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Abstract 

Over the last years passive acoustic recording devices were used frequently to observe baleen whales 

acoustic presence in the Southern Ocean. During previous analyses a low frequency call was detected 

that had not been observed before in recordings from the passive acoustic recording device at 

61°00.88’ S and 55°58.53’ W off Elephant Island, Antarctica, further referred to as “13-Hz” short call. 

The name was chosen on the basis of the frequency and duration of the call. Due to signal 

characteristics of the sound and known acoustic presence from previous studies, fin and blue whales 

were considered as potential producers of this call. Previous analysis detected the “13-Hz” short call 

in Austral fall, therefore, data from March to June of 2014 were analysed to associate the hourly 

presence of the “13-Hz” short call with the presence of either ’20-Hz’ fin whale pulses or Antarctic blue 

whale z-calls. Additionally, the “13-Hz” short call characteristics were investigated (n = 75). 

Furthermore, temporal distances between single “13-Hz” short calls to vocalizations of fin and blue 

whales were investigated (n = 518). The “13-Hz” short call had a frequency range of 11 ± 1 Hz to 14 ± 

1 Hz and a mean duration of 2 ± 1 seconds. The temporal distribution analysis showed a positive 

correlation between the occurrence of fin whale pulses and “13-Hz” short calls and a negative 

correlation of blue whale z-calls and the “13-Hz” short call. The investigation of the temporal distances 

between the “13-Hz” short call and fin and blue whale calls showed a non-normal distribution of the 

data for both species, but a more normal distribution of the data for blue whale z-calls, suggesting an 

association with fin whale pulses. Overall, the results indicate that fin whales could be the producers 

of the “13-Hz” short call, but further investigation is necessary to confirm this hypothesis. Further 

investigation could include analysis of more data as well as the use of a continuous passive acoustic 

recording, or the use of different methods such as tagging, simultaneous visual surveys and the 

comparison with vocalizations of other fin whale populations in different regions. 
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Introduction 

Mysticeti or baleen whales are present in all oceans. They are filter feeders and often migrate over 

large distances from their high latitude feeding areas to low latitude breeding grounds (e.g. Edds-

Walton 1997). Many marine organisms, including baleen whales, use vocalizations for communication, 

due to the fact that in water, sound is the most effective form of communication, as it travels faster 

and further than for example light (Tyack and Miller 2002). Acoustic behavior of baleen whales is 

known to play an important role on feeding grounds as well as breeding grounds as different 

vocalizations are associated with both feeding and breeding behavior (e.g. Croll et al. 2002; Jaquet et 

al. 2001; Stimpert et al. 2007; Watkins 1981). Marine mammal distribution and behavior can therefore 

be observed through their vocalizations using passive acoustic monitoring. Over the last few years the 

method was used frequently in surveys on marine organisms, including baleen whales (Mellinger et al. 

2007; Oleson et al. 2007; Rankin et al. 2005; Stafford et al. 1999).  

Several studies based on passive acoustic data from acoustic recorders were conducted and provided 

information about marine mammal distribution and migratory behavior (Širović et al. 2004; Širović et 

al. 2009; Thomisch et al. 2016) 

In the Weddell Sea, the Hybrid Antarctic Float Observation System (HAFOS), an oceanographic 

observing system, provides the infrastructure for passive acoustic recording devices and supports the 

investigation of marine acoustic behavior (Rettig et al. 2013). Therefore, the passive acoustic recorders 

deployed within the HAFOS array help to observe the baleen whales in an environment that is 

otherwise difficult to access and to conduct visual surveys, due to heavy sea ice coverage and adverse 

weather conditions (Mellinger et al. 2007). Fin whales (Balaenoptera physalus) have repeatedly been 

sighted during visual surveys off Elephant Island, Antarctica (Burkhardt and Lanfredi 2012; Joiris and 

Dochy 2013) as the waters around Elephant Island are known to be potential feeding grounds for 

baleen whales due to the high krill abundance (Siegel et al. 1998). Therefore, in 2012 a passive acoustic 

recording device was deployed off Elephant Island to provide information about marine mammal 

distribution and migratory behavior. During previous analyses a new low frequency short acoustic 

signature,  located in the frequency band between 5 to 15 Hz, was observed in recordings by the 

passive acoustic recorder off Elephant Island, Antarctica, further referred to as 13-Hz call or “13-Hz” 

short call (Leroy 2018; Mattmüller and Burkhardt, personal communication).  

Generally, in this area two baleen whales are known to vocalize at these low frequencies, fin whales 

and (Antarctic) blue whales (Balaenoptera musculus (intermedia)) (Mellinger et al. 2007). A previous 

study conducted off Elephant Island observed both baleen whales to be acoustically present year-
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round (Meister 2017) and therefore being potential candidates for the emission of the newly found 

call.  

The most common vocalization of fin whales is the so called ‘20 Hz’ pulse (see Figure 1) (Watkins 1981), 

hereinafter referred to as fin whale pulse. It is described as a short downsweep of 0.5 – 1.5 seconds 

typically ranging from 15 – 31 Hz (Sirovic et al. 2006; Širović et al. 2004; Watkins et al. 1987). 

Additionally, a (seemingly) simultaneously produced pulse at 89 Hz is observed in the Southern Ocean 

(see Figure 1) (Širović et al. 2004). The frequency range of this additional pulse shows variation 

between regions (Širović et al. 2009). The mean intercall interval for fin whale pulses is reported to be 

around 9 to 12 seconds (Širović et al. 2004; Thompson et al. 1992) with an inter-pulse sequence interval 

of approximately 30 seconds (Širović et al. 2004). Additionally, in the northern hemisphere backbeats 

have been reported to be part of fin whale vocalizations (Figure 2) (Clark et al. 2002; Soule and Wilcock 

2013). They are described as narrow-band and have a center-frequency of 16 to 17 Hz. They always 

occur associated with a so called 18 Hz pulse described by Soule and Wilcock (2013) as a downswept 

pulse with a center frequency of 17 to 20 Hz, which is identical to the 20 Hz pulse described by Watkins 

(1981). In the northern hemisphere Thompson et al. (1992) recorded additional sounds in the presence 

of fin whales such as short downsweeps or upsweeps occurring between 18 and 310 Hz.  

