate change ( 
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Table A-1.1). Simulations suggest the greatest magnitude of change in greening and browning 

relative to long term trends (1984-2014) were for the MRI-CGCM3 RCP 8.5 and GFDL-CM3 

RCP 8.5 climates, respectively (Figure A-1.6). However, although, predicted change in NDVI 

notably varied between climate models, emission scenarios add another degree of uncertainty, 

as highlighted by the trajectory shift from greening to browning found with NCAR-CCSM4 

and IPSL-CM5A (Figure A-1.6). Moreover, predicted change in NDVI may be expected to 

vary spatially (Figure A-1.5), as all models indicate the western Chukchi coast will experience 

the greatest browning (Figure A-1.5) and the northeastern Beaufort coastal plain will 

experience the most greening. However, regions anticipated to have the highest greening 

trends by 2020-2029, also have the highest uncertainty or disagreement among model outputs 

(Figure A-1.5, Figure A-1.6).  

 

Figure A-1.5: Forecasted change in greenness (2020-2029) relative to the long-term (1984-2014: +0.002) 

trend, using the five model mean and AR5 8.5 emission scenario (top panel). As a metric of future 

greenness uncertainty, the standard deviation is computed for all model outputs and emission scenarios 

(bottom panel). Maps created in Esri® ArcMap
TM 

10.4. 
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Figure A-1.6: Projected variability in greenness (2020-2029) using five climate models and two emission 

scenarios. Above and below dotted line represent greening and browning relative to long-term trends, 

respectively, while RCP emission scenario highs and lows are indicated by 8.5 and 4.5, respectively. 

A-1.5 Discussion 

As the climate continues to warm, we can expect an increased occurrence of browning across 

the Arctic Coastal Plain of northern Alaska (Figure A-1.2, A-1.5), but the rate at which the 

landscape browns, depends on the magnitude of temperature and precipitation change (Figure 

A-1.4), with the exception of young geomorphic types from recently drained lakes (e.g. 

nonpatterned drained thaw lake basins and low-center polygons) that will likely continue to 

green. These patterns were highlighted in our analysis as historical NDVI trends varied by 

tundra geomorphic type (Figure A-1.3). Browning was particularly sensitive to elevated 

temperature and/or precipitation (Table A-1.2), both of which are expected to increase across 

arctic tundra regions
 
(ACIA, 2005).  

To evaluate how NDVI might change over the next decade (2020-2029) we developed a 

predictive multivariate model using a range of decadal scale climate and geospatial data 

inputs (Supplementary Table 5),  selected as important predictors in the BRT analysis. 
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However, because of the decadal scale input datasets (Bieniek, et al., 2015), we are unable to 

explicitly and directly evaluate year-specific observations of browning (i.e. 2011)
 
(Bhatt, et 

al., 2013) within this modeling framework. We still were able to provide insights into 

potential controls on greenness. Generally, it has been postulated that recent observations of 

browning, may have arisen from an array of annual/seasonal regional/site level changes that 

are largely correlated with decadal climate and land cover datasets, such as the delayed onset 

of the growing season and longer snow cover (Bieniek, et al., 2015), summer cloudiness 

(Bieniek, et al., 2015), winter warming
 
(Bokhorst S. F., Bjerke, Tommervik, Callaghan, & 

Phoenix, 2009; Bokhorst, Tommervik, Callaghan, Phoenix, & Bjerke, 2012), or thermokarst 

development
 
(Raynolds & Walker, 2016). Model NDVI forecasting (Figure A-1.5, Figure A-

1.6) identified greening to likely continue on the ACP, but will be highly dependent on the 

amplitude of future climate change (Figure A-1.6,  

Table A-1.1). Predicted NDVI by 2020-2029 was found to be variable dependent on climate 

model and RCP (Figure A-1.6), but the magnitude in greening versus browning was generally 

explained by the inverse relationship between temperature and NDVI change, as the greater 

the temperature change the lower the NDVI. Generally, all simulations find regional specific 

browning to occur on the southwestern Chukchi coast and greening to occur on the 

northeastern Beaufort coastal plains but the magnitudes vary by climate model (Figure A-1.6).  

