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Abstract

We analyse methods for detecting change points in optical remote sensing lake drainage
time series. Change points are points in a data set where the statistical properties of the
data change. The data that we look at represent drained lakes in the Arctic hemisphere.
It is generally noisy, with observations missing due to di�cult weather conditions. We
evaluate a partitioning algorithm, with five di↵erent approaches to model the data, based
on least-squares regression and an assumption of normally distributed measurement errors.
We also evaluate two computer programs called DBEST and TIMESAT and a MATLAB
function called findchangepts(). We find that TIMESAT, DBEST and the MATLAB func-
tion are not relevant for our purposes. We also find that the partitioning algorithm that
models the data as normally distributed around a piecewise constant function, is best
suited for finding change points in our data.
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Sammanfattning

Vi analyserar metoder för att hitta brytpunkter i optisk fjärranalysdata som beskriver
uttorkning av sjöar. Brytpunkter är punkter i en tidsserie vid vilka de statistiska egen-
skaperna förändras. Datan som vi använder representerar uttorkande sjöar i norra hem-
isfären. Den är generellt väldigt fluktuerande och många observationer kan saknas p̊a
grund av väderförh̊allandena i dessa omr̊aden. Vi undersöker en partitionsalgoritm, med
fem olika sätt att modellera datan, baserade p̊a minstakvadratmetoden och p̊a antagande
om att mätfelen är normalfördelade. Vi utvärderar ocks̊a tv̊a program som heter DBEST
och TIMESAT och en funktion i MATLAB som heter findchangepts(). Vi kommer fram
till att TIMESAT, DBEST och MATLAB-funktionen inte är lämpliga för att analysera
v̊ar data. V̊ar slutsats är ocks̊a att partitionsalgoritmen som modellerar datan som nor-
malfördelad runt en styckvis konstant funktion bäst lämpar sig för att hitta brytpunkter i
v̊ar data.
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Chapter 1

Introduction

In this study, di↵erent methods for analysing time series of remote sensing data will be
evaluated. The aim is to compare methods that detect so called change points in time se-
ries of optical remote sensing data from permafrost regions. The focus will be on changes
in regression coe�cients, mean and variance. We will investigate how well the methods
find change points in both simulated and real-world data and select those methods that
are most relevant for the specific purpose of finding change points in satellite-based optical
remote sensing data from permafrost regions.

In the last decades, the Arctic regions have experienced a distinct increase in air tem-
perature [20, p. 27]. The Arcitc regions are sensitive to climate change and global warming
[8, p. 326], therefore these regions are interesting areas for research. Especially, low lying
river deltas are sensitive to temperature changes [20, p. 27]. In permafrost regions, so called
thermokarst lakes are commonly occurring. The growth and drainage of thermokarst lakes
is highly influencing the degradation of permafrost in these regions [8, p. 326]. Thawing
permafrost generally results in expanding thermokarst lakes and erosion of land surface.
Erosion of solid ground can result in drainage of nearby thermokarst lakes. The solid per-
mafrost ground in the bottom of the lake is then exposed to the outer climate conditions,
and the permafrost is likely to thaw. In this study we will look at data from draining
lakes gathered by satellite-based remote sensing, hereafter called lake drainage data. The
data has been found in the Landsat archive of optical remote sensing data. Satellites are
registering reflected light such as visible light, near infrared light and short-waved infrared
light, from the surface of the earth [20]. We will look at six di↵erent indices of character-
istics, namely the normalized di↵erence vegetation index; NDVI, the normalized di↵erence
moisture index; NDMI, the normalized di↵erence wetness index; NDWI and the so called
Tasseled Cap indices TCG, TCB and TCW. TCG is a measure of vegetation, TCB is a
measure of brightness and TCW is a measure of wetness. The indices are further described
in Chapter 2.

Thorough studies of the spatial patterns of these indices have been done by Nitze and
Grosse in [20], covering parts of the Lena Delta in Siberia. Di↵erent environmental events
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such as drainage of lakes, fires and costal erosion have been studied. However, the knowl-
edge of the temporal patterns is not as vast. Consequently, we have information on what
events that have taken place, e.g. drainage of thermokarst lake, and we are interested in
analysing at what time the events occurred [20, p. 39]. Therefore, time series analysis
of the temporal data, in particularly change point detection, will be carried out in this
study. Change point detection is finding the points of a time series at which the structural
patterns change. Chen and Gupta states in [4, p. ix] ”From the statistical point of view, a
change point is a place or time point such that the observations follow one distribution up
to that point and follow another distribution after that point.” In analysing climate data it
is essential to know both where and when an event has occurred. Therefore, change point
detection is highly applicable on remote sensing climate data from permafrost regions, but
is also relevant in all type of time series analysis. Before doing further analysis of time
series it is often essential to first find change points in the time series [2]. When change
points have been detected, it is assumed that the data in each segment share some statis-
tical property.

There exist many methods for detecting change points. For example, time series seg-
mentation is an approach where the time series is divided into di↵erent segments and to
each such segment a model is fitted [10]. Decomposition methods decomposes the time
series and describe it by its trend, its seasonal component and the remaining components
[10]. These methods can be used together to find patterns in time series. Trends can for
example be linear or quadratic and describe how the overall pattern changes over time.
Seasonal patterns are periodic, with patterns returning according to a period time, for ex-
ample annually. When trends and possible seasonal components have been removed from
the time series, the remaining component, also called the random component, is analysed.
It is desirable that the random component has stationary properties [2]. If the random
component is stationary, we have been successful in removing trends and seasonal compo-
nents from the time series [2], also meaning that we successfully have found change points.

Our data is gathered in permafrost regions in the northern hemisphere. Permafrost is
defined as ground that stays below 0�C for at least two consecutive years [22, p. 308]. The
permafrost regions are often di�cult to access. The climate can be harsh and expeditions
to these regions expensive. Therefore, gathering data by hand can lead to small data sets,
only covering small regions and with short time spans. However, satellite-based remote
sensing is an alternative way of collecting data from these regions. There are more than
1300 satellites orbiting the earth collecting data of the climate conditions on the surface
of the earth. Using remote sensing, the potential to analyse the climate in remote regions
increases substantially. The satellites can easily cover very large regions and continuously
gather information about the climate conditions [7]. It opens up for a large database of
data covering permafrost regions, reaching over a time span of more than 40 years [20,
p. 28]. However, satellite-based optical remote sensing also has its drawbacks. Several
factors such as cloud and snow coverage of the ground or particles in the air, can impact
the satellites’ view of the earth. Also, noise due to other factors such as low sun angles is a
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common issue. Therefore, time series of remote sensing satellite data often have so called
missing data points, meaning that the time span between the data points is not equal
throughout the time series [22]. This may cause complications in the analysis process,
especially since there will be information missing. Furthermore, the disturbances cause
noisy data with a high risk of unreliable data points, called outliers [20, 15].

First, the data is presented in Chapter 2. In Chapter 3, we present the methods that
we analyse. First, we present a partitioning algorithm called optimal partioning, including
di↵erent models to fit to the data. A MATLAB function findchangepts() and the two
computer programs DBEST, TIMESAT are also presented. DBEST is claimed to be a
fast and accurate method for detecting change points in satellite-based remote sensing
data of vegetation indices [10, p. 182]. TIMESAT is a computer program developed by
Jönsson and Eklundh, which uses least-squares techniques, such as Savitzky-Golay filters
to approximate the time series [14]. In Chapter 4, the di↵erent methods are evaluated on
a data set describing the event of lake drainage and some methods will be left out from
further analysis. Further, in Chapter 5 and 6, the remaining methods are evaluated on
simulated data sets. In Chapter 7, we evaluate the remaining methods on several sets of
lake drainage data and in Chapter 8 we will discuss the problem of outliers and evaluate
the remaining methods on filtered data. Some examples of found change points and fitted
trends will be shown in Chapter 9. Finally, in Chapter 10, we have a summarized discussion
of our results.

3



Chapter 2

Data

The original images from which the data sets used in this study are extracted are avail-
able in the Landsat archive. The Landsat program is a cooperation between NASA and
USGS (United States Geological Survey) and consists of the longest continuously collected
satellite data set describing the environmental conditions on the surface of the earth [24].
Di↵erent sensors on board Landsat satellites register images of the surface, with a spatial
resolution of 30 meters [20, p. 29]. The images are results of reflected sun light, registered
for di↵erent wavelengths. The images cover large regions but certain points in space have
been selected as reference points for specific land cover conditions. The images can be
masked to remove erroneous observations, due to for example clouds or snow cover, aim-
ing to create images only containing clear observations with no disturbances. However,
the masking is not flawless and the images may contain so called outliers, which are data
points that due to erroneous observations deviate from the rest of the data set. Time series
have been extracted from these images and data sets from di↵erent locations have been
used in this study. With each data set comes information about the location and time
point of the observation. Some data sets have information on when a change occurred.
The information is manually found and there is only one change detected in each data
set. Therefore, this information is not always reliable. There is also information about the
sensors that have registered the observations. The di↵erent sensors used by the Landsat
satellites are the Thematic Mapper (TM), the Enhanced Thematic Mapper Plus (ETM+)
and the Observing Land Imager (OLI), see [20, section 2.2]. Data is gathered at certain
locations and over a time span of 30-40 years. Di↵erent indices that represent di↵erent
properties of the surface, for example vegetation or wetness, have been extracted from the
images, based on the amount of sun light reflected from the earth. Each set of data that
we will be working with, contains time series of six di↵erent multi-spectral indices, TCW,
TCG, NDMI, NDVI, NDWI and TCB, that represent di↵erent properties of the surface
of the earth. NDVI stands for Normalized Di↵erence Vegetation Index and measures the
amount of vegetation. The index is calculated as

NDVI =
⇢

nir

� ⇢

r

⇢

nir

+ ⇢

r

,
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where ⇢
nir

is the proportion of near-infrared sun light that is reflected from the earth, and
⇢

r

is the proportion of visible red light that is reflected. If there is a lot of vegetation,
more near-infrared light is reflected and more visible red light is absorbed, compared to
a surface where there is little vegetation [20, 23]. Therefore, the value of NDVI is higher
where there is more vegetation and lower where there is less vegetation. For all indices,
the value is higher if the characteristic represented by the index is more present. The
values reach between -1 and 1. NDWI stands for Normalized Di↵erence Water Index and
measures water content in bodies containing water.

