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Abstract The coupled ocean circulation‐ecosystem model MITgcm‐REcoM2 is used to simulate
biogeochemical variables in a global configuration. The ecosystem model REcoM2 simulates two
phytoplankton groups, diatoms and small phytoplankton, using a quota formulation with variable carbon,
nitrogen, and chlorophyll contents of the cells. To improve the simulation of the phytoplankton variables,
chlorophyll‐a data from the European Space Agency Ocean‐Color Climate Change Initiative (OC‐CCI) for
2008 and 2009 are assimilated with an ensemble Kalman filter. Utilizing the multivariate cross covariances
estimated by the model ensemble, the assimilation constrains all model variables describing the two
phytoplankton groups. Evaluating the assimilation results against the satellite data product SynSenPFT
shows an improvement of total chlorophyll and more importantly of individual phytoplankton groups. The
assimilation improves both phytoplankton groups in the tropical and midlatitude regions, whereas the
assimilation has a mixed response in the high‐latitude regions. Diatoms are most improved in the major
ocean basins, whereas small phytoplankton show small deteriorations in the Southern Ocean. The
improvement of diatoms is larger when the multivariate assimilation is computed using the
ensemble‐estimated cross covariances between total chlorophyll and the phytoplankton groups than when
the groups are updated so that their ratio to total chlorophyll is preserved. The comparison with in situ
observations shows that the correlation of the simulated chlorophyll of both phytoplankton groups with
these data is increased whereas the bias and error are decreased. Overall, the multivariate assimilation of
total chlorophyll modifies the two phytoplankton groups separately, even though the sum of their individual
chlorophyll concentrations represents the total chlorophyll.

Plain Language Summary Different types of plankton are simulated globally with ocean
ecosystem models. To further increase their prediction quality, we combine the model with satellite
observations of chlorophyll using modern methods called data assimilation. This method allows us not only
to improve the modeled total chlorophyll but also the simulation of the different plankton types. Further, we
can fill gaps in the satellite data that results, for example, from clouds. Thus, we are able to better predict
the ocean ecosystem, which in turn helps to understand climate change patterns and carbon cycle processes.

1. Introduction

The biogeochemistry of the ocean plays an important role in the carbon cycle and is expected to be affected
by climate change (Friedlingstein et al., 2001). The available resources to study ocean biogeochemistry and
its role in climate are satellite data, in situ observations, and numerical models, each with specific
uncertainties and limitations. One of the largest sources of information to test our understanding of marine
biogeochemistry is ocean chlorophyll estimates available from satellite data, which provide global coverage
of the first optical depth of the ocean but also miss data mainly due to clouds, aerosols, sun glint, and below
the first optical depth (e.g., Hammond et al., 2017). Errors in the satellite chlorophyll data due to the indirect
measurement via remote sensing and exploration of the optical signal can be higher than 35% (e.g.,
Maritorena et al., 2010). However, data products are now available with uncertainties on a pixel‐by‐pixel
basis (Jackson et al., 2017). In situ observations are more accurate but very sparse in time and space (e.g.,
see Valente et al., 2016). To derive inferences on the ocean carbon cycle from chlorophyll data, from either
in situ measurements or satellites, one further needs an assumption on the carbon‐to‐chlorophyll ratio of
phytoplankton, which can vary over an order of magnitude. Biogeochemical models can give full spatial
and temporal coverage of the world ocean and usually include carbon state variables directly, but their
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accuracy is limited by the model resolution, by inherent approximations and parameterizations, and by
uncertainties in model forcing and initial conditions. Data assimilation combines the information from
model dynamics and observations. It can fill observational data gaps and can transfer information from
the observations to unobserved model variables.

Several recent studies have focused on the assimilation of satellite ocean chlorophyll to coupled ocean‐
biogeochemical models both on regional and global scales. Natvik and Evensen (2003) successfully
assimilated remotely sensed chlorophyll data in the North Atlantic into a model. The assimilation of surface
chlorophyll improved phosphate concentrations in the eastern Mediterranean Sea (Triantafyllou et al.,
2007). Ourmières et al. (2009) assimilated nitrate climatology into a model of the North Atlantic with the
objective to estimate basin‐scale patterns of oceanic primary production. Ciavatta et al. (2011) assimilated
Moderate Resolution Imaging Spectroradiometer (MODIS) chlorophyll data for the year 2006 in the western
English Channel. Rousseaux and Gregg (2012) studied the effect of climate variability on the phytoplankton
community in the Pacific Ocean assimilating surface chlorophyll from the Sea‐viewing Wide Field‐of‐view
Sensor (SeaWiFS). Simon et al. (2015) assimilated both physical and biogeochemical data sets for estimating
phytoplankton and zooplankton mortality rate in the North Atlantic and Arctic Oceans on a weekly basis.
Recently, Ciavatta et al. (2016) generated a reanalysis for the northwest European Shelf by assimilating
satellite total chlorophyll data. Further, Ciavatta et al. (2018), on the same domain, assimilated a data set
of phytoplankton functional types (PFTs), which was generated to be compatible with their model. They
found that the phytoplankton size class assimilation improved the phytoplankton community structure
and total chlorophyll, compared to a simulation which only assimilated total chlorophyll data.

On a global scale, Tjiputra et al. (2007) assimilated seasonal chlorophyll and nutrient data giving a three‐
dimensional adjoint model to analyze the sensitivity of model‐generated chlorophyll and optimize ecosys-
tem parameters. Nerger and Gregg (2007) demonstrated that the assimilation of SeaWiFS chlorophyll data
with an ensemble Kalman filter (EnKF) improved the estimates of primary production and generated a 7‐
year reanalysis of surface chlorophyll concentrations in a global functional type model, while Nerger and
Gregg (2008) further corrected model biases. Gregg (2008) assimilated daily surface chlorophyll from
SeaWiFS and MODIS‐Aqua into a global model using a conditional relaxation method. The study discusses
the assimilation impact in different oceanic basins where both bias and uncertainty were reduced by the
assimilation. Ford et al. (2012) assimilated chlorophyll‐a improving the surface chlorophyll and updating
other biogeochemical variables through a mechanistic nitrogen balancing scheme. Gregg and Rousseaux
(2014) discussed the global decadal trends of pelagic ocean chlorophyll, and Rousseaux and Gregg (2015)
assessed the trends in phytoplankton composition. Both studies assimilated chlorophyll, but they did not dis-
cuss the effect of the assimilation itself. Xiao and Friedrichs (2014) assimilated actual and synthetic satellite
data for particulate organic carbon, size‐differentiated chlorophyll, and total chlorophyll into a one‐
dimensional model for optimizing biogeochemical parameters. Ford and Barciela (2017) generated a
reanalysis by assimilating two different satellite chlorophyll data sets from the European Space Agency
Ocean‐Color Climate Change Initiative (OC‐CCI, http://www.esa‐oceancolour‐cci.org/) and GlobColour
(Maritorena et al., 2010; http://www.globcolour.info/). They found that both data sets have a similar influ-
ence in the assimilation, but OC‐CCI data had a better spatial coverage than GlobColour data. Basically, the
above studies demonstrate successful assimilation on global and regional scales improving at least the
observed fields. Recently, Skákala et al. (2018) assimilated PFTs, univariately on the northwest European
Shelf improving the PFTs and total chlorophyll and discussed the impact on unassimilated variables.
When total chlorophyll data are assimilated into a model simulating multiple phytoplankton groups, the
correction of the total chlorophyll needs to be distributed over the different groups. There are two
approaches to achieve this. The first one was applied, for example, by Gregg (2008), who used the condition
to keep the ratio of the chlorophyll from each phytoplankton group to total chlorophyll constant. So the rela-
tive abundance of the phytoplankton groups is not changed by the assimilation but only by the model
dynamics. The same condition was used by Nerger and Gregg (2007) with an EnKF. This approach is useful
when one does not have additional information about the phytoplankton community. However, a better
assimilation result should be expected from the application of multivariate ensemble assimilation that
allows the relative abundances to change. In this case one uses cross covariances between total chlorophyll
and the PFTs, which are dynamically estimated by the ensemble of model states. Thus, an increment of total
chlorophyll will be transferred to increments of unobserved PFTs, but possibly also to chlorophyll
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concentrations below the ocean surface. Apart from correcting different PFTs of a model, the multivariate
assimilation can also be used to update other model variables like nutrients.

