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Historical contingency and productivity effects on
food-chain length
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Food-chain length (FCL) is a fundamental ecosystem attribute, integrating information on

both food web composition and ecosystem processes. It remains untested whether FCL also

reflects the history of community assembly known to affect community composition and

ecosystem functioning. Here, we performed microcosm experiments with a copepod (top

predator), two ciliate species (intermediate consumers), and bacteria (producers), and

modified the sequence of species introduction into the microcosm at four productivity levels

to jointly test the effects of historical contingency and productivity on FCL. FCL increased

when the top predator was introduced last; thus, the trophic position of the copepod reflected

assembly history. A shorter FCL occurred at the highest productivity level, probably because

the predator switched to feeding at the lower trophic levels because of the abundant basal

resource. Thus, we present empirical evidence that FCL was determined by historical con-

tingency, likely caused by priority effects, and by productivity.
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Food-chain length (FCL), a measure of the number of trophic
levels in a system1–4, is a property of food web structure
with connection to community composition1–3 and eco-

system processes, such as energy and matter flows in
ecosystems2,5, and CO2 exchange between freshwater systems and
the atmosphere6. Also, FCL determines the level and timing of
bioaccumulation of potentially toxic substances in food webs and
thus indirectly relates to human health7,8. Thus FCL has been
recognized as a fundamental ecosystem attribute and has been
extensively studied7–11, although the question of which factors
constrain FCL still remains under debate.

Numerous hypotheses on constraints of FCL have been pro-
posed and are widely cited1–3,9–11. Among these studies, a
majority focus on a few general hypotheses such as the pro-
ductivity (basal resource availability), ecosystem size, and dis-
turbance hypotheses12–14. The productivity hypothesis predicts
that FCL increases with increasing productivity, because higher
energy availability at the base of the food web allows for the
existence of higher trophic levels, given the transfer efficiencies
between trophic levels2,11,15–17. However, Kondoh and Nino-
miya15 suggested that FCL could be shorter with increasing
productivity when adaptively foraging predators switch their diet
to a more basal resource and thus to a lower trophic position. No
change in, or shortening of, FCL16, with enrichment of pro-
ductivity, can also occur if food web structure changes because of
different functional responses17 or if productivity relates to higher
instability of the community18. The ecosystem size hypothesis
predicts that FCL increases with increasing ecosystem size, such
as lake volume12. The disturbance hypothesis, also termed as the
dynamic constraints hypothesis, predicts that more frequent or
more intense disturbance in ecosystems would shorten FCL,
because longer chains are less resilient and thus unlikely to persist
in disturbed habitats13. Still, among the common FCL hypoth-
eses, the productivity hypothesis has been tested most frequently
but with incongruent results from field and laboratory
studies13,14,19,20.

Recently, nitrogen stable isotope measurements have become
the technique most often used for FCL determination, next to gut
content analyses12–15,20,21. Nitrogen stable isotope composition
reflects the trophic position of consumers22. Nitrogen isotopes
provide a measure of realized FCL, integrating the assimilation of
energy or mass flow through all the trophic pathways leading to
top predators22.

In large lakes, FCL was shown to increase in older lakes, probably
indicating that the ecosystem’s history of species immigration and
evolution affected FCL23. The effect of species immigration history
on FCL suggests that colonization sequence may affect community
structure24. Historical contingency has frequently been considered
in ecology24 in the context of community structure, species diver-
sification, and productivity–diversity relationships24–29. Despite the
accepted role of historical contingency with regard to community
composition and ecosystem functioning24–28, its importance as a
determinant of FCL has, to our knowledge, never been tested.

Here we provide an experimental test of historical contingency
on FCL, specifically colonization order, along a gradient of pro-
ductivity using microcosm experiments. We find that FCL is
determined by historical contingency, via priority effects and
productivity.

Results
FCL of the microcosm systems. We combined four colonization
sequences and four productivity levels in a fully factorial design
with five replicates (80 microcosms in total). Such replicated
microcosm experiments have been widely used to test hypotheses
in ecology and evolutionary biology30. The productivity gradient

was established by protozoan pellet concentration. We inoculated
our microcosms with bacteria, ciliates, and zooplankton, allowing
for a food web structure including bacteria as a basal resource, a
primary consumer (the bacterivore ciliate Tetrahymena sp.,
abbreviated T), an intra-guild predator (the bacterivore/intra-
guild predator ciliate Blepharisma sp., abbreviated B), and a
copepod (Cyclops sp., abbreviated C) as the top predator. The
groups were added in four specific sequences into the microcosm
at each of four productivity levels. Then we measured the stable
nitrogen isotope of the top predator zooplankton to estimate the
FCLs in the microcosms. We also evaluated the abundance and
body mass of the species to show the shifts in community
structure in the microcosms.