 

Figure 1: Spectrogram of fin whale pulses with upper 89 Hz component, modified after Širović et al. (2004) 
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Figure 2: Spectrogram of classic ´20 Hz´ fin whale pulses and backbeats, modified after Clark et al. (2002). 

The most common vocalization of Antarctic blue whales are the so called z-calls, hereinafter referred 

to as blue whale z-call (see Figure 3). Previous studies describe the sound as follows. Starting with a 8 

– 9 second long sound between 26 – 29 Hz which is followed by a short downsweep to approximately 

19 Hz and ending with a slight downsweep to 18 Hz (Rankin et al. 2005; Širović et al. 2004). The mean 

intercall interval is about 62 seconds (Širović et al. 2004). 

 

Figure 3: Spectrogram of Antarctic blue whale z-calls, modified after Širović et al. (2004). 

Additionally, fin whales and blue whales, among other baleen whale species, are known to produce so 

called frequency-modulated downsweep calls (FM-calls) (see Figure 4). For fin and blue whales, they 

are located between 76 and 40 Hz and last about 3 seconds (Rankin et al. 2005; Širović et al. 2004).  
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Figure 4: Spectrogram of 3 different blue whale FM-calls, (a) high-frequency downsweep, (b) amplitude-, modulated 
downsweep, (c) complex variation of the high frequency downsweep, modified after Rankin et al. (2005). 

Due to the frequency characteristics of the “13-Hz” short call and the above described frequency 

characteristics of the blue whale and fin whale vocalization both species might be possible sources for 

the new call. The goal of this project was to describe the call and attribute it to a species. 

Linking a sound in passive acoustic recordings to a certain species is essential for passive acoustic 

studies (Baumgartner et al. 2008; Stafford et al. 1999).  

One method to assign an unknown sound to a certain species is tagging i.e. attaching a multi-sensor 

acoustic recording tag to an animal to record its vocalizations. Risch et al. (2014) used multi-sensor 

acoustic recording tags to attribute the bio-duck sound, which has been a sound with unknown origin 

for decades, to Antarctic minke whales. A study in the North Atlantic used recordings from tags to 

attribute sounds to certain behaviors of humpback whales (Stimpert et al. 2011).  

Another approach was taken by a study in Mariana Trench Marine National Monument that recorded 

a complex baleen whale call of unknown origin (Nieukirk et al. 2016). By analyzing the characteristics 

of the new call and comparing it to known vocalizations of present baleen whale species, they found 

it to be most likely produced by minke whales. Similarly Heimlich et al. (2005) attributed sounds 

recorded in the eastern tropical Pacific to Bryde’s whales based on the resemblance to known calls 

from this baleen whale species.  

A further method is the application of a temporal correlation analysis with known presence of whale 

species through visual surveys and concurrent acoustic recordings. Gedamke et al. (2001) used 

simultaneous visual surveys and hydrophone arrays to confirm the dwarf minke whale as the origin of 

the “star-wars” sounds, recorded previously in the waters east off Australia. Similarly, Baumgartner et 

al. (2008) observed low frequency downsweep vocalizations east of Cape Cod of unknown origin. 

Through a correlation analysis with other present species the authors found sei whales to be most 
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likely emitting the calls. A similar approach will be taken here by counting the number of fin whale 

pulses and blue whale z-calls in relation to “13-Hz” short calls. 

Additionally, time intervals between consecutive calls can be used to attribute an unknown call to a 

certain species. When describing baleen whale vocalization the intercall intervals or interpulse 

intervals often play a crucial role (Gedamke et al. 2001; Širović et al. 2004; Stafford et al. 1999). Stafford 

et al. (1999) used the interpulse spacing of the recorded sounds as one characteristic to highlight, that 

the potential origin of the recorded pulse series in the eastern tropical Pacific, might be fin whales, 

even though they have not been reported frequently in the study area. Similarly, a study conducted in 

the eastern tropical Pacific used the intercall or interphrase intervals as one characteristics to compare 

known Bryde’s whale sounds to sounds of unknown origin (Heimlich et al. 2005). Although no 

comparable sounds have been reported so far, the intervals between the unknown “13-Hz” short call 

and known blue whale vocalizations as well as known fin whale vocalizations will be measured to 

investigate temporal correlations between the known call types and the newly found call. Additionally, 

the results presented here might help in the future to identify similar calls in different recordings and 

therefore confirm the origin of the “13-Hz” short call.  

In this project the frequency range and duration of the “13-Hz” short calls will be described. 

Additionally, the following hypotheses will be tested to investigate which species is responsible for the 

call: (1) The presence of “13-Hz” short calls is positively correlated with the presence of fin whale ‘20 

Hz’ pulses. (2) The presence of “13-Hz” short calls is not positively correlated with the presence of blue 

whale z-calls. (3) The intervals of fin whale pulses to “13-Hz” short calls are not normally distributed. 

(4) The intervals of blue whale z-calls to “13-Hz” short calls are normally distributed.  
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Materials and Methods 

Passive acoustic data collection 

A recording device type AURAL (Multi-Électronique Inc., Canada) to gather passive acoustic data was 

attached to a deep-sea mooring. The mooring, which was deployed at a depth of 320 m, is located next 

to the Hybrid Antarctic Float Observation System (HAFOS) array, which collects oceanographic 

information of the pelagic waters in the Southern Ocean (see Figure 5). The recording device was 

attached to the deep-sea mooring at 61°00.88’ S and 55°58.53’ W at a depth of 210 m (see Figure 6). 

The recorder was deployed on 16th of January 2013 during Polarstern research cruise PS81 and 

recovered on the 10th of February 2016 during Polarstern research cruise PS96. 

 

Figure 5: Locations of the autonomous passive acoustic recording devices within the HAFOS array in the Southern Ocean. Red 
triangle represents the position of the passive acoustic recorder, AWI 251-01 AU231, analysed during this study and grey 
triangles show the location of the other moorings within the HAFOS array © AWI. 
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Figure 6: Mooring scheme of the mooring AWI251-1 deployed off Elephant Island on the 16th of January 2013 and retrieved 
on the 10th of February 2016. The recorder type AURAL was attached at 210 m. ©AWI. 
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The passive acoustic device recorded at 32 kHz and 16 bit sampling with a subsampling scheme of the 

first 5 minutes of every hour, resulting in 2 hours of recording per day. The subsampling scheme was 

used to be able to bridge a three-year deployment given the device’s limited battery life and storage 

capacity. For my project I analysed the data from March to June 2014, totalling 244 hours of recordings. 