Only a few assimilation studies have considered the multivariate effect on phytoplankton groups since most
studies only use models that simulate a single phytoplankton group (e.g., Doron et al., 2013; Ford et al., 2012;
Ford & Barciela, 2017; Hu et al., 2012). In a first study applying multivariate ensemble assimilation examin-
ing phytoplankton groups, Ciavatta et al. (2011) assimilated chlorophyll data in the western English
Channel for 2006. Their assimilation improved most of the biogeochemical variables, both assimilated
and nonassimilated, but the model estimate of dinoflagellates was not improved. The improvements
happened at the assimilation times, while there were no significant improvements for weekly forecasts
computed in between the assimilation times. A reverse strategy to Ciavatta et al. (2011) was taken by
Ciavatta et al. (2018). They assimilated a data set of PFTs, which was generated to be compatible with their
model, and assessed the assimilation effect on both the PFTs and total chlorophyll. They found that the PFTs
assimilation improved the phytoplankton community structure and total chlorophyll, compared to a
simulation which assimilated total chlorophyll data. However, diatoms and nanophytoplankton were
overestimated. Shulman et al. (2013) performed multivariate assimilation of the underwater light field, that
is, optical properties, which improved PFTs and nitrate field in the Monterey Bay region.

To gainmore insight into themultivariate assimilation effects on PFTs, this study assesses the assimilation of
satellite chlorophyll‐a (hereafter chlorophyll) data in a global configuration of the Regulated Ecosystem
Model‐2 (REcoM2; see Hauck et al., 2013) coupled with the MITgcm ocean circulation model (MITgcm
Group, 2018). The assimilation is conducted every 5 days over the years 2008 and 2009 with an EnKF which
is configured so that the assimilation directly changes all variables that describe the two PFTs (diatoms and
small phytoplankton) of REcoM2 through cross covariances. In addition, a configuration of the EnKF is used
in which the PFT concentrations are changed so that their ratio to the total chlorophyll is preserved. The par-
ticular aim of the study is to assess how the multivariate assimilation influences the chlorophyll concentra-
tion of the two distinct PFTs of REcoM2 and how this effect varies regionally.

The paper is organized as follows: The model, data assimilation technique, data utilized, and the setup of the
numerical experiments are described in section 2. The results of the assimilation are described in section 3,
while section 4 discusses the success of the method and how the model state is affected. Section 5 provides
the general conclusions.

2. Methods
2.1. The MITgcm‐REcoM2 Model

The physical model utilized for our study is the MITgcm (Marshall et al., 1997; MITgcm Group, 2018). We
use a global model configuration excluding the Arctic basin, extending from 80°N to 79°S. The resolution
along longitude is a constant 2°. In the latitudinal direction the resolution is 2° in the Northern
Hemisphere and is getting gradually finer to 0.38° from the equator toward the Antarctic, with additional
increased resolution in a band around the equator. In the vertical it has 30 layers varying in thickness from
10 m at the surface to 500 m toward the bottom. The model configuration includes a prognostic sea ice com-
ponent. At 80°N the model has a solid boundary; that is, there is a no‐flux boundary there.

The ecosystemmodel REcoM2 belongs to a class of quota models in which the photo‐acclimation is based on
Geider et al. (1998). Early versions of REcoM2 were developed by Schartau et al. (2007) and Hohn (2009). It
has compartments for phytoplankton, zooplankton, detritus, and main inorganic and dissolved nutrients.
The highest trophic level in the model is zooplankton. Overall, it has 21 biogeochemical tracers. REcoM2
is coupled with MITgcm (Losch et al., 2008) and is used for large‐scale simulations with focus on the
Southern Ocean (Hauck et al., 2016; Hauck & Völker, 2015). REcoM2 simulates two phytoplankton groups:
small phytoplankton and diatoms. The two groups are parametrized in such a way that the diatom group has
a higher maximum growth rate and a larger initial slope of photosynthesis‐irradiance curve than the small
phytoplankton. Although the nutrient uptake half‐saturation constant is higher for diatoms, this gives them
a competitive advantage under high nutrient conditions. The small phytoplankton group is assumed to con-
tain a small (in the current run 10%) fixed fraction of calcifiers (coccolithophores), with a constant calcium
carbonate/organic carbon ratio. The minimum concentrations of the biogeochemical variables in the model
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are limited to a value of 10−4 in the respective model units, which are
millimoles per cubic meter for carbon‐ and nitrogen‐based biomass and
milligrams per cubic meter for chlorophyll. Detailed descriptions about
the coupling and configuration can be found in Hauck et al. (2013).

2.2. Data Assimilation

For the data assimilation, the Parallel Data Assimilation Framework
(Nerger & Hiller, 2013; http://pdaf.awi.de) was coupled to MITgcm‐

REcoM2. The assimilation framework provides the environment for
ensemble simulations and different ensemble‐based Kalman filters. The
assimilation methodology used here is the local error‐subspace transform
Kalman filter (LESTKF; Nerger et al., 2012), which was, for example,
applied by Chen et al. (2017) for assimilating sea ice concentration and
thickness. Compared to the classical EnKF (Evensen, 1994), the
LESTKF is computationally more efficient because it directly accounts
for the fact that the degrees of freedom for the assimilation are given by
the ensemble size. Further, the LESTKF has lower sampling error than
the EnKF, as it does not require to perturb the observations (see Nerger
et al., 2007, for a discussion on this aspect for the related Singular

‘Evolutive’ Interpolated Kalman (SEIK) filter). The analysis step is performed without actually restarting
the model program in our data assimilation setup.

The localization scheme updates each vertical column of the model separately using only observations
within a prescribed horizontal influence radius of 5° around the water column. Within this radius the obser-
vation influence is damped toward 0 with increasing distance. Next to the horizontal localization, a vertical
localization is introduced. For this, the assimilation increment is first computed for the full vertical column.
Then, the increment is tapered with a linear weight function of depth so that it is reduced to 0 at a depth
of 75 m.

Given that chlorophyll is lognormally distributed (Campbell, 1995) the data assimilation is performed using
log‐transformed concentrations. For the ensemble states this is achieved by the direct computation of the
logarithm. The transformation assures statistical consistency and positiveness of the concentrations
(Nerger & Gregg, 2007). Since the assimilation of logarithmic concentrations can result in larger increments
compared to an assimilation of actual concentrations, the size of the logarithmic assimilation increments is
limited to <1.0. Given that the assimilation uses the natural logarithm this implies that actual concentra-
tions are changed at most by a factor of 2.718.