NDWI =
⇢

g

� ⇢

nir

⇢

nir

+ ⇢

g

,

where ⇢

g

is the proportion of green light that is reflected [20, 6]. NDMI, Normalized
Di↵erence Moisture Index, measures moisture in vegetation,

NDMI =
⇢

nir

� ⇢

swir1

⇢

nir

+ ⇢

swir1

,

where swir1 is short-waved infrared light [20]. TCG, TCW and TCB are the so called
Tasseled Cap indices greenness, wetness and brightness respectively. They are calculated
for Landsat data and are weighted sums of reflectance coe�cients ⇢ for certain wavelengths
[20, p. 30].

As mentioned, the signal of optical satellite data can be a↵ected or disturbed by several
influencing factors. Only some disturbances can be masked out, which leads to missing
or noisy data. In the regions where our data is gathered, clouds and snow are frequent
desturbances. Furthermore, air particles and shadows can a↵ect the view over the surface
of the earth and particles in the air or on the ground can distort the reflected sun light.
Disturbances and malfunctions in the measurement equipment, as well as other factors,
also a↵ect the satellite recorded images [20, 23]. Especially the ETM+ sensor has been
a↵ected by this [20]. Assuming that the magnitudes of the di↵erent errors are approx-
imately the same and that the errors are independent, the errors can be modelled with
support from the Central Limit Theorem. The Central Limit Theorem states that the sum
of many independent and approximately equally distributed random variables is approx-
imately normally distributed [1, p. 142]. For that reason, a general assumption is that
measurement errors are normally distributed with mean 0 and standard deviation �. This
motivates why we can assume that the measurement errors in the remote sensing data
that we are studying are approximately equally distributed and thus that the data, by the
central limit theorem, is approximately normally distributed.

Moreover, regarding the change points to be searched for in the lake drainage data, it is
reasonable but not always true that the indices TCW, TCB, NDMI and NDWI will change
simultaneously, whereas the vegetation indices TCG and NDVI might have a delay, since
the vegetation may need time to develop after a lake drainage. This conclusion was made
from a private conversation with Ingmar Nitze.
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Chapter 3

Methods

Di↵erent methods for analysing time series of remote sensing data will be presented in this
chapter. First, we introduce a dynamical programming algorithm. Dynamical program-
ming is a method to solve large problems using the solutions to smaller sub problems. The
algorithm that will be used here is called optimal partitioning and is found for example
in [9]. The algorithm finds a global optimum of a specified cost function, describing how
well a model has been applied to the data [16]. Di↵erent cost functions will also be pre-
sented and further described in Chapter 4. Secondly, we introduce a MATLAB function,
findchangepts(), which is created to find abrupt changes in data and based on the findings
in [16] and [17]. Third, DBEST will be presented. According to the creators, it is a ”user-
friendly program for analysing vegetation time series” [10, p. 182] and was first presented
in 2004. Lastly, TIMESAT, ”a program for analyzing time-series of satellite sensor data”
[14, p. 833] is shortly described.

3.1 Optimal partitioning

Optimal partitioning is described in [16] and [9] and is a dynamical programming algo-
rithm that finds the points that best divide a data set into several segments, by minimizing
a defined function describing the deviation from a model to the data, here called a cost
function. Dynamical programming solves the computationally heavy problem of localising
several dependent points in a large data set, in an e�cient way. The computational cost
for the optimal partitioning method is O(n2), n being the total number of observations in
the time series [16]. A chosen model is fitted to the time series, going through all possible
combination of change points, and a cost function describing the error of the model fit,
is minimised. The optimal partitioning algorithm finds the global minimum of the cost
function, given the number of change points to be searched for [16, p. 8].

The optimal partitioning algorithm is described in [16, p. 8] as follows. Let the data
points in the time series be (x1, y1), (x2, y2) . . . , (xn

, y

n

). Let ⌧1, ⌧2, . . . , ⌧k be the indices of
the k candidate change points, with ⌧

i

< ⌧

j

if and only if i < j and define ⌧0 = 0 and
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⌧

k+1 = n. The aim is to minimise

k+1X

i=1

C(x
⌧

i�1+1:⌧
i

, y

⌧

i�1+1:⌧
i

) + �,

where � is a penalty constant and C(x
⌧

i�1+1:⌧
i

, y

⌧

i�1+1:⌧
i

) is the cost for the segment between
change point ⌧

i�1 and change point ⌧

i

. The penalty constant is the penalty of adding a
change point to the model. The aim is to find F (n) recursively, with

F (s) = min
t<s

[F (t) + C(x
t+1:s, yt+1:s) + �],

for s = 1, 2, . . . , n, where F (s) is the optimal partitioning of the points (x1, y1), (x2, y2), . . . , (xs

, y

s

)
and F (t), t < s, is the optimal partitioning of the points (x1, y1), (x2, y2), . . . , (xt

, y

t

). The
optimal partitioning of all points (x1, y1), (x2, y2), . . . , (xn

, y

n

), F (n), thus depends on the
optimal partitioning of the former points. The algorithm to find F (n) is as follows. Let
F (0) = �� and cp(0)=NULL. Then, calculate for ⌧ ⇤ = 1, 2, . . . , n,

F (⌧ ⇤) = min
0⌧<⌧

⇤
[F (⌧) + C(x

⌧+1:⌧⇤ , y⌧+1:⌧⇤) + �],

⌧

0 = argmin
0⌧<⌧

⇤
[F (⌧) + C(x

⌧+1:⌧⇤ , y⌧+1:⌧⇤) + �],

cp(⌧ ⇤) = (cp(⌧ 0), ⌧ 0),

(3.1)

where cp(⌧ ⇤) are the positions of the change points for the data set (x1, y1), (x2, y2), . . . , (x⌧

⇤
, y

⌧

⇤)
and cp(n) are thus the positions of all the found change points in the entire data set. For
each point ⌧ ⇤ in the data set, the optimal partition of the points (x1, y1), (x2, y2), . . . , (x⌧

⇤
, y

⌧

⇤)
is calculated, and we notice that it is dependent on the optimal partition of the former
points. The algorithm is further described in [16, 17].

The penalty constant � adjusts the trade o↵ between the cost function and the number
of change points. The penalty constant is set by the user to determine the number of change
points to be searched for. The relation between the penalty constant and the number of
change points is highly dependent on the data. A higher value of the penalty constant
results in fewer change points. Fewer change points result in lower variance of the model
describing the time series and thus higher bias. Therefore, the penalty constant adjusts the
bias-variance trade o↵. The penalty that is added to the total value of the cost function
when one change point is added to the model, equals the penalty constant. Setting � to
zero means that adding a change point adds no penalty to the function F (n), and the data
will be divided into as small segments as possible. A change point is only added to the
model if it results in that the total cost of the model decreases with at least the value of �.

3.1.1 The RSS cost functions

A set of cost functions can be created by fitting a polynomial to the time series, using least-
squares methods. Call the segments 

j

= {⌧
j�1, ⌧j�1+1, . . . , ⌧

j

}, for j = 1, 2, . . . , k+1. The
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data set (x1, y1), (x2, y2), . . . , (xn

, y

n

) is approximated by a piecewise continuous function
p(x, �̄0, �̄1, �̄2), given by a second order polynomial on each interval,

p(x, �̄0, �̄1, �̄2) = �0,j + �1,jxi

+ �2,jx
2
i

, 8i 2 

j

,

for j = 1, 2, . . . , k + 1, where

�̄0 = (�0,1, �0,2, . . . , �0,k+1),

�̄1 = (�1,1, �1,2, . . . , �1,k+1),

�̄2 = (�2,1, �2,2, . . . , �2,k+1).

The parameters �̄0, �̄1 and �̄2 are estimated by minimising the residual sum of squares
(RSS),

RSS(�̄0, �̄1, �̄2) =
nX

i=1

(y
i

� p(x
i

, �̄0, �̄1, �̄2))
2
,

where the residual ✏
i

= y

i

� p(x
i

, �̄0, �̄1, �̄2) is assumed to be normally distributed with
constant variance �

2, i.e. ✏

i

⇠ N(0, �2), i = 1, 2, . . . , n, as described in [3, p. 63]. Let us
write this in the notation of equation (3.1). Fixing ⌧ and ⌧

⇤, the optimal parameter values
were found by minimising the RSS,

RSS =
⌧

⇤X

i=⌧+1

✏

2
i

=
⌧

⇤X

i=⌧+1

(y
i

� �0,⌧,⌧⇤ � �1,⌧,⌧⇤xi

� �2,⌧,⌧⇤x
2
i

)2,

@RSS

@�0,⌧,⌧⇤
=

⌧

⇤X

i=⌧+1

�2(y
i

� �0,⌧,⌧⇤ � �1,⌧,⌧⇤xi

� �1,⌧,⌧⇤x
2
i

) = 0,

@RSS

@�1,⌧,⌧⇤
=

⌧

⇤X

i=⌧+1

�2x
i

(y
i

� �0,⌧,⌧⇤ � �1,⌧,⌧⇤xi

� �2,⌧,⌧⇤x
2
i

) = 0,

@RSS

@�2,⌧,⌧⇤
=

⌧

⇤X

i=⌧+1

�2x2
i

(y
i

� �0,⌧,⌧⇤ � �1,⌧,⌧⇤xi

� �2,⌧,⌧⇤x
2
i

) = 0,

The parameter values that minimise the RSS, �̂0,⌧,⌧⇤ , �̂1,⌧,⌧⇤ and �̂2,⌧,⌧⇤ are the solutions to
the equation system

0

@
⌧

⇤ � ⌧

P
⌧

⇤

i=⌧+1 xi

P
⌧

⇤

i=⌧+1 kx
2
iP

⌧

⇤

i=⌧+1 xi

P
⌧

⇤

i=⌧+1 x
2
i

P
⌧

⇤

i=⌧+1 x
3
iP

⌧

⇤

i=⌧+1 x
2
i

P
⌧

⇤

i=⌧+1 x
3
i

P
⌧

⇤

i=⌧+1 x
4
i

1

A

0

@
�̂0,⌧,⌧⇤

�̂1,⌧,⌧⇤

�̂2,⌧,⌧⇤

1

A =

0

@

P
⌧

⇤

i=⌧+1 yiP
⌧

⇤

i=⌧+1 yixiP
⌧

⇤

i=⌧+1 yix
2
i

1

A
.