Trends in MaxNDVI estimated from Global Inventory Modeling and Mapping Studies
 

(GIMMS) datasets
11

, were similar to that evaluated using Landsat imagery (Figure A-1.2), 

though, higher resolution imagery and newly developed maps enabled the evaluation of 

spatiotemporal heterogeneity in greenness, highlighting the strong interaction between 

landforms and climate influencing greenness trends (Table A-1.2, Figure A-1.3). We found 

trends in greenness were specific to geomorphic type and sensitive to either temperature or 

precipitation change (Table A-1.2), with the exception of tundra ponds, which was found to be 

sensitive to both climatic drivers. The climatic sensitivity of tundra ponds is in line with 

hypothesized drivers of vegetation change (Lara, et al., 2012; Andresen & Lougheed, 2015; 

Villarreal, et al., 2012), as warmer temperatures may thaw permafrost and increase available 

nutrients in the water column (Lougheed, Butler, McEwen, & Hobbie, 2011; Reyes & 

Lougheed, 2015), potentially enabling the expansion of aquatic macrophytes (Andresen & 

Lougheed, 2015; Villarreal, et al., 2012). Increased precipitation is likely to increase the ratio 
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of standing water to macrophyte distribution in ponds, manifesting as an increased browning 

signal. Although, relationships between decreasing NDVI and increasing temperature were 

identified for high-center polygons, low-center polygons, and riparian corridors (Table A-1.2), 

it is important to note that significant greening occurred across all geomorphic types until 

temperatures warmed beyond +1.06 ᵒC, where NDVI decreases sharply (Figure A-1.3, 

Supplementary Figure 2). However, the greening trend may begin to increase if warming is 

greater than ~+1.70 ᵒC. Generally, at the landscape scale, we find greening to increase if 

precipitation decreases more than -10 mm relative to normal precipitation patterns, whereas 

browning increased with precipitation. This pattern was likely identified in response to either 

wetting/drying of water saturated tundra soils and/or increased cloudiness (associated with 

increased precipitation) that may decrease productivity in response to a reduction in 

photosynthetically active radiation
 
(Bieniek, et al., 2015). However, although NDVI generally 

decreased with increased precipitation, this pattern was not able to explain the regionally 

specific variability in NDVI that occurred among landforms (Figure A-1.3). 

Although this work increases our understanding of past and future greenness patterns in arctic 

coastal tundra ecosystems, it is unclear if differences in greening versus browning trends for 

each geomorphic type (Table A-1.2) were associated with local disturbances. For example, the 

prevalence of thermokarst pits (upland tundra: drained slopes and high-center polygons) and 

associated increases in surface wetness (Liljedahl, et al., 2016; Jorgenson, Shur, & Pullman, 

2006), seasonally dependent patterns of herbivore activity (low-center polygons, nonpatterned 

drained thaw lake basins, and drained slopes)
 
(Batzli, Pitelka, & Cameron, 1983), and/or plant 

community change (ponds, nonpatterned drained thaw lake basins, low-center polygons)
 

(Villarreal, et al., 2012). The interpretation of greening and browning signals spanning small 

to large spatiotemporal scales (i.e plot to pan-Arctic) is difficult, as multiple climatic and 

environmental factors influence NDVI trends, which are likely related but spatially 

dependent. For example, at the Pan-Arctic scale, greening has been linked to extra-Arctic 

processes such as CO2 fertilization (Zhu, et al., 2016; Los, 2013), atmospheric nitrogen 

deposition
 
(Zhu, et al., 2016), as well as marine-terrestrial interactions related to ocean 

circulation patterns and sea ice decline
 
(Bhatt, et al., 2010; Bhatt, et al., 2013). At the 

landscape scale, other local processes such as the frequency and magnitude of wildfires
 

(Goetz, Bunn, Fiske, & Houghton, 2005), regional climate change (Bhatt, et al., 2010; Goetz, 

Bunn, Fiske, & Houghton, 2005; Bhatt, et al., 2013; Zhu, et al., 2016; Los, 2013), 
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infrastructure development
 
(Raynolds & Walker, 2016), and shrubification

 
(Forbes, Fauria, & 

Zetterberg, 2010) are important. We find the distribution of tundra geomorphology (Figure A-

