Ocean Sciences Meeting, Portland, Oregon, USA, 2/13/2018

Tutorial T002

Ensemble Data Assimilation with the Parallel Data Assimilation Framework

Lars Nerger

Alfred Wegener Institute, Bremerhaven, Germany

Special thanks to: Himansu Pradhan, Martin Losch

- Overview of ensemble data assimilation
- Data assimilation software PDAF (Parallel Data Assimilation Framework)
- Implementation example MITgcm

Overview of

Ensemble Data Assimilation

Introduction to Ensemble Data Assimilation

Data Assimilation – Motivation

L. Nerger & W.W. Gregg, J. Marine Syst. 68 (2007) 237-254

Combine model with real data

- Optimal estimation of system state:
 - initial conditions (for weather/ocean forecasts, ...)
 - state trajectory (temperature, concentrations, ...)
 - parameters (growth of phytoplankton, ...)
 - fluxes (heat, primary production, ...)
 - boundary conditions and 'forcing' (wind stress, ...)
- More advanced: Improvement of model formulation
 - Detect systematic errors (bias)
 - Revise parameterizations based on parameter estimates

Needed for Data Assimilation

- 1. Model
 - with some skill
- 2. Observations
 - with finite errors
 - related to model fields
- 3. Data assimilation method

Models

Simulate dynamics of ocean

- Numerical formulation of relevant terms
- Discretization with finite resolution in time and space
- "forced" by external sources (atmosphere, river inflows)
- Uncertainties
 - initial model fields
 - external forcing
 - in predictions due to model formulation

Unstructured mesh in North-east Atlantic

Observations

Measure different fields in the Ocean

- Remote sensing
 - E.g. surface temperature, salinity, sea surface height, ocean color, sea ice concentrations & thickness
- In situ
 - Argo, CTD, Gliders, ...
- Data is sparse: some fields, data gaps
- Uncertainties
 - Measurement errors
 - Representation errors: Model and data do not represent exactly the same (e.g. cause by finite model resolution)

Example: Physical Data in North & Baltic Seas

Ensemble-based Kalman Filter

Lars Nerger

Ensemble Covariance Matrix

- Ensemble represents state estimate and its uncertainty
- uncertainty information (variances + covariances)
- Generated dynamically by propagating ensemble of model states

Data Assimilation Software

PDAF

(Parallel Data Assimilation Framework)

Lars Nerger

Introduction to Ensemble Data Assimilation

PDAF: A tool for data assimilation

DAF Assimilation Framework

PDAF - Parallel Data Assimilation Framework

- a program library for ensemble data assimilation
- provide support for parallel ensemble forecasts
- provide fully-implemented & parallelized filters and smoothers (EnKF, LETKF, NETF, EWPF ... easy to add more)
- easily useable with (probably) any numerical model (applied with MITgcm, NEMO, FESOM, HBM, TerrSysMP, …)
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- first public release in 2004; continued development
- ~280 registered users; community contributions

Open source: Code and documentation available at

http://pdaf.awi.de

Offline coupling – separate programs

• Write new restart files

Lars Nerger

۲

•

Integrate

Write restart files

Online Coupling

← Explicit interface

← - - - → Indirect exchange (module/common)

Extending a Model for Data Assimilation

Parallel Data Assimilation Framework

PDA

Implementing Ensemble DA

Example of MITgcm

Introduction to Ensemble Data Assimilation

MITgcm extension for Data Assimilation

Parallel Data Assimilation Framework

- All changes included in MITgcm repository version
- PDAF interface routines activated by preprocessor setting -DUSE_PDAF

For convenience:

- eeboot_minimal: also change the index of STDOUT file
- *the_main_loop*: timers for PDAF calls

PDAF model binding routines

Interface routines

 init_parallel_pdaf, init_pdaf, assimilate_pdaf, finalize_pdaf

Call-back routines

- Set number of time steps between analysis steps
- Observation handling
- Write model fields into PDAF's state vector and back into model fields

PDAF release includes set of model binding routines for MITgcm

- ➢ for a simple test case
- just download and adapt for your needs

DAF Similation Framework

- Interface routines call PDAF-core routines
- PDAF-core routines call case-specific routines provided by user (included in model binding set)
- User-supplied call-back routines for elementary operations:
 - field transformations between model and filter
 - observation-related operations
- User supplied routines can be implemented as routines of the model (for MITgcm: Fortran-77 fixed-form source code)

Init_parallel_PDAF Parallelization of Assimilation Program

We use MPI (Message Passing Interface)

- It's the standard for highly scaling parallelization
- MITgcm uses MPI (like most large-scale models)

Change of parallelization is fully implemented for MITgcm!

Tutorial: Ensemble Data Assimilation with PDAF

Init_PDAF Initialization of Assimilation

Set parameters, for example

- select filter
- set ensemble size

Calls PDAF_init

- initialization routine of framework
- provide parameters according to interface
- provide MPI communicators
- provide name of routine for ensemble initialization

Ensemble initialization routine – called by PDAF_init

- a "call-back routine"
- defined interface: provides ensemble array for initialization
- user-defined initialization

Simple Subroutine Interfaces

Example: ensemble initialization

```
SUBROUTINE init ens pdaf(filtertype, dim, dim_ens, state,
matrU, ens, flag)
  IMPLICIT NONE
! ARGUMENTS:
  INTEGER, INTENT(in) :: filtertype ! Type of filter
  INTEGER, INTENT(in) :: dim ! Size of state vector
  INTEGER, INTENT(in) :: dim_ens ! Size of ensemble
  REAL, INTENT(out) :: ens(dim, dim_ens) ! state ensemble
  INTEGER, INTENT(inout) :: flag ! PDAF status flag
    Task to be implemented:
     Fill ens with ensemble of initial model states
```


Assimilate_PDAF Ensemble Forecast and Analysis Steps

calls PDAF_assimilate

- checks whether ensemble integration reached time for analysis step
- If false:
 - return to model and continue integration
- If true:
 - Write forecast fields into state vectors (call-back routine)
 - Compute analysis step of chosen filter
 - Set length of next forecast phase (call-back routine)
 - Write state vectors into model field arrays (call-back routine)

Clean-up at end of program

- Display timing and memory information for PDAF
- Deallocate arrays inside PDAF

Calls to

PDAF_print_info (memory and timing info)
PDAF_deallocate (deallocate arrays)

Fully implemented for MITgcm!

Filter analysis implementation

Operate on state vectors

- > Write all model fields into a 1-dimensional vector
- Filter doesn't know about 'fields'
- Computationally most efficient
- Call-back routines for
 - Transfer between model fields and state vector
 - Observation-related operations
 - Localization operations

For forecast

• Transfer data from state vector to model fields

Ensemble Filter Analysis Step

Ensemble Filter Analysis Step

Summary

Ensemble Data Assimilation with PDAF

- augment program for ensemble data assimilation
- assimilation methods provided by PDAF
- model-binding routines required
 - provided for MITgcm for test case
 - easy to code yourself
- PDAF is available as free open-source

Thank you!

Lars.Nerger@awi.de

http://pdaf.awi.de