March to June were selected for analysis, because a previous preliminary analysis of the entire year of 

2014 showed a presence of the “13-Hz” short call in these months (Leroy 2018). Before analysing, the 

data were decimated1 to 500Hz to increase the frequency resolution of low-frequency signals.  

Data analysis 

Temporal distribution 

Spectrograms were analysed visually and aurally with the bioacoustics software Raven Pro 1.4 

(Bioacoustic Research Program 2011). Spectrograms were scanned for fin whale pulses, blue whale z-

calls and the “13-Hz” short call. The spectrogram settings (Hanning window, overlap: 90 %, FFT: 1025 

points, Frequency range: 0 – 88 Hz, Interval: 3:45 minutes, time resolution: 2 seconds, frequency 

resolution: 0.5 Hz) were kept constant over the entire analysis. When detecting a potential short call, 

it was zoomed in to verify the selection. 

Not all files could be analysed due to noise in the frequency band of interest from 0 Hz to 30 Hz. In 

total 2243 files out of the initial 2928 files could be analysed and 685 files had to be discarded due to 

noise or noise in the frequency band of the “13-Hz” short calls (see Appendix Table 6 for details). 

The tags applied to the spectrograms are summarized in Table 1. 

Table 1: Tags applied to spectrogram analyses in Raven Pro 1.4 

Tag Description 

s “13-Hz” short call 

s! very good quality short call, used for frequency and duration measurements 

b blue whale z-call 

f fin whale ‘20 Hz’ pulse 

noise file could not be analysed due to noise over the entire visible frequency range 

noise in s band file was discarded due to noise in the frequency band of 5 to 15 Hz as the 
possibility of detecting short calls was not given 

mooring mooring clacks/ vertical lines (might overlay fin whale calls) 

none no other tag could be found in the file 

for interval measurements for short calls to fin whales and blue whales (measured from center time 
to center time) 

pf , ef intervals for fin whales  f <--pf (previous fin)--> s <--ef (ensuing fin)--> f 
 

pb, eb intervals for blue whales  b <--pb (previous blue)--> s <--eb (ensuing blue)--> b 

                                                           
1 Decimating: Method from signal-processing, custom written Matlab routine using a low pass filter to reduce the noise of the signals above 

500 Hz and therefore minimize the influence of the high frequency signals followed by a downsampling by factor 1/64 from 32 kHz to 500 
Hz. (also see Thomisch et al. 2016) 
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“13-Hz” short call measurements 

To describe the frequency range and the duration of the new call, 75 short calls of very good quality 

recorded in March, April and May were measured with the spectrogram settings of Hanning window, 

overlap: 0 %, FFT: 500 points, Frequency range: 0 – 31 Hz, Interval: 1.30 minutes resulting in a time 

resolution of 1 second and a frequency resolution of 1 Hz. 

Interval measurements 

Figure 7 illustrates interval length measurements for pf, ef, pb and eb which were measured from 

center time to center time of the respective calls (interval measurement error was ± 2 s). 

 

Figure 7: Spectrogram of May 12, 2014, 1 o'clock with selection of blue whale z-calls (B), fin whale pulses (F), "13-Hz" short 
calls (S) and interval measurements from center time to center time (vertical yellow line): pb = interval between “13-Hz” short 
call and the previous blue whale z-call, eb = interval between “13-Hz” short call and the ensuing blue whale z-call, pf = interval 
between “13-Hz” short call  and the previous fin whale pulse, ef = interval between “13-Hz” short call and ensuing fin whale 
pulse. (Hanning window, overlap: 90 %, FFT: 1025, time resolution: 2 seconds, frequency resolution: 0.5 Hz) 

Statistical analysis 

The data were analysed statistically using R Studio Version 3.5.0 (R Core Team 2018). The graphs were 

generated using R Studio Version 3.5.0 and Microsoft Excel 2016.  
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Differences were accepted as statistically significant at p < 0.05 and all values were rounded to two 

digits if not stated otherwise. 

“13-Hz” short call measurements 

The means and the standard deviation of the “13-Hz” short call measurements were calculated using 

Microsoft Excel 2016. The values were rounded to zero digits, as the measurements time resolution 

and frequency resolution was 1 second and 1 Hz respectively. Values were further used to describe the 

frequency range and duration of the “13-Hz” short call. 

Temporal distribution 

The number of fin whale pulses, blue whale z-calls and “13-Hz” short calls were each plotted in a 

grouped bar plot using Microsoft Excel 2016 to analyse the frequency distribution of number of calls 

per file. 

The mean number of calls per day were calculated and the weighted mean number of calls per day 

plotted over time (R package ‘graphics’, version 3.5.0). The weighted means were used for a better 

visualisation and comparison of the data. The means were weighted using the total mean number of 

calls per species. To display trends over time a cubic smoothed spline was fitted through the scatterplot 

with 20 degrees of freedom (R package ‘stats’, version 3.5.0). 

Correlation analysis 

To investigate the correlation of the occurrence of different call types the scatterplots of fin whale 

pulses versus “13-Hz” short calls and blue whale z-calls versus “13-Hz” short calls were plotted and a 

linear regression line (command lm from R package ‘stats’, version 3.5.0) was added to the plots (R 

package ‘graphics’, version 3.5.0) to display the relationship between the two call types. The R² value 

and the equation for the linear regression line were retrieved from the linear model (lm).  

The temporal correlation of the fin whale pulse and the blue whale-z calls to the “13-Hz” short calls 

was investigated by cross-correlating (ccf in R package ‘stats’, version 3.5.0) the fin whale pulses and 

the blue whale z-calls with the “13-Hz” short calls. Additionally, Kendall’s rank correlation analysis was 

performed using cor.test (R package ‘stats’, version 3.5.0) to further investigate the results from the 

temporal correlation analysis. Kendall’s rank correlation analysis was used, as the data were not 

normally distributed. 