2.3. Assimilation and Evaluation Data
2.3.1. Assimilated Satellite Data of Total Chlorophyll Concentration
The assimilated chlorophyll data were taken from the release version 3.1 of the OC‐CCI (Sathyendranath
et al., 2018; https://doi.org/10.5285/9c334fbe6d424a708cf3c4cf0c6a53f5) of the European Space Agency
(http://www.esa‐oceancolour‐cci.org/). The data product comprises globally merged Medium‐Resolution
Imaging Spectrometer, Aqua‐MODIS, SeaWiFS, and Visible Infrared Imaging Radiometer Suite data. We
used the 5‐day composite of chlorophyll concentrations, error information in the form of the logarithmic
root‐mean‐square (RMS) deviation and the bias. Figure 1 shows the spatially varying RMS deviation aver-
aged for 2008 and 2009, averaged on the model grid. The error is higher near to coastal regions, continental
shelves, and higher latitudes, whereas regions away from the shelf or deeper oceans have the smallest error.
The 5‐day composite error information is used to specify the observation error for our assimilation experi-
ments. To obtain the logarithmic concentration and associated errors for the 5‐day composites used in the
assimilation, we followed the averaging procedure described in the OC‐CCI product manual (Grant et al.,
2015; see also Ciavatta et al., 2016).
2.3.2. Satellite‐Derived Chlorophyll Concentration for Specific PFTs
For the global evaluation of the two phytoplankton groups in our model, the Synergistic hyper‐ and multi-
spectral satellite PFT (SynSenPFT) product by Losa et al. (2017a) was used. This is a synergistic product of
two satellite retrieval algorithms. The large‐scale information (0.5° latitude times 0.5° longitude and weekly
resolution) on the three phytoplankton‐types diatoms, coccolithophores, and cyanobacteria is derived with

Figure 1. Per pixel logarithmic observation error of total chlorophyll pro-
vided by the Ocean‐Color Climate Change Initiative data set averaged in
the model grid and for 2008 and 2009. The global domain is divided into five
regions marked by the red lines: Northern, northern central region (NCR.),
equatorial (EQU.), southern central region (SCR), and Antarctic basin.
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the analytical method PhytoDOAS (Bracher et al., 2009; Bracher, Dinter, et al., 2017; Sadeghi et al., 2012),
which resolves the spectral imprints of each individual group from the spectrally highly resolved measure-
ments of the sensor SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY
(SCIAMACHY)mounted on Envisat. This is combined with small‐scale information (4 km by 4 km and daily
resolution) on the three groups obtained using the empirical abundance‐based OC‐PFT (Ocean Color‐
Phytoplankton Functional Type) method (Hirata et al., 2011; Soppa et al., 2014, 2016; supplement in Losa
et al., 2017a). The OC‐PFTmethod uses a statistical model relating a fraction of retrieved PFTs to total chlor-
ophyll. For the SynSenPFT input data the OC‐PFT method is applied to total chlorophyll from the OC‐CCI.
Both data types are then combined into the synergistic SynSenPFT product using optimal interpolation.

Because the OC‐PFT estimates depend on OC‐CCI total chlorophyll concentrations, which are assimilated
here, the SynSenPFT product (Losa et al., 2017a; products available at Losa et al., 2017b) is not a completely
independent data set. However, the partitioning of total chlorophyll among different PFTs in the OC‐PFT
algorithm is fully independent from the model dynamics in the MITgcm‐REcoM. Furthermore,
SynSenPFT is a combined product of OC‐PFT and PhytoDOAS PFT chlorophyll. The latter uses a PFT‐
specific spectral optical “fingerprint” for distinguishing between various phytoplankton types which is com-
pletely different from the empirical OC‐PFT algorithm. Accordingly, the combined SynSenPFT data set
depends only partially on the OC‐CCI total chlorophyll data product.

The SynSenPFT data product provides daily chlorophyll concentrations for diatoms, coccolithophores, and
cyanobacteria for the global ocean on a 4‐km sinusoidal grid for the period from August 2002 to March 2012.
To compare the data assimilation results with the SynSenPFT data, 5‐day composites were computed and
then averaged on the model grid for 2008 and 2009. In our evaluation, the small phytoplankton of
REcoM2 is compared with the sum of coccolithophores and cyanobacteria of the SynSenPFT data, which
is necessarily an approximation since also other small‐sized groups can contribute significantly to this size
class (e.g., other groups of prymnesiophytes, chlorophytes, and pelagophytes). In our evaluation we have
excluded the period from 15 December 2008 to 15 January 2009 because the number of hyperspectral input
data for the PhytoDOAS algorithm was very low after removing contaminants (due to heating of
SCIAMACHY detectors during this period; for more details see https://earth.esa.int/documents/700255/
708683/RMF_0140_SCI_NL__1P_v1.1_Dec2016.pdf) so that the SynSenPFT data within this time frame
was mostly determined by the OC‐PFT chlorophyll concentrations.

The uncertainties of the SynSenPFT data have implications on their applicability to evaluate the assimilation
output. Overall, uncertainties result from the empirical OC‐PFT algorithm, which uses the already uncertain
OC‐CCI total chlorophyll concentrations and the error approximations for the combination of both OC‐PFT
and PhytoDOAS data. In particular, the PhytoDOAS errors are assumed to be constant over space and time,
while they are expected to be spatially and temporally varying. Further, there are representation errors due
to different temporal and spatial scales represented in the two input data sets for SynSenPFT. Another repre-
sentation error results from the different grid resolutions used in our model compared to the 4‐km resolution
of SynSenPFT. In addition, there is a mismatch between the three PFTs represented in the SynSenPFT data
compared to the two PFTs simulated by REcoM2. A detailed discussion of the possible data errors in
SynSenPFT is provided by Losa et al. (2017a). An indication of the data quality is provided by the comparison
to in situ data using scatterplots discussed in section 3.3.
2.3.3. In Situ Observations of Total and PFT‐Specific Chlorophyll Concentrations
Further evaluation of the model results was performed with a large in situ data set by Soppa et al. (2017).
The data set contains chlorophyll concentrations for diatoms, haptophytes, and prokaryotes. It has been
derived by using the Diagnostic Pigment Analysis by Vidussi et al. (2001) and Uitz et al. (2006) modified
as in Hirata et al. (2011) and Brewin et al. (2015) of in situ phytoplankton pigment data based on high‐
precision liquid chromatography and compiled from several databases and individual cruises (see Losa
et al., 2017a). In our analysis, we approximate the in situ small phytoplankton with the sum of haptophytes
and prokaryotes. The in situ data set contains also total chlorophyll concentrations that are derived from
the sum of monovinyl chlorophyll‐a, chlorophyllide‐a, and divinyl‐chlorophyll‐a concentrations. Only mea-
surements with concentrations of at least 0.01 mg/m3 were taken into account for our analysis since lower
values appear to be unrealistic (see Losa et al., 2017a). For the comparison with the model fields, the nearest
model grid point was used. Further, the data over a 5‐day window is mapped to the end of the window
when the assimilation is performed. For the assimilation period extending through the years 2008 and
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2009, the in situ data provide 1,077 points of total chlorophyll concentra-
tions to be compared to the model simulations.

The in situ data are not completely independent from the SynSenPFT
data. The fraction which is not colocated with OC‐CCI data was used to
determine the empirical functions used in the OC‐PFT method.
However, the colocated fraction of the data was only used in the valida-
tion of the SynSenPFT data set and is hence independent. Also, for the
in situ data there are representation errors due to differences in temporal
and spatial scales which limit the comparison of these data with the
model results.

2.4. Simulation Strategy

To prepare the assimilation, the years 2003 to 2006 were used to spin‐up
the coupled model (MITgcm‐REcoM2) with a single ensemble member.
The initial conditions at the start of the simulation (from January 2003)
are from World Ocean Atlas 2009 (Levitus et al., 2010) temperature, sali-
nity and, macronutrients (Dissolve Inorganic NitrogenDissolve

Inorganic Nitrogen/Si) (Garcia et al., 2010), Global Data Analysis Project values for Dissolve Inorganic
Carbon, and alkalinity (Key et al., 2004). Iron was initialized with concentrations obtained from a previous
run by the PISCESmodel (Aumont et al., 2003). All other tracers were initialized with arbitrary small values.
Atmospheric forcing are from Coordinated Ocean‐Ice Reference Experiment (CORE) forcing (Large &
Yeager, 2004), and a dust deposition field to calculate iron flux is from Mahowald (2003). For the year
2007 we perform an ensemble spin‐up. The data assimilation was applied for 2 years from January 2008
to December 2009.