The system of equations was solved for those ⌧ , ⌧ ⇤ for which ⌧ + 1 < ⌧

⇤ � 1, i.e. so that
there are at least three points to fit a linear function to. For less than three points, the
cost function will equal zero. The fitted values ŷ

i

were calculated as

ŷ

i

= �̂0,⌧,⌧⇤ + �̂1,⌧,⌧⇤xi

+ �̂2,⌧,⌧⇤x
2
i

, 8 ⌧ < i  ⌧

⇤
. (3.2)
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The cost function becomes

C(x
⌧+1:⌧⇤ , y⌧+1:⌧⇤) =

(P
⌧

⇤

i=⌧+1(yi � ŷ

i

)2, ⌧ + 1 < ⌧

⇤ � 1,

0, otherwise.

We call this cost function the Quadratic RSS cost function.

We will also model the data with a first order polynomial on each interval, assuming
�̄2 = 0. Thus, for all ⌧ ⇤ = 1, 2, . . . , n and for all 0  ⌧ < ⌧

⇤ the RSS is minimised and the
parameters �̂0,⌧,⌧⇤ and �̂1,⌧,⌧⇤ are calculated. Fixing ⌧ and ⌧

⇤, the parameter values were
found by minimising the RSS as described above. The parameters minimising the RSS,
�̂0,⌧,⌧⇤ and �̂1,⌧,⌧⇤ , are the solutions to the equation system

(⌧ ⇤ � ⌧) · �̂0,⌧,⌧⇤ + �̂1,⌧,⌧⇤

⌧

⇤X

i=⌧+1

x

i

=
⌧

⇤X

i=⌧+1

y

i

,

�̂0,⌧,⌧⇤

⌧

⇤X

i=⌧+1

x

i

+ �̂1,⌧,⌧⇤

⌧

⇤X

i=⌧+1

x

2
i

=
⌧

⇤X

i=⌧+1

y

i

x

i

,

which is written on matrix form as
✓

⌧

⇤ � ⌧

P
⌧

⇤

i=⌧+1 xiP
⌧

⇤

i=⌧+1 xi

P
⌧

⇤

i=⌧+1 x
2
i

◆✓
�̂0

�̂1

◆
=

✓ P
⌧

⇤

i=⌧+1 yiP
⌧

⇤

i=⌧+1 yixi

◆
.

The fitted values ŷ
i

are calculated as

ŷ

i

= �̂0,⌧,⌧⇤ + �̂1,⌧,⌧⇤xi

, 8 ⌧ < i  ⌧

⇤
, (3.3)

and the cost function becomes

C(x
⌧+1:⌧⇤ , y⌧+1:⌧⇤) =

(P
⌧

⇤

i=⌧+1(yi � ŷ

i

)2, ⌧ + 1 < ⌧

⇤ � 1,

0, otherwise,

We call this cost function the linear RSS cost function.

3.1.2 The likelihood cost functions

Also, the likelihood function can be used as cost function in the dynamical programming
algorithm, see [16]. As in Section 3.1.1, we call the segments 

j

= {⌧
j�1, ⌧j�1 + 1, . . . , ⌧

j

},
for j = 1, 2, . . . , k + 1. We assume that the data in each segment can be modelled by

y

i

= �0,j + �1,jxi

+ ✏

i

,

for all x
i

such that i 2 

j

, where ✏
i

is the error term, i.e. the deviance from the data point
and the modelled regression line described by �0,j and �1,j. We assume further that the

9



✏

i

’s are uncorrelated and identically distributed as N(0, �2
j

) for i 2 

j

, with support from
the Central Limit Theorem [4, section 4.2]. Thus, y

i

is assumed to be the outcome of a
stochastic variable Y

i

, with

Y

i

⇠ N(�0,j + �1,jxi

, �

2
j

),

for all x
i

such that i 2 

j

. The probability density function of Y
i

is

f

Y

i

(y
i

|x
i

, �0,j, �1,j, �
2
j

) =
1q
2⇡�2

j

e

�
(y

i

��0,j��1,jxi)
2

2�2
j

,

for all i 2 

j

. Assuming that the Y
i

’s are independent, the likelihood function on the data
set (x1, y1), (x2, y2), . . . , (xn

, y

n

), is the product of the probability density functions f
Y

i

,

L(�̄0, �̄1, �̄
2) = f

Y1,Y2,...,Yn

(y1, y2, . . . , yn|x1, x2, . . . , xn

, �̄0, �̄1, �̄
2),

=
k+1Y

j=1

Y

i2
j

1q
2⇡�2

j

e

�
(y

i

��0,j��1,jxi)
2

2�2
j

,

also described in [1], where

�̄0 = (�0,1, �0,2, . . . , �0,k+1),

�̄1 = (�1,1, �1,2, . . . , �1,k+1),

�̄ = (�1, �2, . . . , �k+1).

Assuming that the number of observations in segment 

j

is m, the unbiased maximum
likelihood (ML) estimates of the parameters are,

�̂0,j = ȳ

i

� �̂1,jx̄i

,

�̂1,j =

P
i2

j

(x
i

� x̄

i

)(y
i

� ȳ

i

)
P

i2
j

(x
i

� x̄

i

)2
,

�̂

2
j

=
1

m� 2

X

i2
j

(y
i

� �̂0,j � �̂1,jxi

)2,

where

x̄

i

=
1

m

X

i2
j

x

i

,

ȳ

i

=
1

m

X

i2
j

y

i

,

as described in [1]. Let us again translate this into the notation of equation (3.1). We
fix ⌧ and ⌧

⇤ and let m = ⌧

⇤ � ⌧ . We use twice the negative likelihood function as cost
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function, so that the costs for the di↵erent segments can be added to give the total cost
for the model including the change points. Further, we have made the assumption that
there must be at least five data points in each segment. Thus, if ⌧ + 1 < ⌧

⇤ � 3 the cost
function for a specific segment starting on index ⌧ + 1 will be

�2ln[L(�̂0,⌧,⌧⇤ , �̂1,⌧,⌧⇤ , �̂
2
⌧,⌧

⇤)] =� 2ln

"
1

(2⇡�̂2
⌧,⌧

⇤)(⌧⇤�⌧)/2
e

�
P

⌧

⇤
i=⌧+1

(y
i

��̂0,⌧,⌧⇤��̂1,⌧,⌧⇤x

i

)2

2�̂2
⌧,⌧

⇤

#
,

=(⌧ ⇤ � ⌧)ln[2⇡�̂2
⌧,⌧

⇤ ] + 2
⌧

⇤X

i=⌧+1

(y
i

� �̂0,⌧,⌧⇤ � �̂1,⌧,⌧⇤xi

)2

2�̂2
⌧,⌧

⇤
.

If ⌧ + 1 � ⌧

⇤ � 3 however, the cost function was set to infinity, which makes it impossible
to have a segment with only two points. The cost function is thus

C(x
⌧+1:⌧⇤ , y⌧+1:⌧⇤) =

8
<

:
(⌧ ⇤ � ⌧)ln[2⇡�̂2

⌧,⌧

⇤ ] + 2
P

⌧

⇤

i=⌧+1
(y

i

��̂0,⌧,⌧⇤��̂1,⌧,⌧⇤xi

)2

2�̂2
⌧,⌧

⇤
, ⌧ + 1 < ⌧

⇤ � 3,

infinity, otherwise,

and we call it the likelihood regression cost function.

We also investigate the likelihood function setting �̄1 = 0. The likelihood function for
the data set (x1, y1), (x2, y2), . . . (xn

, y

n

), is in that case,

L(�̄0, �̄
2) = f

Y1,Y2,...,Yn

(y1, y2, . . . , yn|x1, x2, . . . xn

, �̄0, �̄
2),

=
k+1Y

j=1

Y

i2
j

1q
2⇡�2

j

e

�
(y

i

��0,j)
2

2�2
j

.

The unbiased maximum likelihood estimates of the parameters, as described in [1], are

�̂0,j = ȳ

j

=
1

m

X

i2
j

y

i

,

�̂

2
j

=
1

m� 1

X

i2
j

(y
i

� ȳ)2.

We fix ⌧

⇤ and ⌧ and let m = ⌧

⇤ � ⌧ . As previously, we use twice the negative likelihood
function as cost function, with the assumption that there must be at least five data points
in each segment. Thus, the cost function for a specific segment starting on index ⌧ + 1 is

C(x
⌧+1:⌧⇤ , y⌧+1:⌧⇤) =

8
<

:
(⌧ ⇤ � ⌧)ln[2⇡�̂2

⌧,⌧

⇤ ] + 2
P

⌧

⇤

i=⌧+1
(y

i

��̂0,⌧,⌧⇤ )
2

2�̂2
⌧,⌧

⇤
, ⌧ + 1 < ⌧

⇤ � 3,

infinity, otherwise.