1.3, Table A-1.2, Supplementary Figure 2) is another major factor modulating greening and 

browning signals in ways previously not recognized. At the fine scale, processes related to 

changing patterns of phenology (de Jong, Bruin, Wit, Schaepman, & Dent, 2011), plant 

community change (Lara, et al., 2012), herbivory (Lara, Johnson, Andresen, Hollister, & 

Tweedie, 2017; Olofsson, Tommervik, & Callaghan, 2012) and surface hydrology driven by 

thermokarst (Liljedahl, et al., 2016; Raynolds, et al., 2014) can also notably impact vegetation 

productivity and NDVI. A holistic ecosystem perspective is required to unravel the 

spatiotemporal complexity involved with changing tundra greenness, which we are beginning 

to understand, but are limited by few observational data and comprehensive analyses across 

scales and platforms of observation.  

Our findings indicate tundra geomorphic heterogeneity and regional climate change are 

dominant factors controlling decadal scale trends in greenness. Thus, a detailed understanding 

of how climate interacts with landforms is necessary for evaluating the spatiotemporal 

ecosystem interactions that impact regional-global patterns of plant productivity. Although, 

correlations between NDVI and vegetation productivity are robust across latitudinal gradients
 

(Epstein, et al., 2012), our findings have several implications for local controls on vegetation 

productivity in the expansive (~1.9 million km
2
)
 
(Walker, et al., 2005) arctic coastal tundra 

ecosystem. Ecosystem and earth system models generally predict plant productivity to 

increase associated with projected climate change across northern latitudes. However, 

assuming our observed greenness trends correspond with productivity trends, we predict a 

reduction in carbon uptake potential across much of the ACP of northern Alaska in response 

to projected warmer and/or wetter climatic conditions. In combination, with deeper active 

layer depths (Koven, et al., 2015) exposing increased soil carbon to decomposition (Koven, et 

al., 2015), this further increases the potential for a net loss of carbon to the atmosphere, at a 

greater degree than previously expected. It is important to better understand how regional-

global trends in greening and browning correspond to both local and regional phenomena to 

enhance our predictive capacity and ability to detect change in plant productivity across the 

Pan-Arctic to constrain our predictive uncertainty related to the future state and fate of global 

climate change
 
(Abbott, et al., 2016). 
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Supplementary Table 1: Mosaicked Landsat scenes used to create the tundra geomorphology map 

Product ID Sensor Satellite Year* Month* Day* 

LC80690112013249LGN00 OLI/TIRS Landsat 8 2013 Sept. 5 

LC80720112013254LGN00 OLI/TIRS Landsat 8 2013 Sept. 10 

LC80740112014191LGN00 OLI/TIRS Landsat 8 2014 July 9 

LC80770102013193LGN00 OLI/TIRS Landsat 8 2013 July 11 

LC80770112013193LGN00 OLI/TIRS Landsat 8 2013 July 11 

LC80790102013191LGN00 OLI/TIRS Landsat 8 2013 July 9 

LC80800102014217LGN00 OLI/TIRS Landsat 8 2014 Aug. 4 

LC80800112014249LGN00 OLI/TIRS Landsat 8 2014 Sept. 5 

LC80820122013244LGN00 OLI/TIRS Landsat 8 2013 Aug. 31 

LC80830102014222LGN00 OLI/TIRS Landsat 8 2014 Aug. 9 

LC80830112014190LGN00 OLI/TIRS Landsat 8 2014 July 8 

LC80840122013194LGN00 OLI/TIRS Landsat 8 2013 July 12 

*Acquisition date 
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Supplementary Table 2: Characteristics of dominant Alaskan Arctic Coastal Plain tundra geomorphic 

types 

Geomorphic 

Type 

Moisture 

Regime Relief Vegetation Community 

Coastal saline 

water 
Open water Low vegetation absent 

Lakes & River Open water Low vegetation absent 

Pond Aquatic Low 
(i) Aquatic Arctophila, Carex, (ii) Dupontia graminoid 

, (iii) Seasonal short grass 

Coalescent low-

center 
Aquatic Intermediate 

(i) Seasonally flooded Carex, Dupontia, Eriophorum 

graminoid tundra, (ii) Aquatic Arctophila, Carex, 

Dupontia graminoid tundra 

Nonpatterned 

DTLB 
Moist-Wet Low 

(i) Moist Carex, Poa, Luzula graminoid tundra, (ii) 