To generate ensemble members, we perturbed sensitive biogeochemistry parameters of the ecosystem
model. Following earlier studies (Ciavatta et al., 2016; Doron et al., 2013; Hu et al., 2012; Jones et al.,
2016), where the authors tried to account for model deficiencies due to uncertainties in the biogeochemical
model parameter specification, we introduced some stochasticity to the model by perturbing eight biogeo-
chemical parameters. In particular, we perturbed the chlorophyll degradation rate, the initial slope of the
photosynthesis‐irradiation curve, and the maximum specific rate of photosynthesis for both phytoplankton
groups. In addition, we perturbed the maximum grazing rate and the grazing efficiency of the zooplankton
as the chlorophyll concentrations also showed sensitivity to these parameters. The parameters were jittered
assuming a lognormal distribution with a relative variance of 0.125 for all parameters. Using the perturbed
parameters, an ensemble of 20 states was generated by a spin‐up run over the year 2007 referred to as
ensemble spin‐up.

The data assimilation experiment was conducted with 5‐day forecast/analysis cycles with the previously
mentioned horizontal and vertical localization. To stabilize the data assimilation, the model error covar-
iances are inflated in each analysis step using a forgetting factor of 0.8; that is, the inflation factor is the
inverse of this value.

To maintain the stoichiometry, the multivariate data assimilation directly updates the eight fields of the
biogeochemical model that describe the two phytoplankton groups. For both small phytoplankton and dia-
toms these are the phytoplankton content of carbon, nitrogen, and chlorophyll. Further calcium carbonate
is updated for small phytoplankton and biogenic silica for diatoms. Other variables of REcoM2, like nutri-
ents, zooplankton, and detritus are not included in the state vector and are hence only influenced indirectly
by the assimilation via the model dynamics. This configuration of the state vector was a design decision
which allows us to focus on the assimilation effect on the phytoplankton. Two configurations of the filter
update were used: in the first, the eight variables describing the PFTs were updated through the
ensemble‐estimated cross covariances to total chlorophyll. In the second configuration the assimilation
increment to total chlorophyll was distributed over the two phytoplankton groups so that their ratio to
the total chlorophyll was preserved. The discussion below focuses on the first approach, which yielded bet-
ter estimates, while the assessment of ratio‐preserving approach is only discussed for the SynSenPFT data
in Tables 1 and 2.

Table 1
RMS Errors for Model Small Phytoplankton Compared to SynSenFPT Data
Separated Over Zonal Regions for the Free Run, Assimilation Forecast,
and Analysis

Small phytoplankton

Cross covariance Ratio preserving

Domain Free run Forecast Analysis Forecast Analysis

Global 0.609 0.539 0.507 0.531 0.503
Northern 0.948 0.927 0.901 0.918 0.884
NCR 0.47 0.424 0.390 0.428 0.413
Equatorial 0.427 0.345 0.281 0.328 0.285
SCR 0.417 0.349 0.318 0.348 0.328
Antarctic basin 0.77 0.679 0.649 0.643 0.598

Note. RMS errors are shown for the multivariate updates with cross cov-
ariance and preserving the ratio of the PFTs. The bold values indicate
the smallest value in each region. RMS = root‐mean‐square;
NCR = northern central region; SCR = southern central region.
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3. Results

To discuss the results of the experiments, we first focus on the total chlor-
ophyll. Subsequently we discuss the effect of the assimilation on the two
phytoplankton groups and validate the assimilation performance with
satellite and in situ data.

3.1. Assimilation Effect on Total Chlorophyll

As an example of the influence of the data assimilation on total chloro-
phyll, Figure 2 shows the concentration in the topmost model layer in
milligrams per cubic meter from the (a) free run and the (b) assimilation
experiment on 20 April 2018 during the spring bloom in the Northern
Hemisphere. Further, the 5‐day composites for the assimilated OC‐CCI
total chlorophyll data and the sum of PFTs chlorophyll from SynSenPFT
data projected onto the model grid are shown in Figures 2a and 2b. For
the assimilation experiment the analysis state, that is, the concentration
directly after computing the analysis, is shown. Figures 2e and 2f show

the difference between free run and OC‐CCI data and between assimilation run and OC‐CCI data. The free
run reproduces the main spatial patterns of the OC‐CCI data. A particular feature of the model is visible in
the Southern Hemisphere where the model shows concentrations of up to 0.225 mg/m3 around 40°S and
increased concentrations of around 0.5 mg/m3 as far south as 65°S. In contrast, the satellite data show a band
of higher concentrations of up to about 0.5 mg/m3 around 40°S and lower concentrations further south. Due
to the light conditions, the satellite data do not cover the region south of 60°S at this time of the year.

The chlorophyll concentration field from the assimilation experiment is closer to the satellite data. In the
northern Atlantic and Pacific, in the equatorial region and the Southern Ocean the assimilation reduces
the concentrations, bringing the model closer to the satellite data. The assimilation also improves regions
with lower concentrations by increasing the chlorophyll concentrations. These are the Yellow Sea, the
Gulf of Oman, and off the coast of Peru. The low‐concentration regions of the subpolar gyres north and south
of the equator in the Atlantic and Pacific and in the Indian Ocean between the equator and 40°S are neither
improved nor deteriorated.

Figure 2d also shows the sum of the three functional types of the SynSenPFT data as an approximation to
total chlorophyll. Overall, the chlorophyll concentrations in the SynSenPFT and OC‐CCI (Figure 2c) data
sets are very similar. However, compared to the OC‐CCI data, the SynSenPFT total sum of the three groups
shows higher concentrations in the equatorial Pacific around 40°S and in most parts of the North Atlantic. A
further assessment regarding the representation of the sum of the three phytoplankton groups of SynSenPFT
(representing total chlorophyll) is discussed in section 3.3.

To quantify the global influence of the data assimilation, Figure 3 shows the RMS error of the modeled total
surface chlorophyll concentrations with respect to the assimilated OC‐CCI (Figure 3a) and the validation
data from SynSenPFT (Figure 3b) for the years 2008 and 2009. For statistical consistency, the RMS error
(RMSE) is computed from the logarithmic (log 10) concentrations in intervals of 5 days, according to the ana-
lysis cycles. Shown are the RMSEs for the free run, the 5‐day forecasts, and the analysis states.

The analysis estimates (red) show the smallest deviation from the observations, while the free run (black)
has the largest errors. The improvement due to the data assimilation ranges between 0.15 and 0.2. The
RMSE of the forecast (blue) is consistently higher than that of the analysis showing that the analysis step
reduces the deviation from the observations. This is the expected effect of the data assimilation when com-
paring to the assimilated OC‐CCI data. In all three cases, the RMSEs show a seasonal cycle with elevated
errors before the spring bloom in both hemispheres and after the spring bloom in the Northern
Hemisphere. This behavior is caused by low model concentrations in the high latitudes compared to the
SynSenPFT data just before the spring bloom in case of small phytoplankton and after the spring bloom
for diatoms.