With the results from microcosm experiment (Fig. 1), the
calculated FCLs remarkably varied with productivity and species
sequences (BCT, TCB, BTC, TBC, see Table 1; Fig. 2), reflected by
significant main effects of the factor in the general linear model
(GLM; Table 2). These effects were independent, as the
interaction was not significant (Table 2). The sequences BTC
and TBC, at which copepods were introduced last, had
significantly higher FCLs than sequences with earlier introduction
of the copepod (Table 2). The differences in FCLs correspond to a
shift of 0.5 trophic level in these treatments, indicating that the
trophic position of the top predator was substantially changed.
Thus later entry by the top predator led to a more vertical
organization of the food web. At the highest productivity (0.78 g
pellet L−1), the FCLs were significantly shorter than at the other
productivity level (Table 2).

Abundance and body mass of species. The abundance of ciliate
consumers varied among productivity levels and introduction
sequences (Supplementary Fig. 1 and 2, Supplementary Table 1).
The abundance of Tetrahymena was not different between the
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Fig. 1 Illustration for the food webs in the microcosm experiment. The
letters (B, T, and C) indicate Tetrahymena sp., Blepharisma sp., and Cyclops
sp., respectively. The arrows indicate link of food web with regard to our
preliminary experiments and previous studies
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sequences, thus the food source for both intraguild predator and
top predator probably was not limiting during the experiment.
However, the abundance of Tetrahymena significantly increased
with productivity (Supplementary Table 1). The abundance ratio
of Blepharisma/Tetrahymena varied correspondingly not only
between productivity levels but also with introduction sequences.
The ratios were higher in the BTC sequence, where Blepharisma
was introduced before Tetrahymena (Fig. 3). The individual body
mass (Supplementary Fig. 3) and the number of surviving indi-
viduals (mean= 23.4 ± 0.5 individuals at the final experimental

day) of copepods were not significantly different between the
treatments (Supplementary Table 1). The survival rates of cope-
pods were very high (94% remained) such that the predator
population was almost completely maintained to the final day of
the experiment.

Discussion
FCL varied between 3 and 4 with species inoculation sequence
and productivity in our microcosm systems. In natural systems,
FCL generally ranges between 3 and 613,14. The effect of intro-
ducing the copepod last corresponded to an increase in FCL by
0.5 trophic positions, whereas the FCL reduction in the highest
productivity level corresponded to 0.3–0.4 trophic positions. Thus
our microcosms provided first evidence for a variability of FCL
with community assembly history and novel insights in the
relationship between productivity and FCL.

When the top predator invaded in the food web later, it per-
formed as a top predator mainly feeding on the intraguild pre-
dator (Blepharisma), and consequently the system had a longer
FCL. When the top predator copepods were introduced before
the intraguild predator (Blepharisma), they only fed on the
intraguild prey (Tetrahymena) feeding on bacteria, thereby
depressing the population level of Tetrahymena. Therefore, Ble-
pharisma had a trophic level of ~2, similar to Tetrahymena. The

Table 1 The introduction sequences for the FCL experiments

Treatment name First sequence Second sequence Third sequence

BCT Blepharisma (B) Cyclops copepod (C) Tetrahymena (T)
TCB Tetrahymena (T) Cyclops copepod (C) Blepharisma (B)
BTC Blepharisma (B) Tetrahymena (T) Cyclops copepod (C)
TBC Tetrahymena (T) Blepharisma (B) Cyclops copepod (C)

0.1 0.2 0.39 0.78
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Fig. 2 The food-chain lengths (FCLs) with different sequence treatments (named in Table 1) and productivity from 0.1 to 0.78 g pellet L−1 (N= 5 for each
treatment). The boxes indicate ± 25% quartiles with the median (bar), and the bars indicate ± 1.5× quartiles. The points are outliers

Table 2 Results of GLM for sequence (BCT, TCB, BTC, and
TBC) and productivity (0.1, 0.2, 0.39, and 0.78 g L−1 of
protozoan pellets) effects on FCLs

Factors t Value p Value Comparisons

Sequence 2.05 0.045 0.1, 0.2, 0.39: BTC >
TBC > TCB= BCT
0.78: BTC > TBC=
TCB= BCT

Productivity –2.85 0.006 0.78 < 0.1, 0.2, 0.39
Sequence×productivity –1.26 0.212

The comparisons means significant difference (α= 0.05) by Turkey multiple comparisons
among the treatments
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copepod, whether it fed on Tetrahymena or Blepharisma, would
then have a trophic level of ~3.