We call this cost function the likelihood mean cost function.
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3.2 MATLAB function findchangepts()

The MATLAB function findchangepts(), is based on the dynamical programming algorithm
described in Section 3.1 and in [16, 17]. The function finds abrupt changes in time series,
based on a statistics specified by the user. The statistics can either be mean, detecting
changes in mean, rms, detecting changes in root-mean-square level, std, detecting changes
in standard deviation or linear, detecting changes in linear trend. The user can further
specify the maximum number of changes to be searched for or the minimum improvement
of the residual that adding a change point results in. The user can also specify a minimum
distance between the change points. The function is further described in the MATLAB
documentation [18]. We have investigated the performance of the method keeping the
linear trend constant in each segment. The function findchangepts() assumes equidistant
time span between the observations and therefore cannot take information about missing
data points into account.

3.3 DBEST

The DBEST algorithm (Detecting Breakpoints and Estimating Segments in Trend), is
described in [10]. It is a segmentation method, which segments time series based on an
iterative change point detection algorithm. Assume that we have n data points. First, so
called level shift points are detected in the following way. The di↵erence

d

i

= y

i+1 � y

i

, i = 1, 2, . . . , n� 1,

is computed and compared to a user-specified value ✓1, called first level-shift-threshold.
For points y

i

for which d

i

> ✓1, it is investigated whether the di↵erence has resulted in a
significant change in mean. The mean over a time period of length �, called the duration-

threshold, before the point y

i

is compared to the mean over a time period of length �

after the point y
i

. If the di↵erence in mean before and after y
i

exceeds a value ✓2, called
the second level-shift-threshold, the point y

i

is regarded as a candidate level shift point.
The candidate level shift points are sorted in descending order of absolute value of mean
di↵erence. If the time distance between the candidate level shift point y

i

and the previous
candidate level shift point is at least �, y

i

is called a level shift point. The data set is
separated at the level shift points and divided into segments. If there are any seasonal
components, the di↵erent segments are deseasonalised separately, using STL decomposi-
tion [10].

Secondly, the peak/valley function, f , is defined as,

f

i

=
|sign(y

i+1 � y

i

)� sign(y
i

� y

i�1)|
2

i = 2, 3, . . . , n� 1,

f0 = 1,

f

n

= 0.
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The points for which the peak/value function equals one are called peak and valley points
depending on whether sign(y

i+1�y

i

)�sign(y
i

�y

i�1) equals -2 or 0. Between all successive
pairs of peak and valley points, let us call them p

j

and p

j�1, a straight line is fitted. The
distance between the line and each data point that lie between p

j

and p

j�1 is computed.
This is done for all points in the time series and for each pair of peak/ valley points, the
intermediate point with the greatest distance to the line is compared to a user defined
value ✏. DBEST can also calculate a default value on ✏ as,

✏ = 3 ·R⇤
,

where ”R⇤ is the root mean square error for the fit obtained using the peak and valley
points plus the time series’ start point and the level-shift points” [10, p. 186].

A second function called the turning point function, g, is introduced with g

i

equal to
one for the points for which the distance is greater than ✏ or if f

i

equals one. Also, g
i

equals one for the level shift points. Otherwise g

i

equals zero. DBEST calculates g

i

for
i = 1, 2, . . . , n. The points for which g

i

= 1 are called turning points, and we denote them
as t

j

. Hence, assuming that we have m turning points, g
t

j

= 1 for t1, t2, . . . , tm and g

i

= 0
if i is not equal to t

j

for any j. The same procedure is done with the turning points, i.e.
a straight line is fitted to each pair of turning points and the distances from the interme-
diate data points to the line are calculated and compared to ✏. When g does not change
anymore, all turning points t

j

are found and the iteration is finished [10].

Lastly, the trend local change function, h, is calculated and h

i

equals zero if g
i

equals
zero and t

j+1 � t

j

otherwise. We assume that we have m turning points with 1 < t1 <

. . . < t

m

< t

m+1 = n [10]. Then,

h

i

=

(
t

j+1 � t

j

, if i = t

j

, for some j,

0, otherwise.

The turning points are sorted in descending order of h. Least-squares fits are calculated,
first for the entire time series without change points, secondly adding to the model the first
turning point, i.e. the turning point for which h has its maximum value. Third, the second
turning point is added to the model, etc. The BIC (Bayesian Information Criterion) is
calculated for each fit. The user specifies ✓1, ✓2 and � and ✏ can either be specified by
the user or computed by DBEST. The user also gives information on whether the data is
cyclical or non-cyclical, i.e. if the data has a seasonal component and specify in what way
the change points are chosen. Either, the number of change points (here called turning
points), the so called generalisation threshold value or the so called change magnitude
threshold value must be specified. The user can also specify the significance level ↵ of the
found change points.
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3.4 TIMESAT

TIMESAT is a computer program for analysing time series of satellite data, described in [5,
13, 14]. TIMESAT primarily investigates seasonal components, such as start, end, duration
and amplitude of seasons [14], using three di↵erent least-squares methods. Savitzky-Golay
filter use ”local polynomial functions” [14, p. 834] to approximate the time series. The
second least-squares method used in TIMESAT, fits the data to a sum of polynomial and
harmonic functions. The third method, is to approximate the time series with Gaussian
functions [14]. Analysing sequential data, i.e. time series, with TIMESAT requires equally
spaced data, i.e. the same time interval between each pair of successive points. Also it
requires several data values per year.

14



Part I

Selection of relevant methods
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In this part, we evaluate the di↵erent methods presented on eight di↵erent time series.
The methods that are investigated are the optimal partitioning algorithm with four di↵erent
cost functions, the MATLAB function findchangepts(), DBEST and TIMESAT. We discuss
the result and select some of the methods for further analysis. First, we evaluate the
methods on a typical data set describing a lake drainage event in the Arctic hemisphere.
The data set contains six di↵erent time series, one for each index discussed in Chapter 2.
In this chapter we will also further go through how the methods are implemented. The
implementation of the methods holds throughout the study. Secondly, we evaluate the
methods on two simulated data sets. The data sets are simulated to capture some of the
typical problems in analysis of remote sensing time series, such as missing data points.
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Chapter 4

Example lake drainage data

In this chapter, the seven methods presented are evaluated on the data in Figure 4.1. We
present figures with the change points that have been found for each method. We show one
change point for the indices TCG, NDMI, NDVI and NDWI and two change points for the
indices TCW and TCB. The number of change points for the di↵erent indices have been
chosen by looking at the data in Figure 4.1, since we do not have any reference change
points to compare with. We find two obvious change points for TCW and TCB and one
obvious change point for the other indices. The MATLAB function findchangepts(), as
well as DBEST and TIMESAT take equally spaced data as input, i.e. data for which the
time span between each pair of successive data points is equal throughout the time series.
Therefore, an equally spaced data set was created, taking one value each year from each
time series in Figure 4.1. The reduced data set is shown in Figure 4.2. The original data set
in Figure 4.1, contained gap years in the beginning of the measurement period, i.e. years
where no observations were made. These years were removed when creating the reduced
data set.

We discuss how well the methods generally seem to apply to satellite-based remote
sensing time series of lake drainage data that are mentioned in Chapter 2, finding that
TIMESAT, DBEST and the MATLAB function findchangepts() are not well suited for our
purposes of finding change points in satellite-based remote sensing lake drainage data.

4.1 Data

The example data set is shown below.
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Figure 4.1: Time series from the Landsat archive describing the event of lake drainage.

Figure 4.2: Equally spaced lake drainage data. One observation per year taken from the
time series in Figure 4.1.
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4.2 Results

4.2.1 Optimal partitioning

Change points were searched for, using the optimal partitioning algorithm described in
equation (3.1). We used the four cost functions presented in Chapter 3.1; the linear RSS
cost function, the quadratic RSS cost function, the likelihood regression cost function and
the likelihood mean cost function. The optimal partitioning algorithm takes a value of the
penalty constant � as input and the output is the positions of the change points that have
been found. The penalty constant � was manually varied to find two change points each
for the indices TCW and TCB and one change point for the indices TCG, NDMI, NDVI
and NDWI.

The algorithm can take into account both the time and the value, i.e. the two dimen-
sional vector (x

i

, y

i

) from the data set (x1, y1), (x2, y2), . . . , (xn

, y

n

). Therefore, the method
accurately handles unequally spaced data, or time series with missing observations.

The linear RSS

First, change points were searched for using the linear RSS cost function and the result is
presented in the figures below.

Figure 4.3: Data of TCW segmented with
linear RSS.

Figure 4.4: Data of TCG segmented with
linear RSS.
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Figure 4.5: Data of NDMI segmented with
linear RSS.

Figure 4.6: Data of NDVI segmented with
linear RSS.

Figure 4.7: Data of NDWI segmented with
linear RSS.

Figure 4.8: Data of TCB segmented with
linear RSS.

The quadratic RSS

Secondly, the quadratic RSS cost function was used and the results are shown below.
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Figure 4.9: Data of TCW segmented with
quadratic RSS.

Figure 4.10: Data of TCG segmented with
quadratic RSS.

Figure 4.11: Data of NDMI segmented with
quadratic RSS.

Figure 4.12: Data of NDVI segmented with
quadratic RSS.
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Figure 4.13: Data of NDWI segmented with
quadratic RSS.

Figure 4.14: Data of TCB segmented
quadratic RSS.

The likelihood regression function

Now, the likelihood regression cost function was used in the dynamic programming algo-
rithm. The result of assuming normally distributed data and changing variance is shown
in the figures below.

Figure 4.15: Data of TCW segmented with
the likelihood regression function.

Figure 4.16: Data of TCG segmented with
the likelihood regression function.
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Figure 4.17: Data of NDMI segmented with
the likelihood regression function.

Figure 4.18: Data of NDVI segmented with
the likelihood regression function.

Figure 4.19: Data of NDWI segmented with
the likelihood regression function.

Figure 4.20: Data of TCB segmented with
the likelihood regression function.

The likelihood mean function

Last, the likelihood mean function was used as cost function, see the result in the figures
below.
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Figure 4.21: Data of TCW segmented with
the log likelihood mean function.

Figure 4.22: Data of TCG segmented with
the likelihood mean function.

Figure 4.23: Data of NDMI segmented with
the likelihood mean function.