To examine the dependency of fin whale pulse presence and 13-Hz call presence as well as the 

dependency of blue whale z-calls presence and 13-Hz call presence a Fisher’s exact test of 

independence was performed using fisher.test with alternative greater (R package ‘stats’, version 

3.5.0) using the formula 
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𝑝 =
(a + b)! (c + d)! (a + c)! (b + d)!

a! b! c! d! n!
 

where a, b, c, d and n are the number of observations of the two-way contingency Table 2 and ! 

indicates the factorial operator. For my data, observation 1 equals presence or absence of “13-Hz” 

short call and observation 2 equals presence or absence of fin whale pulses or blue whale z-calls, 

respectively. Therefore a stands for both call types present and d for no call type present, whereas c 

equals only 13-Hz calls present, but absence of fin whale pulses or blue whale z-calls, respectively, and 

b equals presence of fin whale pulses or blue whale z-calls and absence of 13-Hz calls. All presence-

absence data were on a file basis, therefore the maximum n equals the number of files analysed. 

Table 2: Two-way contingency table for Fisher's exact test of independence and accompanying coefficient of association Φ. 
Observation 1: presence or absence of “13-Hz” short call and observation 2: presence or absence of fin whale pulses or blue 
whale z-calls. 

 Observation 1  
Present Absent Total 

 
Observation 2 

Present a b a + b 
Absent c d c + d 

 Total a + c b + d a + b + c + d = n 

 

Additionally, to analyse the degree of association between fin whale pulses or blue whale z-calls and 

the “13-Hz” short call respectively, the accompanying coefficient of association Φ was calculated 

according to Sokal and Rohlf (1995) with the formula 

                                                                                                                      

Φ =
ad − bc

√(a + b)(c + d)(a + c)(b + d)
 

where a, b, c and d are the number of observations from the two-way contingency Table 2. 

To analyse the influence of number of species calls on the presence of 13-Hz calls a generalised linear 

model (glm) (R package ‘stats’, version 3.5.0) with presence of 13-Hz calls as response variable and 

number of fin whale pulses and number of blue whale z-calls as fixed effects was used. For error 

distribution binomial was used as the response variable was either present or absent. 

Masking effect of mooring noise on number of detections 

To investigate the influence of mooring noise on the detectability of the different call types, the 

scatterplot of fin whale pulses, blue whale z-calls and “13-Hz” short calls were plotted against the 

presence or absence of mooring noise and a linear regression line (command lm from R package ‘stats’, 

version 3.5.0) for each comparison was added to the plot (R package ‘graphics’, version 3.5.0). The R² 

value and the equation for the linear regression line were retrieved from the linear model (lm). 
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Interval measurements 

To investigate the temporal patterns of the intervals from single 13-Hz calls to consecutive fin whale 

pulses and blue whale z-calls the data were processed as follows. The length of the intervals from 

previous fin whale pulse or previous blue whale z-call to the next 13-Hz call were converted into 

negative numbers for a better visualisation of the data. Additionally, the values were also rounded to 

zero digits as for the measurements of the “13-Hz” short call, because the measurements were not 

calculated but measured manually, with an error of ± 1 seconds. Thereafter, the density distribution 

of the length of the intervals was graphically presented in a histogram (package ‘graphics’, version 

3.5.0). Additionally, a density distribution curve was fitted to the plot (R package ‘stats’, version 3.5.0) 

to display the distribution of the data. The Shapiro-test (package ‘stats’, version 3.5.0) was applied to 

test for normal distribution of the data. The mean and standard deviation were also calculated with R 

(R package ‘base’ and ‘stats’, version 3.5.0). They were further used to describe the interval length.
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Results 

“13-Hz” short call characteristics 

The “13-Hz” short call is a low-frequency upsweep ranging from 11 ± 1 Hz to 14 ± 1 Hz a mean duration 

of 2 ± 1 seconds (see Figure 8 and Figure 9 ). The lowest frequency measured was 9 Hz and the highest 

16 Hz. The duration of the shortest 13-Hz call was 1 second whereas the longest lasted for 4 seconds 

(see Table 3).  

 

Figure 8: Spectrogram of "13-Hz" short call with measurement box. (Image from March 11 2014, 08:00 a.m., Hanning window, 
overlap: 90 %, FFT: 1025, time resolution: 2 seconds, frequency resolution: 0.5 Hz) 

 

 

Figure 9: "13-Hz" short call with 3 fin whale pulses. (Image from March 11 2014, 08:00 a.m., Hanning window, overlap: 90 %, 
FFT: 1025, time resolution: 2 seconds, frequency resolution: 0.5 Hz) 
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Table 3: Measurements of the "13-Hz" short call with mean, minimum and maximum of frequency and duration. 

 Low frequency High frequency Duration 

Mean 11 ± 1 Hz 14 ± 1 Hz 2 ± 1 seconds 

Minimum 9 Hz 14 Hz 1 second 

Maximum 13 Hz 16 Hz 4 seconds 

 

Temporal distribution 

In total, 25,568 fin whale ’20-Hz’ pulses, 7,102 blue whale z-calls and 518 “13-Hz” short calls were 

detected in the analysed time period. In most 5-min files, the number of fin whale pulses was between 

1 and 8 with a maximum of 58 pulses in 5 minutes of recording, occurring once on the 25 April and 

once on 10 May 2014. The maximum number of blue whale z-calls within 5 minutes was 23, occurring 

on the 19 June, whereas blue whale-z calls generally occurred between 1 or 3 times in 5 minutes. 13-

Hz calls occurred mostly only once in 5 minutes and the maximum number of 13-Hz calls within 5 

minutes was 13, on the 10 May. Overall, fin whale pulses were most frequent with only 532 files of 

2243 in total without any fin whale pulses in contrast to 769 files without blue whale z-calls and 1948 

files without 13-Hz calls. 
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Figure 10: Grouped bar plots for number of calls per file for the three call types (A) Fin whale pulses (n = 25568), (B) Blue whale 
z-calls (n = 7102) and (C) "13-Hz" short calls (n = 518). 

The cubic smoothed spline in Figure 11 revealed similar temporal trends for the mean number of calls 

per day of fin whale pulses and of “13-Hz” short calls. Both exhibited the maximum in the beginning of 

May and decreased towards the end of May whereas the mean number of blue whale calls increased 

in June, peaking in late June. 
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Figure 11: Weighted mean number of calls per day over time with cubic smoothed spline (df = 20). The mean number of calls 
per day was weighted with the total mean number of calls per species. Fin whale pulses are displayed in black, blue whale z-
calls in blue and “13-Hz” short calls in red.  

Correlation analysis 

The scatterplot in Figure 12 A shows a slightly positive correlation of number of fin whale pulses and 

number of 13-Hz calls per file with a R² value of 0.11. The scatterplot in Figure 12 B shows a slightly 

negative correlation of number of blue whale z-calls and number of 13-Hz calls per file with a R² value 

of 0.02.  