The temporal variation of the errors is similar for the assimilated OC‐CCI data and the SynSenPFT data,
which represent only three functional groups. However, the RMSEs with regard to the SynSenPFT data

Table 2
RMS Errors for Model Diatoms Compared to SynSenFPT Data Separated
Over Zonal Regions for the Free Run, Assimilation Forecast, and Analysis
Analogous to Table 1

Diatoms

Cross covariance Ratio preserving

Domain Free run Forecast Analysis Forecast Analysis

Global 1.96 1.75 1.71 1.94 1.91
Northern 1.77 1.52 1.44 1.71 1.65
NCR 2.11 1.89 1.88 2.08 2.07
Equatorial 1.91 1.70 1.65 1.89 1.85
SCR 2.2 2.01 1.99 2.19 2.18
Antarctic basin 1.66 1.44 1.42 1.63 1.6

Note. RMS = root‐mean‐square; NCR = northern central region;
SCR = southern central region.
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Figure 2. Total chlorophyll concentration in milligrams per cubic meter on 20 April 2008 during the spring bloom. (a) Free run, (b) data assimilation analysis state,
(c) assimilated OC‐CCI data, (d) SynSenPFT data derived from the sum of the chlorophyll concentration of the three groups, (e) difference of free run and OC‐CCI
data, and (f) difference of assimilation and OC‐CCI data. OC‐CCI = Ocean‐Color Climate Change Initiative.

Figure 3. Global RMS errors for total chlorophyll of the model with respect to (a) OC‐CCI data and (b) SynSenPFT data.
OC‐CCI = Ocean‐Color Climate Change Initiative. RMS = root‐mean‐square.
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are up to 0.1 higher. Overall, the RMSEs show that the data assimilation successfully corrects the total
chlorophyll concentrations.

3.2. Assessment of Single Phytoplankton Groups With SynSenPFT Data

The SynSenPFT data set provides individual concentrations for the phytoplankton groups of diatoms and
some small phytoplankton (coccolithophores plus cyanobacteria). Here we use these data to assess the influ-
ence of the data assimilation on the two phytoplankton groups of REcoM2. While the sum of the chlorophyll
concentrations of both groups is updated directly by assimilating the total chlorophyll, which is observed by
the OC‐CCI satellite data, the biomass of the single phytoplankton groups is updated by the multivariate
assimilation through the ensemble‐estimated cross covariances. Thus, the SynSenPFT data allow us to assess
how far this multivariate assimilation is successful. Figure 4 shows RMSEs for the two individual phyto-
plankton groups for the years 2008 and 2009, for the free model run, the forecast, and the analysis

Figure 4. RMS error of chlorophyll concentration with regard to SynSenPFT data for individual phytoplankton groups:
(a–f) small phytoplankton, (g–l) diatoms in the global domain and five subdomains. RMS = root‐mean‐square.
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estimates. Figures 4a and 4g show the RMSEs for the global domain. In general, both groups show improve-
ments due to assimilation. The magnitude of RMSEs is overall higher for diatoms than for the small phyto-
plankton. This is caused by a bias between SynSenPFT and the model caused by relatively high diatom
concentration in the SynSenPFT data, and potentially too low concentrations in the model, in the low‐
concentration regions of the subtropical gyres (see Losa et al., 2017a).

To quantify the regional effect of the data assimilation, we split the global domain into five zonal bands
(northern 80–40°N, northern central region 40–10°N, equatorial 10°N–10°S, southern central region
10–40°S, and Antarctic basin 40–79°S). The RMSEs in these bands are shown from the north to south in
Figures 4b–4f and Figures 4h–4l. The RMSEs in the central and equatorial regions show low variability of
the RMSEs for both small phytoplankton and diatoms. In the higher latitudes in the Northern and
Southern Hemispheres a clear seasonal variability is visible for both the groups. However, the variability
is distinct for small phytoplankton and diatoms, as the highest RMSEs of the small phytoplankton appear
during the spring bloom, while for diatoms the errors are higher in the late summer.

Both Figures 3 and 4 show that the concentration of total chlorophyll and of the phytoplankton groups is
improved not only in the analysis state but also in the 5‐day forecasts. The forecast deteriorates the analysis
fields only slightly. However, the forecast compared to the analysis increases the error by varying magni-
tudes in different regions, for total chlorophyll and phytoplankton groups; for example, the central regions
show smaller error increases than the equatorial region. The error increase in Figure 3 is visually larger than
in Figure 4. However, for the total chlorophyll the average error increase is 0.05, while it is 0.032 for small
phytoplankton and 0.04 for diatoms (see Tables 1 and 2). Thus, the combined effect of both phytoplankton
groups is well in the range of the error increase of total chlorophyll.

The time‐mean RMSEs are summarized in Tables 1 and 2. Here the RMSEs are shown for the filter config-
uration using the cross covariances as well as for the case that the PFTs fields are updated by preserving their
ratio to total chlorophyll (rightmost columns). For the small phytoplankton both update variants provide
very similar RMSEs with differences up to 1%. In contrast, the RMSEs for the diatoms are about 10% lower
when the multivariate assimilation is computed according to the cross covariances compared to the ratio‐
preserving assimilation update. Thus, using the correlation information between total chlorophyll and the
diatoms can significantly improve the estimate of these PFTs.

Figure 4 shows that for most of the time, the data assimilation reduces the RMSEs. However, there are spe-
cial periods in which the RMSE of at least one of the two groups shows a different behavior. For example, in
the Antarctic basin around mid‐August 2008, the RMSE is overall high for the small phytoplankton.
However, the assimilation results in a significantly lower error than the free run. The situation changes until
the beginning of November 2008 when the RMSEs are overall lower than around mid‐August 2008, but the
error level is the same for both the free run and the assimilation. This behavior repeats again 1 year later. The
reasons for this change lie in the beginning of spring in the Southern Hemisphere and in the spatial coverage
of the satellite data. In mid‐August the chlorophyll concentrations are generally low in the Southern Ocean.
The satellite data are available only north of about 50°S. Between 40°S and 50°S satellite data mainly show
higher concentrations than the model. The data assimilation can increase these low concentrations, hence
reducing the RMSEs. The situation changes in the beginning of November. Now the blooming regions in
the model show a significantly higher concentration of chlorophyll from small phytoplankton, and also dia-
toms, than the satellite data. The effect of the assimilation is now spatially more variable with regions where
the deviations from the observations of small phytoplankton are reduced, while they are increased at others.
The RMSE shown in Figure 4 is a spatial average. Here the effects of the assimilation average out so that the
RMSE is not reduced by the assimilation at this time. This averaging effect is similarly present for the dia-
toms, so that also here the RMSE around the beginning of November 2008 is not reduced by the
data assimilation.

Another particular effect of the assimilation on small phytoplankton is visible in the Antarctic basin around
the beginning of February 2009. Here the RMSEs from the assimilation are larger than those from the free
run for both the forecast and the analysis fields. In contrast, the diatoms are strongly improved. Actually, in
Figure 4 it is visible that the RMSE for the analysis field of small phytoplankton is slightly higher at this time
than for the forecast. Thus, the data assimilation increases the error, indicating that the ensemble‐estimated
cross covariances between total chlorophyll and small phytoplankton are not realistic at this time and
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location. While the satellite data show higher concentrations than the model, the data assimilation only
increases the chlorophyll concentrations of diatoms, while those for small phytoplankton are reduced. In
combination, the RMSEs of total chlorophyll are reduced at this time because the effect on the diatoms
dominates. A more detailed analysis shows that the concentration of chlorophyll from the small
phytoplankton is below 10−3 mg/m3 at many locations where the small phytoplankton is further reduced
by the assimilation. Since at the same time the concentration of the diatoms is much larger, the total
chlorophyll is only marginally influenced by the reduced concentration of the small phytoplankton, while
the increase of diatoms is much more relevant. However, the RMSEs in Figure 4 are computed from the
logarithmic concentration. Since this yields relative errors, they look large for the small phytoplankton.
The cross correlations for 13 February 2009 between total chlorophyll and the PFTs are shown in
Figures 5b and 5d. Here negative correlations are visible for small phytoplankton, for example, around
90°E, 60–65°S, while the correlation is strongly positive for diatoms. This region is one of the places
where the small phytoplankton is deteriorated, while diatoms are improved. The unrealistic cross
correlations for small phytoplankton appear to be a side effect of the model behavior to enforce a lower
concentration limit of 10−4 mg/m3. If the assimilation update reduces the concentration in an ensemble
member below this limit, the model will restore it to the limit. When this modification happens in some
ensemble members, it will change the cross covariances so that they are no longer generated by the true
model dynamics and can hence be unrealistic.