Figure 4.24: Data of NDVI segmented with
the likelihood mean function.
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Figure 4.25: Data of NDWI segmented with
the likelihood mean function.

Figure 4.26: Data of TCB segmented with
the likelihood mean function.

4.2.2 MATLAB function findchangepts()

We specified a maximum number of change points to be searched for with findchangepts().
This was two for TCW and TCB and one for the other indices. The result is shown in the
figures below.

Figure 4.27: Data of TCW segmented with
findchangepts().

Figure 4.28: Data of TCG segmented with
findchangepts().
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Figure 4.29: Data of NDMI segmented with
findchangepts().

Figure 4.30: Data of NDVI segmented with
findchangepts().

Figure 4.31: Data of NDWI segmented with
findchangepts().

Figure 4.32: Data of TCB segmented with
findchangepts().

4.2.3 DBEST

DBEST, developed and described in [10], detects the start point and the end point of a
change, and we have chosen only to plot one of the points that have been found for each
change. Where the duration time was one point, for example if the start of the change was
point 30 and the end of the change was point 31, we plotted the second of the two points.
All changes had a duration time of one point, except for the change in NDWI and one of
the changes in TCB, for which the duration was two points. For these changes we plotted
the middle point. For all six indices, DBEST was run with ✓1 = 0.1, ✓2 = 0.2, � = 20 and
default value on ✏, recall Section 3.3. We also included two figures showing the output of
DBEST for the original TCB data and the evenly spaced TCB data, Figures 4.40 and 4.39
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respectively. These figures show the data points, plotted with straight lines in between.
Also, the magnitude of the trend local change function, h, is shown in the histograms.

DBEST seems to be able to handle some missing data points but not too many. We
tried using DBEST on the unevenly spaced data showing TCB (see Figure 4.1), adding
NaN to the time series where there were missing data points, but the program returned
an error message. No change points could be found.

Figure 4.33: Data of TCW segmented with
DBEST.

Figure 4.34: Data of TCG segmented with
DBEST.

Figure 4.35: Data of NDMI segmented with
DBEST.

Figure 4.36: Data of NDVI segmented with
DBEST.
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Figure 4.37: Data of NDWI segmented with
DBEST.

Figure 4.38: Data of TCB segmented with
DBEST.

Figure 4.39: Data of equally spaced TCB,
analysed with DBEST.

Figure 4.40: Data of unequally spaced TCB,
analysed with DBEST

4.2.4 TIMESAT

TIMESAT was first run with the original data set in Figure 4.1 as input. However, the
program returned an error message. There were too many data points missing. TIMESAT
can deal with a few missing data points but in principle requires equally spaced data [5].
Analysing time series, TIMESAT also requires the user to specify the time interval in years
during which the data has been gathered, as well as the number of data points each year,
as described in [5, p. 10]. TIMESAT was therefore instead evaluated on the equally spaced
data shown in Figure 4.2. However, TIMESAT could not handle the information that
our data sometimes included only one data point each year. Therefore, we had to modify
the information given to the program. We erroneously told the program that the data
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set spanned over two years and that we had eight data points each year. TIMESAT was
evaluated on the equally spaced TCB data shown in Figure 4.2. Three di↵erent models
were fitted to the data. The results are shown in the figure below.

Figure 4.41: Data of equally spaced TCB analysed with TIMESAT and smoothed with a
Savitsky-Golay filter, gaussian functions and logistic regression respectively. Start and end
of potential seasons are shown.

4.3 Discussion

We do not have any reference change points to compare the results with. However the
time series for NDMI, NDVI, and NDWI have at least one apparent change point, TCW
and TCB has at least two, as discussed earlier. For TCG it is a little harder to distin-
guish any change point, although we can see that we first have a descending trend and later
an increasing trend. We evaluate the methods based on the change points found by the eye.

Both TIMESAT and DBEST have trouble analysing unequally spaced data. The pri-
mary aim of TIMESAT is to analyse seasonal patterns and not structural changes. Al-
though the data that we are working with might have seasonal components, as described
in [20], TIMESAT is not suitable for our purposes. We are asked to specify the number of
observations each year and the data sets that we are looking at in this study both contain
gap years and generally not the same amount of observations each year. We had to modify
the information about our data to make it possible to analyse with TIMESAT. DBEST
on the other hand, can handle information about a few missing observations but not the
total amount of missing observations in the data shown in Figure 4.1. We analysed the
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time series in Figure 4.1 with DBEST, assuming equidistant time step between the data
points. For the indices NDMI and NDVI, DBEST seems to find the accurate change points.
The time series of NDWI has quite fluctuating/ noisy data approximately until year 2002.
This seems to a↵ect DBEST, which has found one of the points where the data is most
fluctuating. Searching for two change points in the TCW time series, we notice that the
first point seems accurate while the second change point does not. It is di�cult to draw
any conclusions with the TCG time series since it is very fluctuating. For the TCB time
series, the two change points seem to have been found very close to each other. One of
the change points seems accurate but DBEST misses to detect a second change that, from
observing Figure 4.1, should be between year 2006 and 2011. Looking at the output of
DBEST, Figures 4.39 and 4.40, we see that the trend local change function, h, has its max-
imum values at the found change points and the value h

i

for point y
i

seems to be highly
dependent on the points y

i�1 and y

i+1, compare to the theory describing DBEST in Section
3.3. The conclusion is that DBEST seem to be very sensitive to fluctuations and noisy data.

Table 4.1 shows the change points found with each method. The MATLAB function
findchangepts() with statistic specified as linear, and the optimal partitioning algorithm
with the di↵erent cost functions find similar changes. However it is interesting to note that
in the time series of NDMI, NDVI and NDWI, the likelihood cost functions find point 23,
whereas the RSS cost functions as well as findchangepts() find point 20. The main di↵erence
between the likelihood cost functions, the RSS cost functions and the MATLAB function
findchangepts() lie in the time series of TCG, where only linear RSS and findchangepts()

find the same point.

Method TCW TCG NDMI NDVI NDWI TCB

Linear
20, 47 46 20 20 20 20, 47

RSS
Quadratic

19, 47 36 20 20 20 18, 47
RSS

Likelihood
20, 47 23 23 23 23 19, 47

regression
Likelihood

20, 61 61 23 23 23 23, 51
mean

MATLAB function
23, 47 46 20 20 20 20, 47

findchangepts()

DBEST 22, 61 36 23 20 7 21, 22

Table 4.1: Change points found with di↵erent methods in the data shown in Figure 4.1.

The conclusion from the first evaluation of the methods is that TIMESAT is not suitable
for our purposes and is thus left out from further evaluation. Moreover, DBEST seems to
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be a↵ected by noisy data and/ or outliers and will be further evaluated together with the
other methods, on two simulated data sets.
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Chapter 5

First constructed data set

We do an evaluation of the remaining methods on a simulated data set. The methods
are the optimal partitioning algorithm with cost functions linear RSS, quadratic RSS, the
likelihood regression function and the likelihood mean function, the MATLAB function
findchangepts and DBEST. The aim is to create a very simple data set, with an obvious
change point, and investigate whether the methods find the accurate point. The idea was
to create two di↵erent data sets with the same mean, the first of which with no slope but
a relatively high variance and the second of which having a very small variance but an
apparent slope. For the optimal partitioning algorithm, � was chosen to find one change
point and DBEST and findchangepts() were also told to find one change point.

5.1 Simulated data

The constructed data consists of 93 points with x1 = 1, x2 = 2, . . . , x93 = 93. The first
60 points, y1, y2, . . . , y60, were produced by randomising 60 data points from a N(0, 0.15)
distribution. After that, a series with 33 data points was created,

y

i

= �0.2 + 0.0125(x
i

� 61) + z

i

,

for i = 61, 62, . . . , 93, where z
i

were randomised from N(0, 0.001). Thus, the first 60 points
as well as the last 33 points, come from a normal distribution with mean zero, although
the variances di↵er.
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Figure 5.1: Constructed data generated from N(0, 0.15) and y = �0.2+0.0125(x�61)+z.

5.2 Results

DBEST was run with ✓1 = 0.1, ✓2 = 0.2, � = 10, default value on ✏ and confidence level
↵ = 5%. The result was the same for other values of �, for example 24 and 33. DBEST
found point 33 to be the start of the change and point 36 to be the end of the change.
Point 33 is shown in Figure 5.7. The dynamical programming algorithm was run with
penalty constants � to find one change point. The penalty constants are presented with
each figure respectively. The MATLAB function findchangepts() was also told to find one
change point. The optimal partitioning algorithm with the likelihood mean function as
cost function found point 83. The other cost functions as well as the MATLAB function
findchangepts() found point 61.
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Figure 5.2: Optimal partitioning with cost
function linear RSS used on the data in Fig-
ure 5.1 and �=0.2.

Figure 5.3: Optimal partitioning with cost
function quadratic RSS used on the data in
Figure 5.1 and �=0.2.

Figure 5.4: Optimal partitioning with the
likelihood regression cost function used on
the data in Figure 5.1 and � = 40.

Figure 5.5: Optimal partitioning with the
likelihood mean cost function used on the
data in Figure 5.1 and � = 10.
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Figure 5.6: The MATLAB function find-

changepts() used on the data in Figure 5.1.
Figure 5.7: DBEST used on the data in Fig-
ure 5.1.