When Blepharisma primarily feeds on Tetrahymena, the
copepod fed on a prey with a trophic level >2. Therefore, another
mechanism can be assumed that the intraguild predator did not
successfully compete for the bacteria with the intraguild prey and
consequently had lower abundances. Moreover, lower
Blepharisma/Tetrahymena ratios were observed at TCB sequence,
which may also reduce the trophic position of the top predator
due to lowered relative abundance of the intraguild predator. Our
experiment therefore highlights the role of priority effects of
consumer introduction and top predator’s adaptive foraging for
defining maximum FCL. We found such priority effects on FCL
in a reduced web with three consumer species only, therefore it
will be important to analyze historical contingencies in real
ecosystems, in order to see whether our results can be transferred
to natural ecosystems with more complex network structures.

Productivity is generally supposed to lengthen FCL in aquatic
systems13,14, but in this study, at the highest productivity, the
FCL were shorter. The food-web model by Kondoh and Nino-
miya15 suggested that FCL can be shorter with increasing pro-
ductivity when considering adaptive foraging of consumers. This
requires that some of the predators are generalists able to feed on
different food sources. Predators may switch from higher trophic
levels to lower ones at higher productivity if especially the basal
species becomes more abundant31,32. In fact, the abundance of
the primary consumer Tetrahymena increased at highest pro-
ductivity, which may explain the shortened FCL we found at high
productivity levels, if the top predator fed more on the more
abundant primary consumer, Tetrahymena. We have no evidence
whether the intraguild predator (Blepharisma) also changed its
foraging to bacteria with productivity as we did not measure the
isotopic composition of the ciliates in our experiment. Some of
the previous studies reported the lack of a positive correlation
between productivity and FCL12,14,21, which could be explained

by historical contingency masking the productivity effect on FCL.
If the adaptive foraging of top predator changed the food web
structure along with historical contingency, the predator would
maximize the food-web stability according to the expectation by
the mathematical model of Kondoh33. Also, the adaptive foraging
of top predator in food web may minimize the destabilizing
effects of productivity enrichment in natural habitats34. We did
not directly test such changes35, but see such analyses as potential
future advance to more fundamentally understand the historical
contingency effects on food web structure.

In conclusion, we obtained evidence from microcosms that
FCL varies with historical contingency of community assembly
and productivity of system. If these results from a small-scale
experimental study prove to be valid in more complex natural
systems, these results represent an initial step to understand the
lasting impact of food-web assembly on food-web structure in an
immigration context.

Methods
Microcosm experiment. We used a two-way factorial design with four pro-
ductivity levels and four species-introduction sequences (Table 1) as treatments.
Each of the 16 unique treatment combinations (4 productivity levels×4 sequences)
was established in five replicates, totaling 80 microcosms.

As microcosms, we used 250-mL Pyrex glass flasks, filled with 100 mL of
medium. The different productivity levels were established by different
concentrations of protozoan pellets (Carolina Biological Supply [CBS], Burlington,
NC, USA): 0.1, 0.2, 0.39, and 0.78 g L−1 of protozoan pellets were added to natural
spring water (Volvic, from Clairvic Spring, Auvergne Regional Park, France). With
regards to the previous microcosm studies27,36, we set the weight of protozoan
pellets for the gradient of productivity levels. Flasks with medium were autoclaved
and then inoculated with the basal producer in the form of four bacteria cultures
(Bacillus subtilis, Bacillus cereus, Proteus vulgaris, Serratia marcescens, from CBS).

The bacteria were allowed to grow for 7 days before we added the other species
in four sequences (Table 1). These species comprised two ciliates (Tetrahymena sp.,
Blepharisma sp.) and a copepod (Cyclops sp.). Tetrahymena is a bacterivore37 and
represented the primary consumer (Fig. 1), Blepharisma is an interguild predator
able to feed on bacteria and Tetrahymena38, and Cyclops was added as top predator
feeding on ciliates39. Also, Cyclops can adaptively alter their diets in experimental
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Fig. 3 The abundance ratio of Blepharisma/Tetrahymena on different productivity from 0.1 to 0.78 and sequence treatments (named in Table 1, N= 5 for
each treatment). The boxes mean ± quartiles with median (point), and the bars indicate ± 1.5× quartiles (N= 5)
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environments39. Tetrahymena and Blepharisma were provided by CBS, stocked in
separate 250-mL flasks with a pellet-bacteria medium with 0.78 g L−1 of the
protozoan pellets. Cyclops copepods were originally collected from an agricultural
pond (34° 41’ 22” N,132° 73′ 71″ E, Higashi-Hiroshima, Japan) by towing a
250-µm meshed plankton net, picked up by a pipette under a binocular, and
incubated with the above medium with Tetrahymena and 0.78 g pellet L−1.