A similar effect in the RMSE is visible in the northern region around the beginning of November 2008.
Again, the RMSEs for small phytoplankton for the assimilation are larger than those of the free run and
the analysis error is slightly larger than the forecast error. This effect mostly occurs on the North Pacific.
Here the model underestimates the concentrations. The chlorophyll from diatoms is strongly improved
(i.e., increased) by the data assimilation, while small phytoplankton is decreased in the Bering Sea. As
Figure 5a shows, the cross correlation of small phytoplankton with total chlorophyll is again negative, while
it is strongly positive for diatoms (Figure 5c).

Figure 5. Correlation of the model phytoplankton functional types with model total chlorophyll for (a and c) 20 October 2008 and (b and d) 13 February 2009.
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The time‐averaged effect of the data assimilation is shown in Figure 6. Here the quantity “improvement”
averaged over the 2 years of the data assimilation experiment is shown. At a given analysis time, the
improvement is defined as the absolute deviation of the free run from the observational data set minus
the absolute deviation of the assimilation analysis state from the observational data set. The improvement
is computed for log 10 concentrations at each analysis time and then averaged over the two years 2008
and 2009. A positive improvement shows that the data assimilation reduces the deviation from the observa-
tions, while a negative value shows an increased deviation or deterioration. Since the comparison is made on
a log 10 scale, a positive value of one shows that the model estimate with data assimilation is 1 order of mag-
nitude closer to the observations compared to the free run.

The improvement of total chlorophyll with regard to the assimilated OC‐CCI data is shown in Figure 6a.
Improvements are seen almost everywhere in the global ocean with different amplitude. The largest
improvements reaching a value of 0.5 are visible in the equatorial Pacific, in the southern Pacific, and
Indian Ocean just south of 40°S. Further significant improvements are visible in both the North Pacific
and Atlantic between 40°N and 50°N and in higher latitudes of the Northern Hemisphere. Small deteriora-
tions up to 0.1 are visible in the Atlantic south of 40°S, in a small region east of Australia, and partly in the
Pacific south of 60°S. The improvement with regard to SynSenPFT is shown Figure 6b. The improvements
with regard to SynSenPFT and OC‐CCI data are very similar in most regions. However, the improvements
close to the Antarctic and at higher northern latitudes are larger with regard to the SynSenPFT data.
Overall, the improvements with regard to SynSenPFT are more variable in the Antarctic basin (south of
40°S) than for OC‐CCI data. Several smaller regions with deteriorations of a small amplitude not exceeding
0.1 are visible for SynSenPFT data, and a larger deterioration exists east of the Antarctic peninsula. This also
shows that the variability of SynSenPFT data is distinct from that of the OC‐CCI data in this region. For both
satellite data sets there is a deterioration east of Australia around 40°S, but the amplitude is larger with
regard to the SynSenPFT data.

Figure 6. Time‐averaged logarithmic assimilation improvement of model chlorophyll. Shown are the improvement of total chlorophyll with regard to OC‐CCI data
(a), total chlorophyll with regard to SynSenPFT data (b), and the improvement of small phytoplankton (c) and of diatoms (d) with regard to the relating SynSenPFT
data. OC‐CCI = Ocean‐Color Climate Change Initiative.
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The assimilation effect on individual phytoplankton groups can be seen in the time‐averaged improvement
plots for small phytoplankton and diatoms in Figures 6c and 6d which are computed with regard to the phy-
toplankton groups in the nonassimilated SynSenPFT data. For small phytoplankton, the time‐averaged
improvement is smaller than for the diatoms. Improvements are visible in most regions like the higher lati-
tudes of the Northern Hemisphere, North Atlantic and Pacific, around the equator, and in temperate regions
of the Southern Hemisphere. Deteriorations are mostly present in the Southern Ocean south of 60°S. Here
the impact of the assimilation is mainly between neutral and negative, but at some places the data assimila-
tion still improves the state. When we compare the improvement with the RMSEs for this region in Figure 4,
we see that most of the time, the data assimilation has a positive effect, while in the Antarctic summer, the
small phytoplankton chlorophyll is not improved. The improvements for diatom chlorophyll are generally
larger than for the total chlorophyll, in particular in the North Atlantic, North Pacific, equatorial Pacific,
and Southern Ocean. This might look contradictory given that total chlorophyll is the sum of the two
PFTs, but the shown improvements are relative and not absolute due to the use of logarithmic concentra-
tions. Deteriorations are found in higher latitudes of the Northern Hemisphere and in some smaller regions
of the Antarctic. Apart from two very small regions in the Kara Sea and the Hudson Bay with larger dete-
riorations, the deteriorations are much smaller than the improvements. Thus, the assimilation provides a
better state estimate than the free run and provides a complete global coverage in contrast to the satellite
data that contain data gaps due to the light availability or clouds.

3.3. Assessment of Data Assimilation Influence With In Situ Data

The model results and satellite data are compared against the in situ data by determining the RMSE, bias
(mean error), and correlation coefficient based on logarithmic chlorophyll concentrations at the ocean sur-
face. Figure 7 shows the availability of the in situ data over the 2 years. For total chlorophyll there are 1,077
data points, while there are 1,054 data points for small phytoplankton. The data are irregularly distributed
over all ocean basins. For diatoms there are only 363 data points and their distribution is very irregular.
There are many points close to the Antarctic Peninsula. Also, in the North Atlantic there are several stations
with multiple measurements during the 2 years, while the data availability in the Pacific is extremely low
and there are essentially no data points in the Indian Ocean.

For total chlorophyll, Figure 8 shows the scatterplots for the assimilation analysis state, the free run, and the
OC‐CCI and SynSenPFT data compared with in situ data. The color of the points in the scatterplots repre-
sents data at different latitudes as shown in the color bar. The correlation (r), RMSE, and bias were calcu-
lated for N = 1,077 available observations of 2008 and 2009. Note that the total number of points N is the
nearest model grid point to the in situ data. Of the four cases, the OC‐CCI data show the highest correlation
(0.76) with the in situ data. The free run shows a correlation of 0.59, which is increased by the data assimila-
tion to 0.68. More specifically, the deep blue dots, that is, the total chlorophyll in the southern higher lati-
tudes, are improved. The correlation in the assimilation is slightly higher than the correlation of
SynSenPFT data (0.65). For the latter we have to consider that the total sum of all SynSenPFT groups is

Figure 7. Number of in situ data points and their spatial distribution for the years 2008–2009. (a) The 1,054 data points of small phytoplankton and (b) 363 data
points of diatoms. The in situ data for total chlorophyll contains 1,077 data points, with approximately the same distribution as the small phytoplankton data.
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not identical to the total chlorophyll concentration, because often other phytoplankton groups can
contribute significantly (e.g., dinoflagellates, other prymnesiophytes than coccolithophores, pelagophytes,
and chrysophytes). Apart from the increase in correlation coefficient the data assimilation reduced the
amount of bias (from −0.36 to −0.33) and reduced the RMSE (from 0.57 to 0.51). However, both the OC‐
CCI and SynSenPFT data show smaller biases and RMSEs. So the model state from the data assimilation
cannot outcompete these two observational data sets but provide improved coverage for with comparable
RMSE and bias.

