Observations of snow cover processes on Antarctic sea ice from in-situ and model studies.

Leonard Rossmann¹, Marcel Nicolaus¹, Stefanie Arndt¹, Margaux Couttet², Lars Kaleschke⁴, Michael Lehning²,³, Nina Maaß⁴, Nander Wever³, Christian Haas¹

¹ Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), ² École polytechnique federal de Lausanne (EPFL), ³ WSL Institute for Snow and Avalanche Research (SLF), ⁴ Universität Hamburg, Institut für Meereskunde
Introduction: Snow on Antarctic sea ice

- Snow rules sea ice conditions (albedo, thermal insulation, …) (e.g. Lytle et al., 2000)

- Snow contributes to sea ice mass balance (e.g. Jeffries et al., 2001)

- Snow depth heavily affects results from satellite remote sensing (e.g. Ricker et al., 2015, Arndt et al., 2016)

- Snow thickness in-situ measurements are sparse (in time and space)

=> Strong need for Antarctic wide snow thickness product
The SCASI Project

- German / Swiss Project
 (DFG & SNF funded)

Quantify the amount and distribution of snow on Antarctic sea ice, its physical properties and their evolution over time.
The Snow Buoy

- IRIDIUM antenna, temperature sensor
- Four ultra sonic sensors
- 1.5 m mast
- Electronics and batteries
Snow Buoy Overview

Snow Buoy in-situ observations show much higher snow thickness than AMSR2 satellite observations.

See presentation by Marcel Nicolaus
SNOWPACK: Sea ice component

Air temperature from buoy
Initial snow and ice thickness
Snow accumulation

SNOWPACK adaptation for sea ice
- ECMWF Era-Interim
- Radiation
- Wind etc.
- Precipitation
- Prescribed salinity
- Prescribed ocean heat flux
 - Sinus between 5-15 Wm$^{-2}$

SNOWPACK:
- Well established numerical snow model (Bartel and Lehning, 2002)
- Recently developed sea ice branch:
 - 1D thermodynamic sea ice model including snow cover processes
- We combined the Snow Buoy with the new SNOWPACK branch

Main Outputs:
- Temperature
- Snow/Ice thickness
- Grain types

Snow and ice temperature from Ice Mass-balance Buoy
SNOWPACK: Exemplary result

- Capable of modelling different snow types
- Results plotted corresponding to Snow Buoy measurements
Ocean heat flux:
5 to 15 W/m²

Ocean heat flux:
7 to 22 W/m²

Ocean heat flux is still an essential concern
SNOWPACK: Snow melting in sea ice marginal zone

Increased snow melt in the model, which is not seen from the Snow Buoy.

May be due to insufficient precipitation input and/or local topography effects (close pressure ridge).
SNOWPACK: Snow ice formation

Model underestimates in-situ snow surface.

Snow ice formation

2014S10

2014S12
AMSR2 satellite snow product - comparison

AMSR2 does not reproduce Snow Buoy surface heights due to multi-year bias and its max 50 cm detection.

SNOWPACK with snow ice formation but less snow input follows general snow thickness evolution.

AMSR2 does not reproduce Snow Buoy surface heights due to multi-year bias and its max 50 cm detection.
Results and Conclusions

• In SNOWPACK a new sea ice model branch has been introduced
• It is capable of modelling snow on sea ice conditions
• Ocean heat flux is still a concern

• Flooding and snow ice formation are present in the model and fit well with other observations
 (Maksym & Markus, 2008)
• Flooding and snow ice formation explain the difference between space borne observations and in-situ observations
Outlook

Further study regarding grain type evolution and snow ice formation

Comparison to co-deployed Ice Mass-balance Buoy

Compare SMOS snow thickness retrieval to new results

Up-scaling to a Weddell Sea wide snow thickness product.