Metaecosystem Dynamics of Marine Phytoplankton Alters Resource Use Efficiency along Stoichiometric Gradients
Metaecosystem theory addresses the link between local (within habitats) and regional (between habitats) dynamics by simultaneously analyzing spatial community ecology and abiotic matter flow. Here we experimentally address how spatial resource gradients and connectivity affect resource use efficiency (RUE) and stoichiometry in marine phytoplankton as well as the community composition at local and regional scales. We created gradostat metaecosystems consisting of five linearly interconnected patches, which were arranged either in countercurrent gradients of nitrogen (N) and phosphorus (P) supply or with a uniform spatial distribution of nutrients and which had either low or high connectivity. Gradient metaecosystems were characterized by higher remaining N and P concentrations (and N∶P ratios) than uniform ones, a difference reduced by higher connectivity. The position of the patch in the gradient strongly constrained elemental stoichiometry, local biovolume production, and RUE. As expected, algal carbon (C)∶N, biovolume, and N-specific RUE decreased toward the N-rich end of the gradient metaecosystem, whereas the opposite was observed for most of the gradient for C∶P, N∶P, and P-specific RUE. However, at highest N∶P supply, unexpectedly low C∶P, N∶P, and P-specific RUE values were found, indicating that the low availability of P inhibited efficient use of N and biovolume production. Consequently, gradient metaecosystems had lower overall biovolume at the regional scale. Whereas treatment effects on local richness were weak, gradients were characterized by higher dissimilarity in species composition. Thus, the stoichiometry of resource supply and spatial connectivity between patches appeared as decisive elements constraining phytoplankton composition and functioning in metaecosystems.