5.3 Discussion

The optimal partitioning algorithm found the correct change point for the cost functions
linear RSS, quadratic RSS and the likelihood regression function. On the other hand, the
algorithm did not find the correct change point for the likelihood mean function. DBEST
has also not found the correct change point. As mentioned before, the MATLAB function
findchangepts() is based on the same dynamical programming approach as described in
Section 3.1. Since the simulated data (Figure 5.1) has equidistant time step between each
point, it is reasonable that the result is similar to the optimal partitioning algorithm with
cost function linear RSS and the likelihood regression function. Further, let us discuss
why DBEST did not find the true change point. When finding the peak/valley points p

i

and the turning points t

i

, the method only takes into account preceding and succeeding
values, which might make it possible for outliers or fluctuations to have great influence
on the result. The reason why the correct change point was not found in this example,
is that the jump from the preceding point to the correct change point is not big enough
to be detected as a peak/valley point or a turning point, at least not with the parameter
values that we specified. Furthermore, the mean of the first 60 points is approximately the
same as the mean of the last 33 points, making it di�cult to spot the point as a level shift

point. Recall, in Chapter 4, we have also concluded that fluctuations for which the trend

local change function is relatively great, can be regarded as change points. This is what
has happened in this evaluation, see Figure 5.8. Hence, we conclude that DBEST is not
suited for our purposes.
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Figure 5.8: Output from DBEST when fitted to
the simulated data in Figure 5.1.
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Chapter 6

Second constructed data set

We simulated another data set in order to compare how DBEST, the MATLAB function
findchangepts() and the optimal partitioning algorithm with the di↵erent cost functions
perform. The idea was to create a data set with apparent missing values and investigate
how well the methods handle it. As shown in Figure 6.1, the first 51 points, up to x51 = 80,
have an apparent linear pattern with 29 points missing. The last 40 points have a linear
pattern with no slope. The obvious change point is point 52. All methods were set to find
one change point.

6.1 Simulated data

First, we created a data set x̄ with

x

i

=

(
i i = 1, 2, . . . , 30,

i+ 29 i = 31, 32, . . . , 91.

Now, 51 data points z1, z2, . . . , z51, were randomised from Z1 ⇠ N(0, 1.5). The first 51
points in the data set were then calculated as

y

i

= �30 + x

i

+ z

i

,

for i = 1, 2, . . . , 51. We call this data set ȳ1. Secondly, 40 data points, z52, z53, . . . , z91 were
randomised from Z2 ⇠ N(0, 1.5) and the 40 last data points were calculated as

y

i

= 50 + z

i

,

for i = 52, 53, . . . , 91, where 50 would be the last value in the series ȳ1, provided that the
variance was zero. Both data set ȳ1 and ȳ2 have variance 1.5.
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Figure 6.1: The simulated data set described above.

6.2 Results

All methods were run to find one change point. DBEST was run with ✓1 = 0.1, ✓2 = 0.2,
� = 24, default value on ✏ and confidence level ↵ = 5%.

Figure 6.2: Optimal partitioning with linear
RSS as cost function and � = 40, used on
the data in Figure 6.1.

Figure 6.3: Optimal partitioning with the
quadratic RSS as cost function and � = 40,
used on the data in Figure 6.1.
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Figure 6.4: Optimal partitioning with
the likelihood regression cost function and
�=100, used on the data in Figure 6.1.

Figure 6.5: Optimal partitioning with the
likelihood mean cost function and � = 100,
used on the data in Figure 6.1.

Figure 6.6: The MATLAB function find-

changepts() used on the data in Figure 6.1.
Figure 6.7: DBEST used on the data in Fig-
ure 6.1.

6.3 Discussion

The optimal partitioning algorithm with linear RSS or the likelihood regression function as
cost function found point 51 as change point whereas the likelihood mean function found
point 46 and the quadratic RSS function found point 52. However, the MATLAB function
findchangepts() erroneously found point 31 and DBEST found point 30 as the start of
the change and point 33 as the end of the change. Point 30 is shown in Figure 6.7. The
linear and the quadratic RSS, the likelihood regression function and the likelihood mean
function were all very close to finding the correct change point, whereas DBEST and the
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MATLAB function findchangepts() were not. This example shows that the two methods
that do not take the time into account have trouble handling missing data points. If the
time is not taken into account, there will be an obvious jump in the data at point 31. What
is interesting to note is that the likelihood mean function, although not taking time into
account, is able to approximately find the correct change point. The reason is that the
likelihood mean cost function only searches for di↵erences in mean and not in regression
parameters. The model thus contains fewer parameters and is simpler than a linear model.
The simpler the model, the fewer complex patterns can be detected and the jump at point
31 will not be detected.

We discuss why DBEST did not find the correct change point a bit more thorough.
Since there is a big jump at point 30, this point will probably be detected as a level shift

point and since the data is relatively smooth and there are no other jumps, the magni-
tude of the trend local change function, h will be large at the jump, whereas at the actual
change point (point 52), there is no jump and no peak, see Figure 6.8. Taking the re-
sults from the two simulated data sets (Figure 5.1 and Figure 6.1) into account, as well
as the performance on the example data in Chapter 4, we conclude that DBEST is not
suited for our purposes and therefore we leave it out from further analysis. Moreover,
the MATLAB function findchangepts(), will be left out, since it did not perform well on
the simulated data set in Figure 6.1, even though it performed well on the data in Figure
5.1 and on the example data in Chapter 4. The reason is that since we know that the
lake drainage data that we want to analyse can contain big gaps with missing data points,
we regard it as important for the models to be able to take missing data points into account.

Lastly, we decide to leave out the quadratic RSS from further evaluation, even though
it has performed well so far. The reason is that it has not performed notably better than
the linear RSS cost function. Due to the bias-variance trade o↵ described in Section 3.1,
we prefer simpler models with fewer parameters, provided that the bias is the same, i.e.
that the deviation from the model and the observed data is the same for the models.
The quadratic model has more parameters than the linear model and is therefore not to
prefer. Modelling the data with the likelihood mean function also leads to fewer parameters
compared to the likelihood regression function. Therefore, even though the likelihood mean
function did not perform well on the simulated data in Figure 5.1, we keep it for further
evaluation.
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Figure 6.8: Output from DBEST when fitted to
the simulated data in Figure 6.1.
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Part II

Deeper study of selected methods
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In Part I, we have come to the conclusion to leave out DBEST, TIMESAT, the MAT-
LAB function findchangepts() and the optimal partitioning algorithm with the quadratic
RSS cost function from further analysis. In Chapter 7, we evaluate the linear RSS, the
likelihood regression function, the likelihood mean function and a modification of the linear
RSS, that we call the absolute value cost function. We will evaluate the four methods on
several lake drainage data sets and compare the results to reference change points. See Sec-
tion 3.1.1 for description and implementation of the linear RSS cost function and Section
3.1.2 for description of the likelihood functions and lastly Section 7.1 for implementation
of the absolute value cost function. In Chapter 8, the problem with outliers and noisy
data is discussed and we filter the lake drainage data with a median filter and evaluate the
four methods on the filtered data. The found change points are also compared to the ref-
erence change points. Moreover, in Chapter 9, we show examples of found change points
and regression lines that have been fitted to the data. We evaluate the methods on 46
lake drainage data sets, mainly observed between 1985 and 2015. Each data set contains
observations for the six di↵erent multi-spectral indices TCW, TCG, NDMI, NDVI, NDWI
and TCB. For each each index, there are around 50-150 data points.
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Chapter 7

Evaluation on original lake drainage
data

In this chapter we evaluate the optimal partitioning algorithm wit four cost functions on
46 optical remote sensing lake drainage data sets. Each data set represents one set of ob-
servations during a specific time. At every observation, six di↵erent parameters, or indices
(TCW, TCG, NDMI, NDVI, NDWI and TCB), were measured. Therefore, each data set
consist of six time series, (see Figure 4.1 for an example). First, we search for one change
point for each index in the 46 lake drainage data sets. The goal is to use these data sets
to evaluate how well the four methods find change points. For each method, we count the
number of data sets for which the change points di↵er from the reference change points
with at most 3 years and for at least 4 of the six indices.

We also present the deviation from the found change points to reference change points.
The reference change points have been manually detected by looking at the data sets.
This has been done by Ingmar Nitze. Only one change point has been registered for each
data set and the change point has been assumed to be the same for all indices in a data
set. Since there are assumptions behind the detection of the optically measured reference
change points, these might not be correct.

Last, we investigate how well the cost functions find two change points. The dynami-
cal programming algorithm was run for di↵erent penalty constants �, to find the desired
amount of change points. We also comment on whether to search for one, two or additional
change points.

7.1 Methods

We evaluate the linear RSS cost function, see Section 3.1.1, the likelihood regression cost
function, Section 3.1.2, the likelihood mean cost function, Section 3.1.2 and the absolute
value cost function. The absolute value cost function is created to decrease the influence
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of noise and outliers, by modifying the linear RSS cost function. We fix ⌧ and ⌧

⇤, as
in Section 3.1.1. The regression parameters �̂0,⌧,⌧⇤ and �̂1,⌧,⌧⇤ are calculated identically
as in Section 3.1.1 minimising the RSS. Also, the estimated values ŷ

i

for i = 1, 2, . . . , n
are calculated as in Section 3.1.1. The di↵erence lies in the cost function and not in the
estimated parameters. With

ŷ

i

= �̂0,⌧,⌧⇤ + �̂1,⌧,⌧⇤xi

, 8 ⌧ < i  ⌧

⇤
,

and for fixed ⌧ and ⌧

⇤, the model calculates the function,

⌧

⇤X

i=⌧+1

|y
i

� ŷ

i

|,

as proposed in [12]. The cost function is thus

C(x
⌧+1:⌧⇤ , y⌧+1:⌧⇤) =

(P
⌧

⇤

i=⌧+1 |yi � ŷ

i

|, ⌧ + 1 < ⌧

⇤ � 1,

0, otherwise,
(7.1)

and we call it the absolute value cost function. This method is consequently based on the
same assumption and parameter estimations as the linear RSS although the absolute value
cost function corresponds to minimising the L1 norm while the linear RSS cost function
corresponds to minimising the L2 norm. Using the absolute value cost function, points far
away from the estimated line do not have as great influence on the total cost as using the
linear RSS cost function.

7.2 Choice of number of change points

We are interested in deciding whether a specific model should contain zero, one, two, three
or even more change points. Therefore, we need to find a method for choosing the number
of change points in a model. We investigate how to use the penalty constant � for this
purpose and comment on Akaike’s Information Criterion.