The data assimilation also has a positive influence on the two individual phytoplankton groups when com-
pared to the in situ data. The scatterplots for small phytoplankton and diatoms are shown in Figure 9. As
mentioned in section 2.3.3 only values greater than and equal to 0.01 mg/m3 are considered here for both
model analysis state and in situ data.

For small phytoplankton (Figures 9a–9c) we have 1,054 data points. The data assimilation reduces the RMSE
from 0.53 to 0.45 and the amplitude of the negative bias from −0.24 to −0.15. Further, the correlation coeffi-
cient is increased from 0.3 to 0.43 due to the assimilation. Again, the correlation coefficient between
SynSenPFT and in situ data is higher with value of 0.59, and the bias and RMSE are lower. This is partly
due to the fact that there are a few points with very small concentrations in the model, which are higher
in the SynSenPFT data. Comparing the free run and the assimilation, we see that the lowest concentrations
are smaller in the free run. These very low concentrations are increased above the limit of 0.01 mg/m3 by the
data assimilation.

The scatterplots for the diatoms (Figures 9d–9f) show a much larger spread of the values. The number of
available in situ points is 363, hence only a third of the data points for small phytoplankton. We see a higher
RMSE for diatoms compared to the small phytoplankton, which is reduced from 1.3 to 0.91 by the data

Figure 8. Comparison of in situ data for total chlorophyll with the (a) data assimilation analysis, (b) free run, (c) OC‐CCI
data, and (d) SynSenPFT (see explanation in Figure 2) data. The dashed line shows the linear regression, while the con-
tinuous line is the reference line with slope 1. The numbers show the RMSE, bias, correlation coefficient (r), and the
number of comparison points (N). OC‐CCI = Ocean‐Color Climate Change Initiative; RMSE = root‐mean‐square.
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assimilation. Also, the amount of bias is decreased from −0.73 to −0.57 and the correlation is slightly
increased (from 0.39 to 0.41). Like in the total chlorophyll the small concentrations of diatoms in the
Southern Ocean are improved (as seen in the deep blue dots). The large improvements in RMSE and bias
are mainly caused by a large number of collocation points that are below 0.01 mg/m3 in the free run but
increased above this limit by the data assimilation. For both the free run and the assimilation, the
correlations with the in situ are higher than for the SynSenPFT data which show a very small value of 0.1
for the 2‐year match‐up period but on the other hand a much lower bias and RMSE than the two former
data sets (−0.14 vs. −0.57 and −0.73 and 0.67 vs. 0.91 and 1.3, respectively). Note that the low correlation
value for SynSenPFT appears to be particular for the time period of the experiments and due to the low
number of match‐up points on the model grid. For a 10‐year period, 2002 to 2012, Losa et al. (2017a,
2017b) found a better representation with much higher correlation of r = 0.67, smaller RMSE = 0.53, and
bias = 0.05 for 4,946 match‐up points.

4. Discussion

The results presented above demonstrate that the assimilation of the total chlorophyll from OC‐CCI is suc-
cessful in improving the chlorophyll representation in the REcoM2 model. The total chlorophyll is clearly
improved with respect not only to the assimilated satellite data but also to the SynSenPFT data for which
the sum of concentrations from three individual PFTs represent the total chlorophyll in our comparisons.
South of 60°S, the assimilation improvement of total chlorophyll is even larger with regard to SynSenPFT
than the assimilated OC‐CCI data (Figures 6a and 6b).

In the South Pacific gyre, a band of increased chlorophyll concentration is visible in Figures 2a and 2b. The
assimilation can reduce, but not eliminate, this feature, which is caused by choices in the model parameter-
ization. It is located where a switch from nitrogen to iron limitation happens. The formulation of nutrient

Figure 9. Comparison of in situ data of small phytoplankton (a–c) and diatoms (d–f) with the (a, d) data assimilation analysis state, (b, e) free run, and (c, f)
SynSenPFT data. RMSE = root‐mean‐square.
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limitation as theminimum of a N‐ and a Fe‐limiting term leads to a small band of less severe limitation at the
transition from one to the other, causing the local increase in chlorophyll concentration. A higher model
resolution along with fine tuning of the biogeochemistry parameters is expected to reduce this effect.

The improvements reached by data assimilation are partitioned over the two phytoplankton groups repre-
sented in the REcoM2 model. Here the ensemble estimates of the cross covariances between total chloro-
phyll and the chlorophyll in the two phytoplankton groups come into effect. Figure 4 shows that the
effect of the data assimilation is to generally reduce the RMSEs for both groups. However, while for diatoms
we see strong improvements almost everywhere, the effect is smaller for small phytoplankton. In particular,
there are time periods where the assimilation increases the errors for small phytoplankton in higher lati-
tudes. This effect is also visible in Figure 6, where for small phytoplankton south of 60°S both improvements
and deteriorations are visible. However, one has to interpret this result with care. While the diatoms have a
clear representation in the SynSenPFT data, we approximated the small phytoplankton of REcoM2 by the
sum of coccolithophores and cyanobacteria. While REcoM2's small phytoplankton group also includes coc-
colithophores, there is no exact correspondence; especially the very small cyanobacteria (Prochlorococcus
and Synechococcus) are probably not well represented in the model. Evenmore as the biogeochemical model
parameters are globally constant, the small model phytoplankton cannot represent the spatially varying
abundance of different phytoplankton types present in the small phytoplankton. Such an effect has, for
example, been discussed by Tréguer et al. (2018) for the diversity within diatoms. Another effect is that
the ensemble spread is generated and maintained by perturbing a set of eight model parameters of
REcoM2. While previous studies were successful with this strategy and also our results show a mainly posi-
tive effect of the assimilation, one has to keep in mind that these parameter perturbations are not tuned to
give particularly realistic cross covariances. One might even consider that spatially varying sets of perturba-
tions might be required to improve, for example, the assimilation effect on small phytoplankton in the
Antarctic basin.

Tables 1 and 2 show that the multivariate assimilation using the ensemble‐estimated cross covariances
between total chlorophyll and both PFTs yielded smaller errors for the diatoms than an assimilation config-
uration in which the PFTs are updated so that the ratio to total chlorophyll is preserved. Further, the results
showed that diatoms and small phytoplankton behave differently in the assimilation. To understand this dif-
ferent behavior, Figure 5 exemplifies the ensemble cross correlations between total chlorophyll and both
PFTs for two dates. For small phytoplankton (Figures 5a and 5b) the correlation is close to one essentially
everywhere between 40°N and 40°S. Only in the higher latitudes smaller, but also negative, correlations
are visible. In contrast, the correlation between the diatoms and total chlorophyll is very variable and there
are regions, for example, the southern central Pacific where the correlation is close to 0. In the higher lati-
tudes above 40° the correlations show seasonal changes. For example, in the North Atlantic there is a region
where small phytoplankton is negatively correlated to total chlorophyll in February, while the correlation is
positive in October. In the ratio‐preserving assimilation update, the two PFTs are always positively corre-
lated to the total chlorophyll. As such, it is evident that in particular the assimilation effect on the diatoms
should be very different for the two update variants. Further, the different correlation patterns of small phy-
toplankton and diatoms indicate that both PFTs should show distinct assimilation effects when the cross
covariances are used for the updates.