Wet Carex, Sphagnum graminoid tundra, (iii) 

Seasonally flooded Carex, Dupontia, Eriophorum 

graminoid 

Low-center Moist-Wet Intermediate 

(i) Moist Carex, Poa, Luzula graminoid tundra, (ii) 

Wet Carex, Sphagnum graminoid tundra, (iii) 

Seasonally flooded Carex, Dupontia, Eriophorum 

graminoid tundra 

Sandy barren Moist-Wet Low (i) Deciduous scrub 

Flat-center Dry-Moist Intermediate 

(i) Dry Arctagrostis, Luzula, Poa, Carex graminoid 

tundra, (ii) Moist Carex, Poa, Luzula graminoid 

tundra 

Riparian corridors Dry-Moist Intermediate (i) Deciduous dwarf scrub, (ii) Evergreen dwarf scru b 

High-center Dry High 
(i) Dry Arctagrostis, Luzula, Poa, Carex graminoid 

tundra 

Drainage slope Very Dry Very high 
 (i) Dry Lichen Heath,(ii) Dry Arctagrostis, Luzula, 

Poa, Carex graminoid tundra 

Sand dune Very Dry Very high 
(i) Seasonal desert herb vegetation, (ii) Deciduous 

desert scrub 

  DTLB = Drained Thaw Lake Basin 
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Supplementary Table 3: Accuracy assessment represented as a confusion matrix. Bolded diagonal values 

within the matrix represent correctly identified pixels, where User and Producer accuracies are presented 

on the right vertical axis and bottom horizontal axis. 

 

 

 

Supplementary Figure 1: Watershed specific patterns in NDVI with standard deviation bars (top panel) 

and percent cover of tundra geomorphic type (bottom panel). 
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Supplementary Table 4: Absolute change (1999-2014) in NDVI by geomorphic type within each watershed 

on the Alaskan Arctic Coastal Plains. Blank cells indicate the geomorphic type was not present in the 

associated watershed 

HUC_8 Low/ Upland CLC DS FC HC LC nDTLB POND RC SB SD 

19050405a Low 0.015 0.010 0.022 0.020 0.031 0.005 -0.027 0.036 0.021 0.047 

19050405b Up 0.010 -0.001 0.019 0.020 0.043 0.037 0.000 0.036 0.014 0.031 

19060101a Low 0.021 0.044 0.042 0.050 0.056 0.041 -0.019 0.037 0.032 0.011 

19060101b Up 0.021 0.044 0.042 0.050 0.056 0.041 -0.019 0.037 0.032 0.011 

19060102a Low 0.034 0.046 0.050 0.056 0.057 0.060 

 

0.060 0.041 0.036 

19060102b Up 0.039 0.043 0.048 0.050 0.060 0.050 

 

0.048 0.033 0.045 

19060103a Low -0.007 0.010 0.005 0.016 0.014 -0.005 -0.050 0.035 0.013 0.015 

19060103b Up 0.036 0.025 0.032 0.031 0.043 0.032 -0.006 0.047 0.026 0.055 

19060201a Low 0.010 0.017 0.017 0.017 0.019 0.011 -0.003 0.013 0.009 0.003 

19060201b Up 0.013 0.018 0.018 0.022 0.020 0.008 -0.011 0.005 0.014 -0.006 

19060202a Low 0.005 0.008 0.010 0.010 0.012 0.008 -0.013 0.000 0.007 0.018 

19060202b Up 0.013 0.013 0.021 0.023 0.021 0.013 0.005 0.020 0.026 0.006 

19060203a Low -0.002 0.004 0.007 0.011 0.005 0.000 -0.015 0.001 0.012 0.009 

19060203b Up 0.007 0.014 0.017 0.021 0.014 0.006 -0.010 0.010 0.006 0.008 

19060204a Low 0.024 0.030 0.028 0.029 0.027 0.022 0.011 0.026 0.011 0.026 

19060204b Up 0.019 0.028 0.028 0.025 0.024 0.017 0.002 0.022 0.021 0.027 

19060205a Low 0.023 0.036 0.035 0.034 0.032 0.025 0.014 0.004 0.009 0.021 

19060205b Up 0.014 0.023 0.022 0.019 0.019 0.012 0.000 0.016 0.009 0.023 

19060303b Up 

 