Overall, the number of 13-Hz calls at first increased with increasing number of fin whale pulses until 

23 fin whale pulses per file. Thereafter the number of 13-Hz calls decreased with increasing number of 

fin whale pulses with one exceptional value. On 10 May 50 fin whale pulses were observed with 13 13-

Hz calls and no blue whale z-calls present. The second highest number of 13-Hz calls (9) is associated 

with 23 fin whale pulses and 4 blue whale z-calls at 11 May. 
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Figure 12: Scatterplots with linear regression line for (A) number of fin whale pulses versus number of "13-Hz" short calls and 
(B) number of blue whale z-calls versus number of "13-Hz" short calls per file. 

The temporal cross correlation analysis showed a positive correlation between fin whale pulses and 

“13-Hz” short calls at lag2 zero of 0.67 (see Figure 13). A further Kendall’s rank correlation test revealed 

a significant p-value of 2.2*10-16 and a correlation coefficient τ of 0.55, showing a moderate positive 

correlation between fin whale pulses and “13-Hz” short calls over time. 

                                                           
2 Lag: temporal shifting of the data to investigate temporal cross correlation.  

A 

B 
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Figure 13: Temporal cross correlation analysis of fin whale pulses versus "13-Hz" short calls over time with maximum lag of 
100. 

The temporal cross correlation between blue whale z-calls and “13-Hz” short calls in Figure 14 shows 

a negative cross correlation of -0.30 at lag 0. A further Kendall’s rank correlation analysis showed a 

significant p-value of 2.2*10-5 and a correlation coefficient τ of -0.27, revealing a weak negative 

correlation of blue whale z-calls over time. 

 

Figure 14: Temporal cross correlation analysis of blue whale z-calls versus "13-Hz" short calls over time with maximum lag of 
100. 
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The “13-Hz” short call could be observed in 154 files with only fin whale pulses present, in 141 with 

both, fin whale pulses and blue whale z-calls present but in zero files with only blue whales present. 

The results of the one-tailed Fisher’s exact test of independence showed a significant dependency of 

fin whale pulses present and short calls present (see Table 4). Nevertheless, the accompanying 

coefficient of association was low with 0.22 showing a weak correlation. Additionally, the test for the 

dependency of blue whale z-calls present and short calls present showed a negative accompanying 

coefficient of association with -0.15 and a non-significant p-value of 1. 

Table 4: Two-way contingency tables for fin whale pulses and blue whale z-calls versus presence of “13-Hz” short calls, 
comparing occurrence of call type per file. The results of one-tailed Fisher's exact test of independence and the accompanying 
coefficient of association Φ (Sokal and Rohlf 1995) are provided. 

 “13-Hz” short call    

Fin whale pulse Present Absent Total Φ p-value 

Present 295 1416 1711  
0.22 

 
2.2*10-16 Absent 0 532 532 

Total 295 1948 2243  

 “13-Hz” short call    

Blue whale z-call Present Absent Total Φ p-value 

Present 141 1333 1474  
-0.15 

 
1 Absent 154 615 769 

Total 295 1948 2243 

 

The general linear model (glm) showed a statistically significant correlation between presence of 13-

Hz calls and number of fin whale pulses as well as number of blue whale z-calls. The number of fin 

whale pulses influenced the presence of 13-Hz calls positively while the number of blue whale z-calls 

had a negative influence on the presence of 13-Hz calls (see Table 5).  

Table 5: Generalised linear model with presence of "13-Hz" short calls as response variable and number of fin whale pulses 
and number of blue whale z-calls as fixed effects. Error distribution: binomial. 

Presence of “13-Hz” short calls 

Fixed effects:     

 Estimate SE z-value p-value 

(Intercept) -3.02 0.16 -19.14 < 2*10-16 

Fin whale pulses 0.08 0.01 13.68 < 2*10-16 

Blue whale z-calls -0.07 0.03 -2.52 0.01 
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Masking effect of mooring noise on number of detections 

The linear models revealed a low influence of the presence of the mooring noise on the number of 

calls detected for each call type as the R² values are all below 0.05 suggesting a minor influence of 

mooring on the detectability (see Figure 15). 

 

Figure 15: Scatterplot of presence of mooring noise versus number of calls for fin whale pulses (black), blue whale z-calls (blue) 
and "13-Hz" short calls (red) with linear regression line, n = 2243 for all. 

Interval measurements  

Figure 16 shows the density distribution of interval lengths from the previous fin whale pulses to the 

next 13-Hz calls and 13-Hz calls to the ensuing fin whale pulses. The red line showing the density 

distribution displayed the non-normal distribution of the interval lengths. The Shapiro-test for 

normality revealed a significant p-value of 2.2*10-16 and therefore confirmed the non-normal 

distribution. Additionally, the plot showed a maximum in density at 13 seconds and -16 seconds of 

interval length and a density of 0.05 and 0.06, respectively, revealing that a large proportion of 13-Hz 

calls were either located 16 seconds behind the previous fin whale pulse of 13 seconds before the 

ensuing fin whale pulse. The mean interval length from fin whale pulse to the next “13-Hz” short call 

was 12 ± 13 seconds and the mean interval length ± standard deviation from the “13-Hz” short call to 

the next fin whale pulse was 12 ± 16 seconds. 
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Figure 16: Density distribution of interval length from the previous fin whale pulse to the next “13-Hz” short call for negative 
x-values and interval length of the “13-Hz” short call to the ensuing fin whale pulse for positive x-values. The red line shows 
the density distribution of the interval length. 