Improvement of fit

We use the penalty constant in the dynamical programming algorithm (equation (3.1))
to determine the number of change points to be found. The penalty constant, �, is a
measurement of the improvement of the fit when one change point is added to the model.
The largest � that gives one change point corresponds to the improvement in the cost
function from modelling the data with one change point instead of zero. Likewise, the
largest � that gives two change points, corresponds to the improvement in the cost function
from modelling the data with two change points instead of one. It can be shown like this.
The total value of the function F (n) in the dynamical programming algorithm, equation
(3.1), is for zero change points,

F0(n) = C0,
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where C0 is the total cost of the fit, for example the RSS or twice the negative log likelihood
function and n is the number of observations in the time series. For one change point we
have,

F1(n) = C1 + �,

where C1 is the total cost using one change point. Similarly, for two change points,

F2(n) = C2 + 2�,

where C2 is the total cost using two change points. In order for the optimal partitioning
algorithm to choose one change point instead of zero we must have F1 < F0, which results
in,

C1 + � < C0,

and in order for the algorithm to find two change points we must have F2 < F1, or

C2 + 2� < C1 + �,

=) C2+� < C1,

and F2 < F0, or

C2 + 2� < C0.

We can thus use the value of the penalty constant � to decide what number of change
points to choose. However, choosing a limit of � is arbitrary and user dependent. The
reasoning is that if the improvement of the fit is very small with one additional change
point, that change point might not be valid. On the contrary, if the improvement of the
fit resulting from adding one change point is relatively large, that change point should be
valid. However, ”very small” and ”relatively large” are vague expressions. Therefore, the
user should investigate what limits that she/ he finds plausible.

A comment on Akaike’s Information Criterion

Akaike’s Information Criterion, AIC, is a well known method for determining the number
of parameters in a model. Therefore, one could imagine that AIC is a good method for
deciding the number of change points to be searched for. AIC is defined as

AIC = 2k � 2ln(L̂),

where k is the total number of estimated parameters and L̂ is the likelihood function with
the estimated parameters. The model for which AIC is minimised, should be chosen as the
valid model.
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We analysed the result of AIC for a subset of the lake drainage data sets presented
in this report. However, AIC principally chose models with as many change points as
possible, up to some large limit. This is not what we would expect if we had succeeded in
finding a su�ciently good model to describe the data. Therefore, we simulated several data
sets to investigate whether AIC was suitable for the purpose of determining the number
of change points in noisy lake drainage data. Since the lake drainage data sets contain
around 100 observations, we simulated a data set with 50 observations randomised from
Y1 ⇠ N(0, 0.5) and 50 observations randomised from Y2 ⇠ N(4, 0.5) in order to have an
obvious change point at the 51st observation. Running the dynamical programming algo-
rithm with the likelihood function as cost function, and comparing the result of AIC for 0,
1, 2, 3, etc. change points, we found that AIC still decreased with the number of change
points, until some limit, where it again increased. We would expect it to decrease from
zero to one change point and then increase from one to two change points. We also noted
that if we chose the first change points to be the 51st and randomly chose the second and
third change point etc, AIC was smallest for the model with one change point. The results
above also hold for the linear RSS model.

Secondly, we simulated another data set containing 50 observations randomly generated
from N(0, 0.0001) and 50 observations randomly generated from N(4, 0.0001), i.e. with
a significantly smaller variance than in the previous simulation. Then, the result was as
expected, i.e. the best model according to the AIC was the one with one change point.
Therefore, we conclude that the reason why we cannot use AIC for determining the accurate
number of change points is that the variances or the noise components in the lake drainage
data sets are too large. To reduce the noise, AIC prefers large models. We conclude that
we cannot use AIC to determine the number of change points in our data.

7.3 Results and discussion

One change point

The performance of the methods on the original data sets is presented in Table 7.1. Recall
that each data set consists of six time series describing the indices TCW, TCG, NDMI,
NDVI, NDWI and TCB. We compare the found change points to the reference change
points and calculate the mean deviation from the reference change points. We also calculate
the number of found change points for which the deviation to the reference change points
is 0 respectively ± 1-3 and present the number of change points that have not been found
for each method. (It is assumed that every time series has one change point). Table 7.1
suggests that the likelihood mean function is the best cost function for finding change
points in our data, followed by the absolute value cost function.
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Cost
Deviation 0 Deviation ± 1-3 Mean deviation

Entries with
function no change points

Linear RSS 38 % 31 % 2.6 10 %
Likelihood regression 39 % 29 % 2.5 5.6 %
Likelihood mean 54 % 27 % 1.2 8.3 %
Absolute value 41 % 30 % 2.3 10 %

Table 7.1: The number of observations with certain deviation from the reference change
points.

We also estimate how accurate the methods are based on that they should find approx-
imately the same change points for at least the indices TCW, NDMI, NDWI and TCB,
since there might be a delay in the indices TCG and NDVI. We count the number of data
sets for which at least four of the change points, found in one data set, di↵er by at most
3 years. The linear RSS function, fulfils these requirements for 34 % of the data sets and
the likelihood regression function fulfils the requirements for 43 % of the data sets. The
likelihood mean function and the absolute value function fulfil these requirements for 65 %
and 46 % respectively. We therefore conclude that the likelihood mean function performs
best on the original data, followed by the absolute value function, the linear regression
function and last the linear RSS function.

Two change points

We also comment on the result when two change points have been found. We conclude
that for very few data sets, the change points di↵er with at most 3 for at least four of
the six indices, hence we cannot draw any conclusions about the methods by searching for
more than one change point.
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Chapter 8

Evaluation on filtered lake drainage
data

In this chapter we discuss the problem with noisy data. We suggest a filter to apply on
the data and evaluate the performance of the four remaining methods on the filtered data.
We also compare the performance on the filtered data sets with the performance on the
original data sets. The idea is to use the methods on the filtered data sets, to find the
change points in the original data sets. We filter the 46 data sets used in Chapter 7. As
described in Chapter 7, each data set represent one set of measurements during a specific
time. At every observation, six di↵erent parameters or indices were measured. Therefore,
each data set consist of six time series, (see Figure 4.1 for an example). First, we search
for one change point. For each method, we count the number of data sets for which the
change points di↵er with at most 3 for at least four of the six indices. We also present the
deviation from the reference change points that have been found manually.

We also investigate how well the cost functions find two change points. The dynami-
cal programming algorithm was run for di↵erent penalty constants �, to find the desired
amount of change points. We also comment on whether to search for one, two or additional
change points.

8.1 Dealing with noise and outliers

As mentioned in Chapters 1 and 2, the lake drainage data that we analyse are likely
to contain outliers and other noise. Outliers and noise can have a great influence on
the parameter estimation. If it is obvious that an observation depends on for example
measurement errors, that observation can be regarded as an outlier and removed from the
time series [2, p.23]. However, we do not have information on whether a certain observation
depends on measurement errors or on environmental conditions. Therefore, we need to find
other methods to deal with outliers.
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Median filter

One approach to decrease the influence of outliers and noise is to use a filter to smooth
the data. We apply a median filter on the data, among others presented in [21], and
run the di↵erent methods on the filtered data. We start with the original data set
(x1, y1), (x2, y2) . . . (xn

, y

n

) and create a new data set (x1, ỹ1), (x2, ỹ2) . . . (xn

, ỹ

n

). The value
of a point ỹ

i

in the filtered data set will be the median of the values in a pre specified win-
dow around point y

i

. For example, if the window size is 3 points, the ỹ

i

in the filtered
data set will be the median of the points y

i�1, yi and y

i+1 in the original data set. This
approach cannot be used at the end points ỹ1 and ỹ

n

. Here, we need another method.
At the boundaries we will add to the original data series multiple boundary values. For
example, if the window size is 5 points, the new data set with original values will be
y�1, y0, y1, y2, y3, . . . , yn�1, yn, yn+1, yn+2, with y�1 = y0 = y1 and y

n+2 = y

n+1 = y

n

. Now,
the median can be taken at the points y2 and y

n�1. However, at the boundaries ỹ1 and ỹ

n

,
the median will always be the boundary values respectively and these will not be a↵ected
by the filter. Therefore, we remove the boundary values from the filtered data set. For the
linear RSS, the likelihood regression function and the absolute value function presented
in equation (7.1), the window was set to 5 points. For the likelihood mean cost function
however, a 5-point-window mostly resulted in no found change points. Therefore, the likeli-
hood mean function was evaluated on data filtered with window size 3. Observe that since
we remove the first and the last value from the filtered data set, point ỹ

i

in the filtered
data set will correspond to point y

i+1 in the original data set.

A comment on the likelihood functions

Outliers and fluctuations can be made less influential when modelling with the likelihood
functions by specifying a limiting distance between the change points. Then, the estimate
of the variance will be more accurate. The limiting number of points between two change
points is chosen by setting the likelihood function to infinity for segments smaller than the
limiting number. The smaller the number between two change points, the more inaccurate
the estimation of the variance, since there is a smaller number of observations in the
estimation.

8.2 Results and discussion

One change point

First, as in Section 7.3, we evaluate the performance of the methods on the filtered data
sets, when one change point has been searched for. Observe that the likelihood mean
cost function has been applied on data sets filtered with a median filter with window size
3 and the other cost functions have been used on data sets filtered with window size 5.
This was because the likelihood mean function did not find any change points for the
majority of the data sets, when applied to the data filtered with window size 5. We
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count the number of entries that have zero deviation from the year of the reference change
point. Also, the number of found change points that deviate more than zero and less than
four years from the reference change points are calculated. The mean deviation is also
calculated. Remember that the years of the reference change points have been manually
observed and are therefore not always reliable. By looking in Table 8.1, we see how well the
methods perform. We notice that the likelihood mean function has the best performance.
The absolute value function performs second best, followed by the likelihood regression
function and the linear RSS function.

Cost
Deviation 0 Deviation ± 1-3 Mean deviation

Entries with
function no change points

Linear RSS 37 % 34 % 3.0 4.0 %
Likelihood regression 38 % 29 % 2.8 11 %
Likelihood mean 55 % 27 % 1.2 4.0 %
Absolute value 40 % 31 % 2.8 4.0 %

Table 8.1: The number of observations with certain deviation from the reference change
points.