0.109 0.056 -0.001 0.000 -0.009 -0.026 0.076 0.028 0.022 

19060304a Low 0.006 0.040 0.029 0.023 0.029 0.019 -0.004 0.011 0.018 0.040 

19060304b Up 0.007 0.019 0.021 0.011 0.016 0.009 -0.002 0.014 0.026 0.035 

19060401a Low 0.022 0.049 0.040 0.039 0.036 0.026 -0.002 0.018 0.009 0.021 

19060401b Up 0.014 0.024 0.021 0.014 0.019 0.012 0.001 0.018 0.005 0.024 

19060402a Low 0.015 0.031 0.022 0.024 0.024 0.015 -0.021 0.019 0.003 0.015 

19060402b Up 0.021 0.019 0.017 0.016 0.015 0.018 0.002 0.006 0.019 0.030 

19060403a Low 0.029 0.043 0.034 0.041 0.034 0.037 0.008 0.040 0.022 0.043 

19060403b Up 0.033 0.034 0.034 0.031 0.036 0.037 0.012 0.041 0.024 0.047 

19060501a Low 0.019 0.051 0.012 0.027 0.019 0.029 0.023 0.007 0.011 0.016 

19060501b Up 0.011 0.026 -0.002 0.011 0.002 0.026 0.015 0.003 0.009 0.025 

19060502a Low 0.030 0.064 0.062 0.056 0.049 0.036 0.001 0.019 0.018 0.041 

19060502b Up 0.029 0.035 0.043 0.037 0.034 0.034 0.028 0.020 0.018 0.042 

19060503a Low 0.004 0.041 0.022 0.025 0.005 0.008 0.009 -0.013 0.021 0.031 

19060503b Up 0.020 0.015 0.011 0.012 -0.001 0.028 0.029 0.011 0.015 0.034 
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Supplementary Table 5: Percent change in NDVI by geomorphic type within each watershed on the 

Alaskan Arctic Coastal Plains. Blank cells indicate the geomorphic type was not present in the associated 

watershed. 