The density distribution of intervals of blue whale z-call to 13-Hz calls showed a more normal 

distribution (see Figure 17) compared to the density distribution of the intervals associated with fin 

whale pulses (see Figure 16). Nevertheless, a Shapiro-test for normality revealed a significant p-value 

of 2.69*10-6 which indicates a non-normal distribution of the data. The highest density of 0.02 occurred 

at -1 seconds and 6 seconds, revealing that a large proportion of 13-Hz calls were either located 1 

second after the previous blue whale z-call or 6 seconds before the ensuing blue whale z-call.  The 

mean interval length from blue whale z-call to the next “13-Hz” short call was 40 ± 42 seconds and the 

mean interval length ± standard deviation from the 13-Hz call to the next blue whale z-call was 47± 46 

seconds. 
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Figure 17: Density distribution of interval length from the previous blue whale z-call to the next “13-Hz” short call for negative 
x-values and interval length of “13-Hz” short call to the ensuing blue whale z-call for positive x-values. The red line shows the 
density distribution of the interval length. 
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Discussion 

“13-Hz” short call characteristics 

The acoustic description of the “13-Hz” short call was based on a relatively poor resolution, as the call 

is of low frequency, narrow band and short in duration. These characteristics are leading to a poor time 

and frequency resolution for measurement purposes. The existing trade-off between frequency 

resolution and time resolution, as time resolution is FFT/sample rate and frequency resolution the 

inverse function, therefore sample rate/FFT leads to the fact that with a better time resolution the 

frequency resolution declines and otherwise. Measuring the short call in two different settings was not 

possible due to the nature of the call.  

Temporal distribution and correlation analysis 

The hypothesis, that the presence of “13-Hz” short calls is positively correlated with the acoustic 

presence of fin whales is supported by the data analysis. The temporal distribution plots suggested a 

correlation of fin whale pulses with “13-Hz” short calls over time. Both have their maximum around 

mid of May, whereas the presence of blue whales is still low and the peak in occurrence of blue whale 

z-calls was in late June. These pattern was supported by the results of the linear correlation analysis 

showing a slightly positive correlation of fin whale pulses and “13-Hz” short calls as well as the cross 

correlation analysis and the Kendall’s rank correlation analysis. Similarly, in a study conducted east off 

Australia visual sightings of dwarf minke whales and recordings of the “star-wars” sound also occurred 

over the same time, which lead, together with additional evidence, to the conclusion, that dwarf minke 

whales are responsible for the “star-wars” sound (Gedamke et al. 2001). Even though, no visual 

observations were made simultaneously in this study, the acoustic presence of fin whales together 

with the occurrence of the 13-Hz calls might indicate that the new call is emitted by fin whales.  

Additionally, the Fisher’s exact test for independence showed a correlation between fin whale acoustic 

presence and “13-Hz” short call presence but no correlation between blue whale acoustic presence 

and “13-Hz” short call. Nevertheless, the accompanying coefficient of association suggested a low 

correlation. Results from Baumgartner et al. (2008) found a slightly higher coefficient of correlation 

and therefore assigned their unknown call to sei whales. The data for the Fisher’s exact test of 

independence also highlight that the 13-Hz call was never observed with only blue whales being 

acoustically present, but several times with only fin whales being acoustically present. This also implies 

that fin whales could be the species producing the sound. 

Furthermore, the generalized linear model showed, that an unit increase in number of fin whale pulses 

increased the odds to observe a “13-Hz” short call by 0.08, whereas an unit increase in number of blue 
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whale z-calls reduced the odds to observe a “13-Hz” short call by -0.07. This also indicates an 

association of fin whale pulses with “13-Hz” short calls rather than an association of blue whale z-calls 

with the “13-Hz” short call. 

Supporting the hypothesis, that the presence of 13-Hz calls is not positively correlated to the presence 

of blue whale z-calls, the temporal distribution from blue whale z-calls and 13-Hz calls suggested a 

negative correlation. During June the number of blue whale z-calls increases whereas the number of 

13-Hz calls decreases as well as the number of fin whale pulses. The linear regression line showing a 

slightly negative correlation, the cross correlation analysis of blue whale z-calls and 13-Hz calls with 

negative values at lag 0 as well as the significant Kendall’s rank correlation analysis with a negative 

correlation coefficient confirmed this trend and indicates, that the occurrence of blue whale z-calls is 

negatively correlated with the occurrence of 13-Hz calls, suggesting that blue whales are not 

responsible for the new call. 

The negative correlation of 13-Hz calls with blue whale z-call presence displayed in all tests, is not 

caused by masking, as the 13-Hz call is located in the frequency band of 9 Hz up to 16 Hz and the blue 

whale z-calls are located in the frequency band of 18 Hz up to 29 Hz (Širović et al. 2004) Therefore, the 

negative correlation of blue whale z-calls and 13-Hz calls is a true trend. 

Fin whale pulses on the other hand might mask the 13-Hz calls as they can extend down to 15 Hz 

(Sirovic et al. 2006), whereas the 13-Hz calls were observed up to 16 Hz. This trend could be observed 

in the scatterplot in Figure 12A, showing a decline in 13-Hz calls after the number of fin whale pulses 

exceeded the 23, with one exceptional value at 50 fin whale pulses with 13 13-Hz calls. Nevertheless, 

the correlation between fin whale pulses and 13-Hz calls was positive for all tests. One could conclude, 

that the true correlation is even more significant, when taking into account the masking effect of fin 

whale pulses on 13-Hz calls. 

Another explanation for the relatively low correlation coefficients suggesting a weak positive 

correlation for fin whale pulses and 13-Hz calls might be a masking effect of mooring noise as mooring 

noise might overlay fin whale pulses or interfere with 13-Hz calls. Nevertheless, the linear model 

showed only a weak influence of the presence of mooring on the number of calls detected. 

Overall, the statistical analysis showed a positive correlation of fin whale pulses and 13-Hz calls and a 

negative correlation of blue whale z-calls and 13-Hz calls.  

Interval measurements 

Both interval lengths showed a non-normal distribution, indicating a correlation between blue whale 

z-calls and 13-Hz calls as well as between fin whale pulses and 13-Hz calls. Nevertheless, the 
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distribution for the interval lengths associated with blue whales appear more normally distributed 

compared to the distribution for the interval lengths associated with fin whales. A normal distribution 

of the intervals would indicate no association of 13-Hz calls to the other call type. Additionally, the 

intervals associated with fin whale pulses displayed a peak at around 15 seconds, which is in the middle 

of the intersequence interval of 30 seconds reported by Širović et al. (2004). This could indicate an 

association of the 13-Hz call with fin whale song. The relatively low peak might become more 

prominent when analysing only single animal sequences, continuous data and more “13-Hz” short 

calls. The not very prominent peak for blue whale associated intervals is located at -1 and 6 seconds. 

Therefore, the data appear more normally distributed even though the test showed a non-normal 

distribution. With a larger sample size and the analysis of a continuous data set the data might become 

normally distributed. 

