@AGU, FALL MEETING

New Orleans 11-15 Dec. 2017

Sea ice thickness derived from radar altimetry: achievements and future plans

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

- How do anomalous warm winter temperatures affect the thermodynamic ice growth, the sea-ice thickness distribution and ice volume in spring?
- How do longer melting periods affect the Arctic ice mass balance?

CryoSat-2 sea ice thickness and volume

April 2017

April 2011-2016

Sea Ice Thickness (meters)

April 2017 Anomaly

-1.0 -0.5 0.0 0.5 1.0 Δ Sea Ice Thickness (meters)

CryoSat-2 sea ice thickness and volume

April 2017

April 2011-2016

Sea Ice Thickness (meters)

April 2017 Anomaly

-1.0 -0.5 0.0 0.5 1.0 Δ Sea Ice Thickness (meters)

Airborne validation

Polar-5 with EM-Bird

Airborne Validation March/April 2017

(CryoSat Mean: 2.57m, Airborne-EM Mean: 2.65m)

CryoSat-2/SMOS merged ice thickness product

CryoSat-2/SMOS merged ice thickness product

Ricker et al. (2017), A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere

CryoSat-2/SMOS merged ice thickness product

Sea Ice thickness anomaly for March 2016, referred to 2010-2016

Difference (cm)

Sea Ice thickness anomaly for March 2016, referred to 2010-2016

Sea Ice thickness anomaly for March 2016, referred to 2010-2016

Cumulative Freezing degree days anomaly

Ricker et al. (2017), Satellite-observed drop of Arctic sea ice growth in winter 2015–2016, GRL

Combining Envisat and Cryosat-2

Minimize inter-mission biases between subsequent satellite missions

Consistent surface-type classification scheme

Adaptive retracker threshold that depends on waveform-characteristics

Paul et al., in preparation

First Sentinel-3 freeboard retrieval

CryoSat-2 February 2017 (ccicdr v1.0)

• First Sentinel-3 sea ice freeboard retrievals look promising and show a similar pattern as CryoSat-2

• Sentinel-3 data are not suitable to solely maintain the sea ice thickness CDR

Sentinel-3A y 2017 (pysiral-0.5.0dev)

CryoSat-2 - Sentinel3A February 2017

• Daily NetCDF vector data of sea ice thickness, freeboard and corresponding uncertainties are provided

0,0 1,0 2,0 3,0 4,0 5,0

- and corresponding uncertainties are provided
- Maximum retrieval uncertainty

- Monthly NetCDF with mean sea ice thickness, freeboard and corresponding uncertainties are provided
- Average uncertainty computed by error propagation: Maximum retrieval uncertainty

- Retrieval Status Flag indicates whether thickness retrieval in grid cell was successful or not
 - Retrieval Quality Flag informs on the quality of the retrieved thicknesses

Sea Ice Thickness: Retrieval Status Flag

Sea Ice Thickness: Retrieval Quality Flag March 2011

Summary & Conclusions

Application of satellite sea ice thickness records

- Reduced first-year ice growth linked with anomalous warm winter 2015/16
- Application in model assimilation, model evaluation, and reanalysis data records (e.g. Mu et al. (2017), accepted)
- Impact of Fram Strait ice volume export on Arctic ice mass balance

Summary & Conclusions

Application of satellite sea ice thickness records

- Reduced first-year ice growth linked with anomalous warm winter 2015/16
- Application in model assimilation, model evaluation, and reanalysis data records (e.g. Mu et al. (2017), accepted)
- Impact of Fram Strait ice volume export on Arctic ice mass balance

Ricker et al., in preparation

Summary & Conclusions

Application of satellite sea ice thickness records

- Reduced first-year ice growth linked with anomalous warm winter 2015/16
- Application in model assimilation, model evaluation, and reanalysis data records (e.g. Mu et al. (2017), accepted)
- Impact of Fram Strait ice volume export on Arctic ice mass balance

Future Plans

- providing sea ice thickness products by a service that meets the requirements for climate applications and operational systems
- 25 years time series of sea ice thickness data records from radar altimetry

Ricker et al., in preparation