HUC_8 
Lowland/ 

Upland 
CLC DS FC HC LC MDW POND RSHB SB SD 

19050405a L 3.4% 2.5% 4.5% 4.1% 6.1% 1.7% -3.7% 6.9% 4.4% 8.8% 

19050405b U 2.6% 0.7% 4.0% 4.3% 8.1% 7.1% 0.8% 7.0% 3.3% 6.1% 

19060101a L 4.5% 8.3% 7.9% 9.3% 10.3% 7.8% -2.4% 7.1% 6.3% 2.6% 

19060101b U 4.5% 8.3% 7.9% 9.3% 10.3% 7.8% -2.4% 7.1% 6.3% 2.6% 

19060102a L 6.6% 8.6% 9.3% 10.4% 10.6% 11.0% 
 

11.0% 7.8% 7.0% 

19060102b U 7.5% 8.2% 9.0% 9.3% 11.0% 9.3% 
 

8.9% 6.5% 8.4% 

19060103a L -0.4% 2.6% 1.7% 3.5% 3.3% 0.0% -7.7% 6.8% 3.0% 3.3% 

19060103b U 6.9% 5.1% 6.2% 6.2% 8.2% 6.3% -0.2% 8.8% 5.2% 10.2% 

19060201a L 2.6% 3.6% 3.7% 3.7% 4.0% 2.7% 0.4% 3.0% 2.4% 1.4% 

19060201b U 3.0% 3.8% 3.9% 4.6% 4.2% 2.3% -1.0% 1.6% 3.3% -0.1% 

19060202a L 1.7% 2.2% 2.6% 2.6% 2.8% 2.3% -1.3% 0.9% 2.0% 3.8% 

19060202b U 3.1% 3.1% 4.4% 4.8% 4.4% 3.0% 1.7% 4.2% 5.3% 1.9% 

19060203a L 0.5% 1.6% 2.0% 2.7% 1.8% 0.8% -1.7% 1.0% 2.9% 2.4% 

19060203b U 2.0% 3.3% 3.6% 4.3% 3.2% 1.9% -0.8% 2.6% 1.9% 2.3% 

19060204a L 4.9% 5.9% 5.6% 5.7% 5.5% 4.6% 2.7% 5.2% 2.7% 5.3% 

19060204b U 4.0% 5.6% 5.6% 5.1% 5.0% 3.7% 1.2% 4.6% 4.4% 5.4% 

19060205a L 4.8% 7.0% 6.7% 6.6% 6.2% 5.1% 3.3% 1.6% 2.3% 4.4% 

19060205b U 3.2% 4.8% 4.6% 4.1% 4.0% 2.9% 0.9% 3.5% 2.4% 4.7% 

19060303b U 0.8% 19.2% 10.3% 0.6% 0.9% -0.7% -3.6% 13.8% 5.6% 4.6% 

19060304a L 1.8% 7.7% 5.8% 4.8% 5.8% 4.0% 0.2% 2.8% 3.9% 7.6% 

19060304b U 2.1% 4.1% 4.3% 2.6% 3.5% 2.4% 0.4% 3.3% 5.2% 6.7% 

19060401a L 4.5% 9.2% 7.6% 7.5% 7.0% 5.3% 0.4% 3.8% 2.3% 4.4% 

19060401b U 3.2% 4.9% 4.4% 3.2% 4.0% 2.8% 1.1% 3.9% 1.7% 4.8% 

19060402a L 3.5% 6.1% 4.5% 5.0% 4.9% 3.5% -2.7% 4.0% 1.4% 3.4% 

19060402b U 4.5% 4.1% 3.7% 3.5% 3.4% 3.9% 1.2% 1.8% 4.0% 5.8% 

19060403a L 5.8% 8.1% 6.7% 7.8% 6.6% 7.1% 2.2% 7.6% 4.5% 8.2% 

19060403b U 6.5% 6.6% 6.7% 6.1% 6.9% 7.2% 2.8% 7.8% 5.0% 8.8% 

19060501a L 4.0% 9.4% 2.8% 5.3% 4.0% 5.7% 4.7% 2.1% 2.7% 3.5% 

19060501b U 2.7% 5.3% 0.5% 2.6% 1.2% 5.2% 3.4% 1.3% 2.3% 5.2% 

19060502a L 6.0% 11.7% 11.3% 10.3% 9.1% 7.0% 0.9% 4.1% 3.8% 7.7% 

19060502b U 5.7% 6.8% 8.2% 7.1% 6.5% 6.6% 5.6% 4.2% 4.0% 8.0% 

19060503a L 1.5% 7.8% 4.6% 5.2% 1.6% 2.2% 2.4% -1.4% 4.3% 6.1% 

19060503b U 4.3% 3.3% 2.8% 2.8% 0.7% 5.5% 5.8% 2.7% 3.3% 6.5% 
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Supplementary Table 6: Summary of parameters used in multiple regression analysis. Variables Tnorm, 

Tdiff, Pnorm, Pdiff, Elev, represent the long term temperature normal (ᵒC), temperature change (ᵒC), 

precipitation normal (mm), precipitation change (mm), and elevation (m). See methods for soil moisture 

details. 
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19050405a L 0.0147 2.9 -6.669 1.032 286.99 17.58 20.78 65.1 2.8 20.0 0.7 9.4 2.0 