Additionally, the distribution of the intervals associated with blue whales and the intervals associated 

with fin whales showed a large standard deviation. In previous studies the interpulse intervals or 

intercall intervals were less variable. Širović et al. (2004) described the intercall intervals with 12.9 ± 

0.5 seconds and an intersequence interval with 29.7 ± 6.5 seconds for fin whales and an intercall 

interval of 62.3 ± 5.2 seconds for blue whale z-calls. In contrast, the intervals measured between fin 

whale pulses and 13-Hz calls have a standard deviation of 13 and 16 seconds with a mean of 12 

seconds, whereas the intervals between blue whale z-calls and 13-Hz calls was 42 and 46 seconds with 

a mean of 40 and 47 seconds, respectively.  These results could indicate, that the 13-Hz call is not 

associated with neither fin whale pulses nor blue whale z-calls, or at least is not a part of fin whale or 

blue whale song. Nevertheless, the intervals described by Širović et al. (2004) were measurements 

between the same call type, whereas in this study the intervals were measured between 2 different 

call types, the 13-Hz call and the known fin whale or blue whale vocalization. If the 13-Hz call is not 

produced as part of a song but randomly, the interval measurements cannot be used to attribute the 

new call to a certain species.  

Overall, the analysis of the intervals showed no clear temporal distribution or association with neither 

one of the other call types. 
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Conclusion and Outlook 

The hypothesis that the presence of “13-Hz” short calls is positively correlated with the presence of fin 

whale 20 Hz pulses could be confirmed.  

Additionally, the presence of “13-Hz” short calls is not positively correlated with the presence of blue 

whale z-calls, the statistical analysis in fact showed a negative correlation of blue whale z-calls and “13-

Hz” short calls. Therefore the second hypothesis, that the presence of “13-Hz” short calls is not 

positively correlated with the presence of blue whale z-calls could be confirmed. 

The hypothesis that the intervals of fin whale pulses to “13-Hz” short calls are not normally distributed 

could also be confirmed, indicating a potential attribution of the “13-Hz” short calls to fin whales.  

Finally, the hypothesis that the intervals of blue whale z-calls to “13-Hz” short calls are normally 

distributed had to be rejected. The data also showed a non-normal distribution of the intervals 

associated with blue whale z-calls. 

Overall, the results indicated that fin whales could be the species producing the “13-Hz” short call but 

further analysis is necessary to confirm this hypothesis. 

One possibility is to investigate the “13-Hz” short call in continuous data, recordings showing the entire 

day and therefore, displaying temporal patterns missed by the analysis of the subsampled data. With 

continuous data, the intervals between the short calls could be measured and investigated further to 

reveal the context of the “13-Hz” short call. Additionally, recordings from different recorders should 

be analysed to investigate if the “13-Hz” short call can be identified at other sites or if the call is a 

characteristic part of the vocalizations of a baleen whale species in the Antarctic regions. 

Another approach to confirm fin whales as producer of the “13-Hz” short call could be tagging. Risch 

et al. (2014) confirmed with multi-sensor acoustic recording tags the minke whales as producer of the 

former mysterious bio-duck sound. Additionally, visual surveys together with acoustic observations 

could be conducted to confirm the species emitting the call, similarly done by Gedamke et al. (2001) 

for the “star-wars” sound of minke whales or Baumgartner et al. (2008) for sei whale vocalizations. 

Nevertheless, the results from tagging or simultaneous visual surveys might not be able to confirm the 

trends observed in this study as the “13-Hz” short call is relatively rare and it might not be produced 

during the recording time. 

In conclusion, this project serves as a first description of a previously unknown call and gives a first 

idea of the animal producing the “13-Hz” short call. 
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Appendix 

Table 6: Summary table of number of files and number of detected calls per month for analysed time period from March to 
June 2014. 

 
March April May June Sum 

Number of files 744 720 744 720 2928 

Number of files with noise 282 108 144 151 685 

Number of files analysed 462 612 600 569 2243 

Number of fin whale pulses 3156 8544 11939 1929 25568 

Number of blue whale z-calls 732 856 1223 4291 7102 

Number of "13-Hz" short calls 47 148 277 46 518 

Number of files with mooring 155 224 169 214 762 

Number of intervals for fin whales 88 282 523 81 974 

Number of intervals for blue whales 9 49 96 66 220 

Number of "13-Hz" short calls measured 9 20 46 0 75 



iv 
 

Table 7: Summary of number of calls, number of files with mooring, number of files with noise or noise in "13-Hz" short call frequency band and number of files analysed per day. 

Year Month Day 
Number of fin 
whale pulses 

Number of "13-
Hz" short calls 

Number of blue 
whale z-calls 

Number of files 
with mooring 

noise 

Number of 
files with 

noise 

Number of files with 
noise in "13-Hz" 

short call frequency 
band 

Number of 
files 

analysed 

2014 03 01 21 0 21 7 13 0 11 

2014 03 02 13 0 21 7 13 0 11 

2014 03 03 93 1 22 5 15 0 9 

2014 03 04 9 0 19 2 14 4 6 

2014 03 05 2 0 8 0 17 2 5 

2014 03 06 36 0 33 0 10 4 10 

2014 03 07 68 0 52 2 6 3 15 

2014 03 08 161 6 67 4 0 1 23 

2014 03 09 89 0 101 0 0 1 23 

2014 03 10 247 5 28 0 1 0 23 

2014 03 11 242 5 7 3 3 1 20 

2014 03 12 80 1 2 2 8 5 11 

2014 03 13 95 4 2 5 6 1 17 

2014 03 14 32 0 2 4 9 5 10 

2014 03 15 77 0 5 2 14 3 7 

2014 03 16 102 2 18 2 12 2 10 

2014 03 17 33 1 52 5 4 7 13 

2014 03 18 81 0 25 5 7 4 13 

2014 03 19 142 1 42 5 6 4 14 

2014 03 20 70 0 32 8 3 5 16 

2014 03 21 148 0 43 12 2 1 21 

2014 03 22 48 0 43 4 4 7 13 

2014 03 23 132 0 14 3 6 5 13 

2014 03 24 148 4 9 12 0 0 24 
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Year Month Day 
Number of fin 
whale pulses 

