Mapping permafrost change hot-spots with Landsat time-series

guido.grosse [ at ]


Recent and projected future climate warming strongly affects permafrost stability over large parts of the terrestrial Arctic with local, regional and global scale consequences. The monitoring and quantification of permafrost and associated land surface changes in these areas is crucial for the analysis of hydrological and biogeochemical cycles as well as vegetation and ecosystem dynamics. However, detailed knowledge of the spatial distribution and the temporal dynamics of these processes is scarce and likely key locations of permafrost landscape dynamics may remain unnoticed. As part of the ERC funded PETA-CARB and ESA GlobPermafrost projects, we developed an automated processing chain based on data from the entire Landsat archive (excluding MSS) for the detection of permafrost change related processes and hotspots. The automated method enables us to analyze thousands of Landsat scenes, which allows for a multi-scaled spatio-temporal analysis at 30 meter spatial resolution. All necessary processing steps are carried out automatically with minimal user interaction, including data extraction, masking, reprojection, subsetting, data stacking, and calculation of multi-spectral indices. These indices, e.g. Landsat Tasseled Cap and NDVI among others, are used as proxies for land surface conditions, such as vegetation status, moisture or albedo. Finally, a robust trend analysis is applied to each multi-spectral index and each pixel over the entire observation period of up to 30 years from 1985 to 2015, depending on data availability. Large transects of around 2 million km² across different permafrost types in Siberia and North America have been processed. Permafrost related or influencing landscape dynamics were detected within the trend analysis, including thermokarst lake dynamics, fires, thaw slumps, and coastal dynamics. The produced datasets will be distributed to the community as part of the ERC PETA-CARB and ESA GlobPermafrost projects. Users are encouraged to provide feedback and ground truth data for a continuous improvement of our methodology and datasets, which will lead to a better understanding of the spatial and temporal distribution of changes within the vulnerable permafrost zone.

Item Type
Conference (Talk)
Primary Division
Primary Topic
Peer revision
Not peer-reviewed
Publication Status
Event Details
AGU Fall Meeting, 12 Dec 2016 - 16 Dec 2016, San Francisco, USA.
Eprint ID
Cite as
Nitze, I. and Grosse, G. (2016): Mapping permafrost change hot-spots with Landsat time-series , AGU Fall Meeting, San Francisco, USA, 12 December 2016 - 16 December 2016 .


Research Platforms


Edit Item Edit Item