We also estimate how accurate the methods are based on that they should find approx-
imately the same change points for at least the indices TCW, NDMI, NDVI and TCB. We
count the number of data sets for which at least 4 of the change points, found in one data
set, di↵er by at most 3 years. The linear RSS function, fulfils these requirements for 33
% of the data sets and the likelihood regression function fulfils the requirements for 41 %
of the data sets. The likelihood mean function and the absolute value function fulfil these
requirements for 67 % and 48 % respectively. We therefore conclude that the likelihood
mean function performs best on the filtered data, followed by the absolute value function,
the linear regression function and last the linear RSS function.

With these results and the results from Chapter 7, we conclude that the likelihood mean
cost function performs best on both the original data sets and on the filtered data sets. The
absolute value cost function performs second best, followed by the likelihood regression cost
function and the linear RSS cost function. We also conclude that the overall performances
of the methods on the original data and the filtered data, do not di↵er significantly.

Two change points

Let us comment on the performance of the methods when searching for two change points.
As in Section 7.3, we conclude that for very few of the data sets, the change points di↵er
with less than 3 years for at least four of the data sets.
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Chapter 9

Examples of change points and
regression lines

In this chapter we present figures showing some examples of change points that have been
found for di↵erent data sets and di↵erent cost functions. The change points have been
found with the median filter applied and the figures show the filtered data. We also show
some trends that have been fitted to the time series after the change points have been
detected. The order of the polynomials describing the fitted trends have not been chosen
with respect to the cost function that has been used to find the change points.

9.1 Examples

The linear RSS

Figure 9.1: Data of TCW segmented with
linear RSS as cost function.

Figure 9.2: Data of TCG segmented with
the linear RSS cost function.
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Figure 9.3: Data of NDMI segmented with
the linear RSS cost function.

Figure 9.4: Data of NDVI segmented with
the linear RSS cost function.

Figure 9.5: Data of NDWI segmented with
the linear RSS cost function.

Figure 9.6: Data of TCB segmented with the
linear RSS cost function.
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The likelihood regression function

Figure 9.7: Data of TCW segmented with
the likelihood regression cost function.

Figure 9.8: Data of TCG segmented with
the likelihood regression cost function.

Figure 9.9: Data of NDMI segmented with
the likelihood regression cost function.

Figure 9.10: Data of NDVI segmented with
the likelihood regression cost function.
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Figure 9.11: Data of NDWI segmented with
the likelihood regression cost function.

Figure 9.12: Data of TCB segmented with
the likelihood regression cost function.

The likelihood mean function

Figure 9.13: Data of TCW segmented with
the likelihood mean cost function.

Figure 9.14: Data of TCG segmented with
the likelihood mean cost function.
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Figure 9.15: Data of NDMI segmented with
the likelihood mean cost function.

Figure 9.16: Data of NDVI segmented with
the likelihood mean cost function.

Figure 9.17: Data of NDWI segmented with
the likelihood mean cost function.

Figure 9.18: Data of TCB segmented with
the likelihood mean cost function.
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The absolute value function

Figure 9.19: Data of TCW segmented with
the absolute value cost function.

Figure 9.20: Data of TCG segmented with
the absolute value cost function.

Figure 9.21: Data of NDMI segmented with
the absolute value cost function.

Figure 9.22: Data of NDVI segmented with
the absolute value cost function.
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Figure 9.23: Data of NDWI segmented with
the absolute value cost function.

Figure 9.24: Data of TCB segmented with
the absolute value cost function.

9.2 Trend analysis

As described in the introduction, after having found change points, trends describing the
data should be removed from the time series. It is desirable that the remaining component
is stationary. The definition of stationarity follows below and is further described in [2,
p. 15].

Definition 9.2.1. Stationarity
A time series {X

t

} is (weakly) stationary if µ
X

(t) is independent of t and �

X

(t + h, t)
is independent of t for each h, where µ

X

(t) = E(X
t

) is the mean function of {X
t

} and
�

X

(t+ h, t) = Cov(X
t+h

, X

t

) is the covariance function of {X
t

} for all h.

After finding change points in the data, the idea is to find trends that describe the data.
Thereafter, the trend components are removed from the data and it is investigated whether
the data is stationary or not. A failure to detect stationary properties might be because
an inaccurate change point has been found, too few change points have been chosen or a
trend that is to simple has been removed from the data. If stationary properties are found,
we can conclude that we have found trends describing the data. A test for stationarity was
done on the time series that are shown in Figures 9.13-9.18 and that have been analysed
with the likelihood mean cost function. The MATLAB function kpsstest(), see [19], was
used to check for stationarity. Fitting polynomials with degree zero to the original data
sets, the hypothesis of stationarity was rejected at a 5 % confidence level for the indices
TCW and TCG but not for the other indices. However, the result from removing linear
trends with degree one from the data sets, was that the hypothesis of stationarity was not
rejected at a 5 % confidence level for any of the six indices. Therefore we conclude that
by change point analysis and trend removal we have been successful in creating stationary
time series.
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9.3 Discussion

We observe that some of the trends that have been fitted to the data sets above have a very
gentle slope, see for example Figure 9.16. This is because the linear properties are almost
none, and it would be more suitable to fit a straight line with no slope to the segments.
The likelihood mean function, that models the data with a piecewise constant function,
finds all correct change points in the time series presented in Figures 9.13-9.18, whereas
the likelihood regression function, that models the data with a piecewise linear function,
does not. However, we have seen in this chapter, that the time series in Figures 9.13 and
9.14 are better modelled with linear trends, since they did not become stationary when
constant functions were removed but when linear trends were removed. We conclude that
even though a time series is best modelled by polynomials of a certain degree, methods for
detecting change points that model the data with polynomials of a di↵erent degree could
be better. We have shown that this is the case with the time series presented in Figures
9.13 and 9.14. What can also be done to investigate whether a trend has been successfully
found in a time series is to make confidence intervals for the trend parameters, but we do
not show any examples of that in this study.
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Part III

Concluding discussion

60



Chapter 10

Discussion

Rejected methods

We have concluded that DBEST, TIMESAT, the MATLAB function findchangepts() and
the optimal partitioning algorithm with the quadratic RSS cost function are not suitable
for our purposes. The segmentation method in DBEST assumes equidistant time steps
between each value which could be complicated when dealing with time series of remote
sensing data. One solution is to reduce the time series to have equidistant time steps
between each point. That is, however, not a good solution since for most lake drainage
data sets the number of observations will then be too small to find any accurate patterns.
TIMESAT also assumes equidistant time step between the observations and the program
also requires the user to specify the number of observations each year [5], which must be
the same for all years. This cannot be done with our data. Also, TIMESAT primarily
investigates seasonal components, which is not in our main interest. We further conclude
that the MATLAB function findchangepts() does not take the time interval into account,
and therefore fails to detect the correct change point in the constructed data set in Chapter
6. Last, we conclude that the quadratic RSS cost function can reduce the RSS more than
the linear RSS cost function, if the data is noisy. However, the quadratic RSS is more
flexible than the linear RSS and thus more sensitive to variability in the data. This
may result in overfitting the data, and we have therefore rejected the optimal partitioning
algorithm with the quadratic RSS cost function as a method to find change points in optical
remote sensing lake drainage data. A short comparison of the rejected methods is shown in
Table 10.1. ’Nr. of parameters chosen by the user’ is the minimum number of parameters
that has to be specified by the user. For DBEST, TIMESAT and the MATLAB function
findchangepts() additional parameters can be specified.

61



Property DBEST TIMESAT
Quadratic

findchangepts()
RSS

Considering time No No Yes No
Sensitive to outliers Yes - Yes -
Nr. of parameters

4 0 1 0
chosen by the user

Table 10.1: Comparison of the methods that are presented and left out in Part I.

Impact of the median filter

The data sets that we are dealing with are noisy and have lots of so called missing data
points. The number of points are in general somewhere between 50 and 150 and the change
points are in many cases not obvious to the eye. Because of the few and missing data points,
there is a high risk that the noise component influences the choice of change points, even
though methods that account for missing values are used. Filtering the series reduces the
noise component but does not fill in missing data values. Comparing the performance of
the methods on the original data sets and on the filtered data sets however, we draw the
conclusion that filtering the data sets have not improved the performance of the methods.

Comparison of approved methods

We have concluded that the optimal partitioning algorithm with the likelihood mean func-
tion, best finds change points in optical remote sensing lake drainage data, compare Tables
7.1 and 8.1. The second best method for finding change points in our data is the abso-
lute value cost function followed by the likelihood regression cost function and the linear
RSS cost function. We also conclude that simpler models are to prefer when searching for
change points in optical remote sensing lake drainage data. A short comparison between
the methods is shown in Table 10.2, where k corresponds to the number of segments that
the time series is divided into.

Property
Linear Likelihood Likelihood Linear
RSS regression mean absolute val.

Considering time Yes Yes Yes Yes
Nr. of estimated

2 · k + 1 3 · k 2 · k 2 · k + 1
parameters, k segments

Nr. of parameters
1 1 1 1

chosen by the user

Table 10.2: Comparison of the methods that are evaluated in Part I and Part II.
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Future research

Since we have concluded that the optimal partitioning algorithm with the likelihood mean
function performs best on our data, it would be interesting to investigate whether even
simpler cost functions with fewer parameters, e.g. least-squares regression that models
the data with a piecewise constant function but with a fixed variance, performs even
better. Furthermore, there are faster partitioning algorithms that can be used instead of
the optimal partitioning algorithm. Using the same cost functions, the results will be the
same but the execution time faster. For example, the Pruned Exact Linear Time (PELT)
method is presented in [16]. It is a partitioning algorithm that uses pruning, i.e. removing
values that cannot be minima in (3.1). In the worst case scenario the complexity will be
O(n2), which is the complexity of the optimal partitioning algorithm described in equation
(3.1).
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