Number of "13-
Hz" short calls 

Number of blue 
whale z-calls 

Number of files 
with mooring 

noise 

Number of 
files with 

noise 

Number of files with 
noise in "13-Hz" 

short call frequency 
band 

Number of 
files 

analysed 

2014 03 25 305 10 11 4 0 0 24 

2014 03 26 88 0 23 12 0 2 22 

2014 03 27 85 1 9 6 6 0 18 

2014 03 28 74 3 10 7 6 5 13 

2014 03 29 172 2 1 11 7 1 16 

2014 03 30 87 0 4 10 8 1 15 

2014 03 31 176 1 6 6 6 2 16 

2014 04 01 131 1 8 2 9 2 13 

2014 04 02 174 3 25 7 4 3 17 

2014 04 03 280 0 33 11 1 3 20 

2014 04 04 282 6 24 1 0 0 24 

2014 04 05 235 9 40 2 0 0 24 

2014 04 06 165 3 32 5 0 0 24 

2014 04 07 189 0 68 7 0 0 24 

2014 04 08 323 11 63 0 0 0 24 

2014 04 09 224 1 129 0 0 0 24 

2014 04 10 148 5 82 0 0 0 24 

2014 04 11 315 2 44 4 0 0 24 

2014 04 12 320 4 42 9 2 0 22 

2014 04 13 200 3 18 11 6 0 18 

2014 04 14 415 2 17 17 2 1 21 

2014 04 15 158 0 19 10 8 1 15 

2014 04 16 160 2 16 5 12 1 11 

2014 04 17 219 2 15 3 11 2 11 

2014 04 18 121 5 7 5 10 2 12 



vi 
 

Year Month Day 
Number of fin 
whale pulses 

Number of "13-
Hz" short calls 

Number of blue 
whale z-calls 

Number of files 
with mooring 

noise 

Number of 
files with 

noise 

Number of files with 
noise in "13-Hz" 

short call frequency 
band 

Number of 
files 

analysed 

2014 04 19 249 2 2 7 8 4 12 

2014 04 20 417 11 1 14 1 0 23 

2014 04 21 478 7 16 7 0 0 24 

2014 04 22 327 5 16 10 0 0 24 

2014 04 23 412 9 36 7 0 0 24 

2014 04 24 582 15 16 9 0 0 24 

2014 04 25 449 12 24 6 0 0 24 

2014 04 26 296 2 9 15 1 0 23 

2014 04 27 285 1 2 15 1 1 22 

2014 04 28 189 7 14 5 8 1 15 

2014 04 29 396 12 10 17 2 1 21 

2014 04 30 405 6 28 13 0 0 24 

2014 05 01 309 8 21 8 6 0 18 

2014 05 02 305 5 21 10 4 0 20 

2014 05 03 364 9 22 6 4 3 17 

2014 05 04 558 11 5 2 0 0 24 

2014 05 05 484 7 35 1 0 0 24 

2014 05 06 700 16 56 0 0 0 24 

2014 05 07 403 4 50 5 0 0 24 

2014 05 08 746 7 24 5 0 0 24 

2014 05 09 594 9 26 2 0 0 24 

2014 05 10 744 50 10 1 0 0 24 

2014 05 11 788 30 34 0 0 0 24 

2014 05 12 490 13 27 6 3 0 21 

2014 05 13 365 7 16 9 5 0 19 



vii 
 

Year Month Day 
Number of fin 
whale pulses 

Number of "13-
Hz" short calls 

Number of blue 
whale z-calls 

Number of files 
with mooring 

noise 

Number of 
files with 

noise 

Number of files with 
noise in "13-Hz" 

short call frequency 
band 

Number of 
files 

analysed 

2014 05 14 270 12 21 3 9 0 15 

2014 05 15 234 0 11 7 13 0 11 

2014 05 16 245 3 12 6 12 0 12 

2014 05 17 379 12 35 7 3 1 20 

2014 05 18 399 2 45 8 5 0 19 

2014 05 19 440 10 58 11 3 0 21 

2014 05 20 455 17 44 9 0 0 24 

2014 05 21 374 5 91 1 0 0 24 

2014 05 22 264 4 67 6 5 0 19 

2014 05 23 134 0 112 14 0 0 24 

2014 05 24 119 0 86 9 7 0 17 

2014 05 25 171 7 80 9 6 0 18 

2014 05 26 482 6 19 6 6 0 18 

2014 05 27 504 9 38 4 4 0 20 

2014 05 28 234 1 37 5 9 0 15 

2014 05 29 150 2 35 3 11 1 12 

2014 05 30 203 5 60 3 6 2 16 

2014 05 31 32 6 25 3 16 0 8 

2014 06 01 68 1 34 1 16 0 8 

2014 06 02 205 1 57 6 8 0 16 

2014 06 03 34 0 86 11 8 0 16 

2014 06 04 208 10 176 6 1 0 23 

2014 06 05 225 8 179 0 0 0 24 

2014 06 06 227 9 198 0 0 0 24 

2014 06 07 197 11 162 0 0 0 24 
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Year Month Day 
Number of fin 
whale pulses 

Number of "13-
Hz" short calls 

Number of blue 
whale z-calls 

Number of files 
with mooring 

noise 

Number of 
files with 

noise 

Number of files with 
noise in "13-Hz" 

short call frequency 
band 

Number of 
files 

analysed 

2014 06 08 39 0 171 7 2 0 22 

2014 06 09 52 0 157 8 4 0 20 

2014 06 10 198 3 213 5 0 0 24 

2014 06 11 197 0 135 12 1 0 23 

2014 06 12 69 1 148 6 6 0 18 

2014 06 13 15 0 122 9 7 1 16 

2014 06 14 8 0 49 5 13 1 10 

2014 06 15 5 0 54 8 13 0 11 

2014 06 16 16 0 108 13 5 0 19 

2014 06 17 28 0 160 9 1 0 23 

2014 06 18 20 1 153 9 3 1 20 

2014 06 19 11 0 280 4 0 0 24 

2014 06 20 29 0 287 2 0 0 24 

2014 06 21 25 0 183 0 0 0 24 

2014 06 22 9 0 260 5 0 0 24 

2014 06 23 2 0 143 12 4 0 20 

2014 06 24 7 1 128 4 10 2 13 

2014 06 25 5 0 152 2 9 4 11 

2014 06 26 4 0 123 9 4 5 15 

2014 06 27 3 0 85 18 2 3 19 

2014 06 28 14 0 112 13 6 0 18 

2014 06 29 6 0 80 13 5 2 17 

2014 06 30 3 0 96 17 0 5 19 

 