Due to the different effect of the assimilation on the two PFTs, the PFT community structure is influenced by
the assimilation. Figure 10 shows the fraction of small phytoplankton in the PFT community for the free run,
the assimilation experiment, and SynSenPFT for 20 April 2018. Most striking is that the assimilation
switches the dominance from small phytoplankton to diatoms in several regions in the Antarctic basin. In
contrast, the dominance of diatoms is reduced in the North Atlantic between 40°N and 60°N and to a lesser
degree in the North Pacific. For SynSenPFT, small phytoplankton is less dominant in the equatorial and
central regions while diatoms show no clear dominance in the northern regions. Around 40°S diatoms
dominate, like in the assimilation, but in the data this dominance does not extend further south. The
different phytoplankton groups represent different sizes and shapes, but also different physiological charac-
teristics. Further, diatoms and small phytoplankton have different ecological functions like silification
versus partial calcification. Changing the phytoplankton community will thus, for example, influence the
air‐sea flux of CO2 and particulate organic carbon export (Mouw et al., 2016) and has consequences, for
example, for the recruitment of juvenile fish (Trzcinski et al., 2013).
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The nutrients and zooplankton were not included in the state vector and thus are updated only via themodel
dynamics. Accordingly, one cannot expect any systematic effect of the assimilation on these variables. For
spatially averaged dissolved inorganic nitrogen and iron, the indirect effect of the assimilation did not exceed
2% at any time in the global average and the overall spatial distribution of the nutrients was preserved.
Changes in the total alkalinity were negligible. However, locally the dissolved inorganic nitrogen was
increased in the Kara Sea from about 1.5 to 6.0 mmol/m3 and dissolved iron from about 2 to 3 μmol/m3

(not shown). Figure 6 shows that the chlorophyll was significantly improved by the assimilation in the
Kara Sea. These changes apparently also induced the changes in the nutrients. Further, the zooplankton
concentration increased by about 17% in the global average. These increases were particularly pronounced
in the high latitudes, for example, in the Kara Sea, where the zooplankton concentration increased as a reac-
tion on the changed phytoplankton concentration. Generally, the closed northern boundary at 80°N influ-
ences the ensemble states and hence the data assimilation in particular in regions with strong water
exchanges with the Arctic. However, the assimilation results do not show a clear evidence of this.

The validation with in situ data also confirmed the positive effect of the data assimilation for total chloro-
phyll and for the two phytoplankton groups. Here one effect of the assimilation is to increase very low phy-
toplankton concentrations which occur in the free running model. Differences in the distributions of small
phytoplankton and diatom concentrations are particularly visible due to the larger spread of diatom concen-
trations in both the model and the observations. This results in higher RMSEs and biases for diatoms than
for small phytoplankton, while the correlation between both data sets is similar for both groups.
Nonetheless, the group‐based SynSenPFT satellite‐derived product still shows better statistics than
the assimilation.

Figure 10. Fraction of small phytoplankton in total chlorophyll in percent on 20 April 2018. For values above 50% (yellow to red colors), the small phytoplankton
dominates the plankton community, while diatoms dominate for values below 50% (green to blue). (a) Free run, (b) data assimilation analysis state, and
(c) SynSenPFT data.
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Compared to the previous regional study by Ciavatta et al. (2011) we also find a clear improvement of the
diatoms. The other groups in the model used by their study (flagellates, dinoflagellates, and picophytoplank-
ton) are not comparable to the small phytoplankton group of REcoM2. In the English Channel modeled by
Ciavatta et al. (2011) we see improvements in particular for the diatoms but to a lesser degree also for the
small phytoplankton. However, our model configuration has a much coarser resolution than the model con-
figuration used by Ciavatta et al. (2011) and has fewer PFTs. Further, the in situ data points for diatoms were
very unevenly distributed and hence mainly representative to a region close to the Antarctic Peninsula and
some stations in the Atlantic. However, for diatoms the assimilation shows clear improvements in compar-
ison to SynSenPFT.

5. Summary and Conclusions

A local error‐subspace transformKalman filter (LESTKF) has been applied to assimilate satellite data of total
chlorophyll into MITgcm‐REcoM2 for estimating phytoplankton fields during the years 2008 and 2009. The
assimilation was multivariate so that eight variables describing the two PFTs of REcoM2, including the two
chlorophyll concentrations, were directly modified by the assimilation through ensemble‐estimated covar-
iances. Also, the alternative to update the two PFTs with the constraint to keep their ratio to total chlorophyll
constant was tested. The ensemble members were generated by perturbing sensitive biogeochemistry
parameters of the ecosystem model.

The assimilation improved the total chlorophyll, represented by the sum of the chlorophyll concentration of
REcoM2's two phytoplankton groups. The RMSE for the total chlorophyll for 2008 and 2009 was decreased
by the assimilation in comparison with both the assimilated data OC‐CCI and the SynSenPFT, which is a
semi‐independent data set. The RMSE showed a seasonality with larger values during spring at the respec-
tive hemispheres specifically in the polar regions. The total chlorophyll was significantly improved over the
whole model domain with largest improvements in the equatorial region, the North Atlantic and Pacific
between 50°N and 60°N, and in the Pacific and Indian Oceans between 40°S and 50°S. In the Southern
Ocean the improvements were larger with regard to the SynSenPFT data than the assimilated OC‐CCI data.

The multivariate assimilation was able to improve the two phytoplankton groups individually, which was
assessed by comparison with PFTs data from SynSenPFT and in situ data. The improvements were larger
in the tropical and midlatitude regions in comparison to high‐latitude regions. The Southern Ocean and
the region north of 40°N showed a seasonal variability of the RMSE during the spring bloom season in their
respective hemispheres. There are times and regions where the influence by the assimilation is clearly dis-
tinct for the two phytoplankton groups. In particular, in the Southern Ocean in January and February an
error reduction was visible for diatoms which dominate at this time, while the error for small phytoplankton
was increased. This effect shows that the ensemble‐estimated covariances lead to an individual assimilation
effect on the phytoplankton groups, which at times can also lead to a regional deterioration of one group.
The individual effect shows that the model dynamics of both groups behave differently resulting in distinct
correlations to the total chlorophyll concentration. This behavior is influenced by the parameter perturba-
tions that were applied to generate the ensemble of model states. These perturbations where selected so that
a sufficient spread in the PFT variable concentrations was obtained. For example, the perturbations ensure
that both the small phytoplankton and diatoms exhibit variability among the different ensemble members
during a spring bloom so that the ensemble represents usable covariances between total chlorophyll and
the individual PFT variables. However, as a limitation of the method one has to keep in mind that the per-
turbations were not particularly tuned to obtain optimal assimilation results. To this end there might be
other choices for parameter perturbations that lead to a better assimilation performance.

Overall, while the study shows a positive influence of the multivariate assimilation, its assessment is limited
by the fact that the SynSenPFT data are not fully independent from the assimilated OC‐CCI data. Further,
the validation is limited by the data availability and there is a mismatch between the different groups
described by the model, the SynSenPFT products, and the in situ PFT data base (see details on this discussion
in Bracher, Bouman, et al., 2017). In particular, while the OC‐CCI data directly represent total chlorophyll,
the assimilation assumes that the sum of the two PFTs of REcoM2 also represent the total chlorophyll, so a
likely effect of other PFTs not included in the model is not taken into account. In addition, the small phyto-
plankton group in REcoM2 is not exactly represented by the available phytoplankton groups in the
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SynSenPFT (which are diatoms, cyanobacteria, and coccolithophores) and in situ (which are diatoms,
cyanobacteria, and haptophytes) data.

Given the influence of the model parameters, a next step of this work is to estimate them in combination
with the concentrations using the data assimilation. This approach will allow for spatially varying para-
meters, which likely lead to a better representation in particular of the small phytoplankton group of
REcoM2. Another approach is to assimilate the PFTs data provided by SynSenPFT or its input data sets
PhytoDOAS and OC‐PFT to directly influence the PFTs of REcoM2 in a similar manner as done by
Ciavatta et al. (2018) for the northwest European Shelf.
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