From the six possible sequences of these three species, we established four
sequences (Table 1), omitting those where the top predator would be introduced
first without suitable food. The first, second, and third species were added in weekly
intervals, 7, 14, and 21 days after the bacteria inoculation. We introduced 35 of the
copepods and 100 individuals of each ciliate species by using a pipette. For
copepods, we filtered the incubated medium by 250-µm mesh and then rinsed with
natural spring water to reduce the contamination with the ciliates. By rinsing of the
copepods, we can reduce the ciliate contamination. We picked the copepods from
the mesh by a pipette and transferred them into microcosms. For ciliates, 0.5 mL of
the ciliate stocking cultures were sampled just before inoculation to estimate
population densities by a ×400 microscope.

The microcosms were run as semicontinuous batch cultures. We renewed 10%
of medium once a week, i.e., during each introduction timing. We mixed the
microcosms and replaced 10 mL (10%) with fresh medium of the same productivity
level23,35. During the FCL experiment, all 80 microcosms were situated in an
incubator (KCSLPH-1400CT, Nippon Medical & Chemical instruments Co. Ltd.,
Osaka, Japan) at 20 °C with a 12/12 light/dark cycle.

Sampling and counting. After day 28 (21 days from first introduction), we collected
the copepods. We filtered the medium on a glass filter (GF/F, GE Healthcare) and
picked copepods under a binocular. We directly put copepods in predried and
preweighted tip cups. The body mass of copepod was determined by weighing the
individuals in their tip cup on a high-precision balance (BM-20, A&D, Tokyo, Japan).

The isotope samples of protozoan pellet and the tip cup with copepods were
dried at 60 °C for 24 h and stored in a desiccator. The 0.5 mL of medium was
collected for estimating population density of the ciliate species. The medium was
fixed by 2% acidic Lugol’s solution, and population density was counted at ×400
magnification using a Leitz DMIL microscope.

Stable isotope analysis. The nitrogen stable isotope (δ15N) of the samples were
determined using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a
PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon, Cheshire, UK) at
Stable Isotope Facility of the University of California Davis. Nitrogen isotopic data
are reported using the conventional δ notation, where δ15N= (15N/14Nsample/15N/
14Nstandard− 1) × 1000 (‰). Air N2 were used as international standard for δ15N.
We did not measure the δ13C of the samples due to limited sample mass.

Calculation of FCL. FCL is defined as the trophic position of the top predator
(copepod) in each microcosm. We assumed a trophic fractionation value of 3.4‰
to calculate FCL based on previous studies on food webs and FCLs22,40. The value
has widely been used for FCL studies on metazoans, and also the trophic enrich-
ment of ciliate was close to this general enrichment value (Supplementary Infor-
mation, 3.6–3.7‰). Consequently, FCL was calculated as

2þ δ15Ncopepod �mean δ15Npellet

3:4

where, the mean δ15Npellet was −2.54 ± 0.3‰ (Supplementary Information, n= 6,
mean ± 1 SD).

Before the experiment, we tested the isotope turnover time for copepods by
comparing samples 7 and 14 days after introducing the copepod to the same
mixture of ciliates and bacteria. As the result, the nitrogen stable isotope values
saturated at days 7 and 14 after introduction (see Supplementary Information),
similar to the previous study using small invertebrates41–44. From a model for the
relationships between half-life days of isotope turnover and invertebrate body size,
which was provided by a meta-analysis45, the isotopic half-life for the copepods can
be predicted to be 2.21 ± 0.39 days (mean ± 95% confidence interval, see
Supplementary Information). Thus, by this calculation, the isotopic turnover time of
the copepod is fast enough to calculate the trophic position (i.e., FCL of the system)
after 7 days (see the result of supplemental experiments in the Supplementary
Information, Supplementary Figs. 4–8). Simple time-dependent differences in the
copepods’ isotope values are not expected to alter the FCL data from the species-
sequencing experiment. Also, we used the same population of copepods for this
study, thus, we do not expect isotope differences in initial copepods.

Statistical analysis. We performed GLMs for evaluating the effects of colonization
sequence and productivity on FCL, the abundance/biomass of the different species,
and the ratio of Blepharisma/Tetrahymena. The error distribution was set as
Gaussian distribution in general but negative binomial for the ratio of
Blepharisma/Tetrahymena. To detect significant differences between treatment
levels, we performed Turkey multiple comparisons for significant treatments.
Statistical significance was set at α= 0.05, and all analyses were performed using R
3.3.146 with ggplot2 and glm packages for graphics and GLMs, respectively. All the
data are available in Dryad (https://doi.org/10.5061/dryad.2m9r762).

Data availability
All data, including the abundance of species and FCL in this study, are available via
the Dryad Digital Repository (https://doi.org/10.5061/dryad.2m9r762).
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