19060101a L 0.0459 7.8 -9.973 0.964 265.51 27.44 40.16 70.4 2.6 21.9 1.6 1.9 1.7 

19060102a L 0.0535 9.8 -10.04 0.954 238.65 26.23 43.66 41.6 7.2 44.6 1.6 2.8 2.2 

19060103a L 0.0105 2.0 -10.48 1.058 243.74 28.48 34.9 38.3 9.9 41.3 2.8 5.7 1.9 

19060201a L 0.0168 3.1 -11.1 1.355 240.6 39.27 48.9 53.6 9.6 32.3 2.2 2.0 0.3 

19060202a L 0.0098 1.9 -11.7 1.634 214.57 36.58 34.99 30.7 6.0 52.3 4.9 5.8 0.3 

19060203a L 0.0062 1.2 -11.89 1.685 224.45 38.97 44.4 29.0 5.4 51.5 4.8 7.5 1.9 

19060204a L 0.0261 5.6 -12.05 1.657 225.27 20.04 21.31 22.1 5.1 57.0 6.5 7.3 1.9 

19060205a L 0.0317 6.5 -11.92 1.658 224.08 -3.44 29.18 38.9 6.0 45.0 2.8 7.0 0.4 

19060304a L 0.026 5.9 -11.73 1.618 214.84 -13.3 29.43 41.6 7.9 37.2 2.4 5.7 5.1 

19060401a L 0.0368 8.6 -11.8 1.627 214.93 -19.5 37.13 29.8 9.9 47.7 4.9 5.2 2.6 

19060402a L 0.0181 6.2 -11.66 1.629 221.92 -26.4 35.31 28.1 16.6 31.4 7.3 5.5 11.1 

19060403a L 0.0372 8.0 -11.66 1.645 234.16 -41.3 29.24 48.0 16.4 26.2 5.8 2.0 1.5 

19060501a L 0.0232 5.2 -11.66 1.679 254.92 -65.3 22.97 51.3 14.0 23.7 4.4 2.9 3.7 

19060502a L 0.0531 10.1 -11.67 1.748 284.63 -108 34.68 46.9 17.2 30.5 1.4 1.0 2.9 

19060503a L 0.0225 4.9 -11.56 1.598 267.57 -95.3 32.86 49.1 17.6 28.0 1.3 0.9 3.1 

19060303b U 0.0081 3.2 -11.45 1.5 240.19 -9.94 158.9 65.9 3.0 10.3 0.3 8.7 11.7 

19060304b U 0.0132 2.6 -11.69 1.556 226.36 -11.7 159.7 65.1 3.7 26.3 1.3 2.9 0.7 

19060401b U 0.0166 3.7 -11.32 1.561 218.74 -17.4 208.9 43.1 7.2 44.8 2.0 2.3 0.7 

19060402b U 0.0159 4.8 -11.3 1.553 223.7 -21 216.5 44.9 15.7 27.6 3.2 3.3 5.3 

19060403b U 0.0324 6.4 -11.56 1.602 240.41 -38.9 188.8 60.7 11.1 23.2 2.8 1.2 0.9 

19060501b U 0.01 3.4 -11.57 1.64 255.37 -60.2 163.6 64.5 11.7 11.5 0.7 1.0 10.7 

19060502b U 0.0367 7.0 -11.15 1.732 297.35 -114 345.4 55.8 15.7 25.3 0.8 0.3 2.1 

19060503b U 0.0114 2.5 -11.2 1.647 280.61 -104 262.3 63.0 16.4 17.7 0.7 0.2 2.1 

19050405b U 0.0053 0.9 -6.81 1.022 288.75 18.01 99.39 89.3 0.7 6.8 0.7 1.8 0.7 

19060101b U 0.0405 6.5 -10.65 0.979 270.54 28.97 98.68 71.0 1.6 25.6 0.3 1.3 0.1 

19060102b U 0.0509 8.7 -11.14 1.035 253.25 29.55 104.4 51.5 2.3 42.0 1.0 2.7 0.5 

19060103b U 0.0325 5.8 -10.95 1.115 246.75 31.17 114 59.7 5.0 32.1 1.2 1.0 0.9 

19060201b U 0.019 3.4 -11.36 1.396 242.85 41.79 98.99 39.8 7.5 47.1 3.6 2.0 0.0 

19060202b U 0.0199 4.0 -11.6 1.568 223.78 41.05 75.89 29.5 6.5 56.8 4.5 2.7 0.0 

19060203b U 0.0162 2.9 -11.87 1.629 234.99 42.76 98.78 44.8 3.7 45.5 2.6 3.3 0.1 

19060204b U 0.0242 4.7 -11.95 1.564 241.61 20.29 156.7 42.4 6.1 41.9 3.7 4.7 1.1 

19060205b U 0.0187 3.5 -11.86 1.582 232.67 -0.72 162.2 52.8 5.0 34.1 2.6 5.0 0.5 
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Supplementary Figure 2: Two dimensional partial dependency plots, illustrating the effect of Land cover, 

Temperature change, Precipitation change, Precipitation normal, and elevation on surface greenness. 
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